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Abstract—We design, implement, and evaluate algorithms for
computing a matching of maximum cardinality in a bipartite
graph on multi-core and massively multithreaded computers. As
computers with larger number of slower cores dominate the com-
modity processor market, the design of multithreaded algorithms
to solve large matching problems becomes a necessity. Recent
work on serial algorithms based on searching for augmenting
paths for this problem have shown that their performance is
sensitive to the order in which the vertices are processed for
matching. In a multithreaded environment, imposing a serial
order in which vertices are considered for matching would lead to
loss of concurrency and performance. But this raises the question:
Would parallel matching algorithms on multithreaded machines
improve performance over a serial algorithm?

We answer this question in the affirmative. We report efficient
multithreaded implementations of two key algorithms (Hopcroft-
Karp based on breadth-first-search, and Pothen-Fan based on
depth-first-search) and their variants, combined with the Karp-
Sipser initialization algorithm. We report extensive results and
insights using three shared-memory platforms (a 48-core AMD
Opteron, a 32-core Intel Nehalem, and a 128-processor Cray
XMT) on a representative set of real-world and synthetic graphs.
To the best of our knowledge, this is the first extensive study of
augmentation-based parallel algorithms for bipartite cardinality
matching.

I. INTRODUCTION

We design, implement, and evaluate five parallel algorithms
for computing a matching of maximum cardinality in a bipar-
tite graph on multicore and massively multithreaded comput-
ers. As multicore machines dominate the commodity proces-
sor market, and the size of problems continue to increase,
there is need for parallel algorithms for solving important
combinatorial problems such as matching in graphs. However,
achieving good performance and speedup on combinatorial
problems is a challenge due to the large number of data
accesses relative to computation, the poor locality of the
data accesses, irregular nature of the concurrency available,
and fine-grained synchronization required. An earlier study
on parallel (weighted) matching algorithms [1] reported poor
speedups, but said ideal platforms for such algorithms would
have “relatively few numbers of powerful processors, support
for block transfers, lots of memory, and a high processor-
memory bandwidth to this memory”. We show that good
speedups are achievable on emerging multicore machines via
shared memory multithreaded algorithms that are designed
here.

Matching has several applications in computer science,
scientific computing, bioinformatics, information science, and
other areas. Our study of bipartite maximum matching is
motivated by applications to solving sparse systems of linear
equations, and for computing a decomposition known as the
block-triangular form (BTF) of a matrix [2].

The rest of this paper is organized as follows. In Section II
we describe two classes of parallel algorithms for computing
maximum matchings in bipartite graphs, and the initialization
algorithms used in this context. A short section on related work
is included in Section III. The next Section IV describes the
three machines we implement our parallel algorithms on. The
final Section V describes an extensive set of computational
experiments and results on a test set of fourteen problems.

Our major contributions include the following: To the best
of our knowledge, this is the first work to provide speedups for
(cardinality) matching algorithms on multithreaded platforms;
this is the first description of two classes of augmentation-path
based multithreaded parallel matching algorithms; this is also
the first description of a multithreaded Karp-Sipser matching
initialization algorithm, which computes maximum or close to
maximum matchings on many problems; we provide insights
by comparing the two different algorithm classes, across
multithreaded architectures and input graph characteristics;
and from a study of a massively multithreaded multiprocessor,
we are able to provide insight into performance on newly
emerging architectures.

II. ALGORITHMS FOR MAXIMUM MATCHING IN
BIPARTITE GRAPHS

In this section we describe five parallel algorithms for
computing maximum cardinality matchings in bipartite graphs.
All of them compute matchings by finding at each iteration
of the algorithm a set of vertex-disjoint augmenting paths in
parallel. They differ in the nature of the set of augmenting
paths, how the augmenting paths are computed, and what
graph is used to compute the augmenting paths. We provide
descriptions of two parallel algorithms in some detail, and
briefly sketch how the other algorithms are related to them.

We need some definitions before we can describe the
algorithms. Given a graph G = (V,E), a matching M ⊆ E
is a set of edges such that no two edges in M are incident on
the same vertex. The maximum matching problem is one of
maximizing the number of edges in M . In this paper, we focus



on matchings in bipartite graphs, G = (X ∪ Y,E), where the
vertex set V = X ∪ Y is partitioned into two disjoint sets
such that every edge connects a vertex in X to a vertex in
Y . We denote |V | by n and |E| by m. Given a matching
M in a bipartite graph G = (V,E), an edge is matched if it
belongs to M , and unmatched otherwise. Similarly, a vertex is
matched if it is the endpoint of a matched edge, and unmatched
otherwise. An alternating path in G with respect to a matching
is a path whose edges are alternately matched and unmatched.
An augmenting path is an alternating path which begins and
ends with unmatched edges. By exchanging the matched and
unmatched edges on this path, we can increase the size of the
matching by one. We refer the reader to a book on matching
algorithms [3] for additional background on matching.

The first algorithm we describe, Parallel Pothen-Fan (PPF),
is derived from a serial algorithm with O(nm) time com-
plexity proposed and implemented in 1990 by Pothen and
Fan [2], which is currently among the best practical serial
algorithms for maximum matching. The second algorithm,
Parallel Hopcroft-Karp (PHK), is based on a serial algorithm
proposed by Hopcroft and Karp [4] in 1973, with asymptotic
time complexity O(n1/2m).

In the next two subsections we describe parallel algorithms
for finding a maximal set of vertex-disjoint augmenting paths
using DFS or BFS. We point out that the graph searches for
augmenting paths have a structure different from the usual
graph searches: if the search is begun from an unmatched
vertex in X , when a matched vertex v ∈ Y is reached in a
search, the only vertex we reach from v is the mate of v, the
vertex matched to v. The search for all neighbors continues
from the mate, which is again a vertex in X .

A. DFS-based Algorithms

In this subsection, we describe the PPF algorithm, whose
pseudo-code is provided in Algorithm 1. The algorithm begins
with an initial matching obtained from an initialization algo-
rithm that will be discussed in a following subsection. The
algorithm makes use of DFS with lookahead to compute, at
each iteration, a maximal set of vertex-disjoint augmenting
paths. (A maximal set with respect to a property is one to
which we cannot add elements and maintain the property;
it is not necessarily a set of maximum cardinality with the
property.) A maximal set of vertex-disjoint augmenting paths
can be discovered in O(m) time by doing DFS’s from each
unmatched vertex in the set X (or Y ), and the matching can
be augmented by several edges at a time.

The idea of the lookahead mechanism in DFS is to search
for an unmatched vertex in the adjacency list of a vertex
u being searched before proceeding to continue the DFS
from one of u’s children. If the lookahead discovers an
unmatched vertex, then we obtain an augmenting path and
can terminate the DFS. If it is not found, the lookahead
does not add significantly to the cost of the DFS, since it
can be implemented in O(m) time for the entire algorithm.
Intuitively, lookahead is doing one level of BFS starting from a
vertex before continuing with the DFS. In practice, Pothen and

Fan found that lookahead helps a DFS-based algorithm finds
shorter augmenting paths faster, and led to a serial algorithm
for matching that was practically faster than the Hopcroft-
Karp algorithm, in spite of the latter’s superior asymptotic
time complexity.

We call each iteration of for all loop in Algorithm 1 a
phase of the algorithm. Each phase is executed in parallel
by spawning a set of threads. Each thread begins a DFS
with lookahead from a currently unmatched vertex to search
for an augmenting path. As each augmenting path is found,
each thread augments the current matching, and then proceeds
to search for an augmenting path from the next available
unmatched vertex in the phase. The augmenting paths found
in a phase need to be vertex-disjoint so that the matching
at the beginning of a phase can be augmented using all of
them. One way to enforce the vertex-disjointedness constraint
is to let all threads do their DFS’s without synchronization
and synchronize when we update the matching. This could
cause many of the augmenting paths to be discarded since after
augmentation by one of the paths, the matching changes, and
the other augmenting paths might no longer remain augment-
ing with respect to the current matching. The discarded work
causes the total work in the parallel version to be significantly
greater than in the serial version. Thus, a better approach is
to make sure that independent DFS traversals in an iteration
do not visit the same vertices, which is accomplished by
a thread-safe implementation of DFS with lookahead that
guarantees the vertex-disjoint property. While each DFS is
inherently sequential, there are many DFS traversals that can
be performed simultaneously in parallel.

Algorithm 2 describes the pseudo-code for the multi-
threaded DFS with lookahead, DFS-LA-TS. The algorithm has
two steps, a lookahead step, and a DFS step.

The lookahead step makes uses of a pointer lookahead[u]
to the next unseen vertex in the adjacency list of u. The
lookahead pointer ensures that the entire adjacency list of u
is scanned only once in all the phases during the lookahead
step. The for all loop searches the unscanned vertices in the
adjacency list of the vertex u for an unmatched vertex. If it
finds such a vertex, the algorithm returns the unmatched vertex
found. If all vertices in the adjacency set of u are matched,
then the algorithm proceeds to the DFS step, by executing the
second for all loop, and in that loop, making a recursive call
to the algorithm.

The vertex-disjoint property of the set of augmenting paths
is achieved by using atomic memory operations for updating
the entry for each vertex in a visited array. This ensures that
only the first thread to reach a vertex can use it in an aug-
menting path. As a generic operator Atomic_Fetch_Add
performs the requested addition operation in a thread-safe
(atomic) manner, and returns the original value prior to the
requested arithmetic operation. The operator ensures that only
one thread reads the original value of 0, thus indicating that
this is the first thread to read it; all other threads will see the
value 1, which indicates that the variable has been accessed
earlier.
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Even though DFS-LA-TS is expressed as a recursive al-
gorithm for brevity in describing it here, we use a stack
mechanism (an array of size at most n, where n is the number
of vertices) within each thread to implement the DFS. Note
that in spite of the stack being private to each thread we do not
require an array of size n for each thread. In any phase of the
matching algorithm, no vertex will get visited more than once,
and so it cannot be in the stack of multiple threads. The amount
of memory required for the stack of all the threads is at most n.
We can resize our stack dynamically to achieve this. We should
note that when memory is not a bottleneck with a sufficiently
small number of threads, the implementation with a stack of
size n for each thread does perform better and we use this for
our performance results. The lookahead is implemented with
an array of size O(n). The cost of the lookahead is O(m)
for the entire algorithm as in the serial case. We maintain the
maximum matching as an array of size n. As the paths are
vertex disjoint, we can augment the matching in parallel as no
two threads will touch the same entries of the matching array.

The parallel disjoint DFS (PDDFS) matching algorithm is
similar to the PPF algorithm, but it does not make use of the
lookahead mechanism in the latter. In each phase of the PDFS
algorithm, we do a a DFS traversal from each unmatched
vertex and enforce the vertex-disjoint property of augmenting
paths as in the PPF algorithm. The call to DFS-LA-TS in the
PPF algorithm is replaced here by DFS-TS. The pseudo-code
for DFS-TS is presented in Algorithm 3.

B. BFS-based Algorithms

The Hopcroft-Karp algorithm [4] finds a maximal set of
shortest vertex-disjoint augmenting paths and augments along
each path simultaneously. They showed that by doing so, the
number of augmentation phases could be bounded by O(n1/2)
thereby providing faster asymptotic time complexity than an
algorithm that augments the matching by one augmenting path
at a time. The other major difference is that the Hopcroft-Karp
(HK) algorithm uses a breadth-first search (BFS) to construct
a layered graph, and the maximal set of augmenting paths are
found within this layered graph. The BFS stops at the first level
where an unmatched vertex is discovered, as we are looking
for shortest augmenting paths. The BFS does not return the
augmenting paths, instead it returns the layered graph. In a
second step, the HK algorithm uses a vertex disjoint DFS
traversal on the layered graph from all the unmatched vertices
in the last level of the BFS to find the maximal set of shortest
length vertex-disjoint augmenting paths.

The layered graph is defined as follows. Let M be a current
matching in a bipartite graph G(X ∪ Y,E) with X0 and Y0

the set of unmatched X and Y vertices. The layered graph
LG(L,ELG,K) with respect to a matching M is a subgraph
of G, whose vertex set is arranged into levels L0, L1, ...LK ,
with L0 = X0; LK ⊆ Y0. The level L1 is the set of vertices in
Y adjacent to vertices in L0; if there are unmatched vertices
in L1, then K = 1. If not, L2 is the set of vertices in X
that are matched to vertices in L1. More generally, for even
i, Li consists of vertices in X matched to vertices in Li−1;

for odd i, Li consists of all vertices in Y adjacent to vertices
in Li−1 that do not belong to earlier levels. In the last layer
LK (K is odd, and these vertices belong to Y ) we need keep
only the unmatched vertices since we use the layered graph
to find augmenting paths beginning from vertices in LK . The
edges in the layered graph, ELG, join a vertex in one layer to
a vertex in the next layer; other edges of G can be discarded.

The parallel Hopcroft-Karp (PHK) algorithm is described
in Algorithm 4. It first constructs the layered graph in parallel
by simultaneous BFS’s from the unmatched vertices in one
side (the vertex set X here). The details of this construction
will be discussed later. In the second step, it uses Algorithm
3 to do parallel disjoint DFS searches from the unmatched
vertices in the last layer of the layered graph to find vertex-
disjoint augmenting paths. As before, we call each iteration
of the parallel for all loop a phase of the PHK algorithm.
Since the augmenting paths are vertex disjoint, the matching
at the beginning of a phase can be augmented by all of the
augmenting paths discovered during this phase.

The parallel BFS-based layered graph construction is de-
scribed in Algorithm 5. It constructs the layered graph two
levels at a time. The next level Lk+1 consists of all vertices
in Y not belonging to earlier levels that can be reached
from vertices in level Lk. If there is an unmatched vertex in
level Lk+1, we are done. Otherwise, the following level Lk+2

consists of all vertices in X that are matched to vertices in
Lk+1.

Each thread picks a vertex u in the current level Lk and
assigns its neighbors to the level Lk+1 and the vertices
matched to the latter to the level Lk+2. Each thread creates
is local list of vertices in the two succeeding levels. Once all
threads create their local lists, they are concatenated to obtain
the levels Lk+1 and Lk+2. Then the threads synchronize, and
can begin to construct the next two levels.

As before, we use atomic memory operations in our parallel
layer construction algorithm (Algorithm 5) to ensure that each
vertex is added to only one of the local lists of the levels.
We do not need any synchronization while adding a vertex
or the corresponding edge to the layered graph. There is one
synchronization point per pair of levels in the layered graph
in addition to the atomic operations to mark the visited array.

We have also implemented two variant algorithms paral-
lel BFS-based algorithms. One of them is Parallel Relaxed
Hopcroft-Karp (PRHK), which continues to construct the
layered graph to levels beyond the shortest augmenting path
length. Beyond augmentation by a maximal set of vertex-
disjoint shortest augmenting paths, we search for longer aug-
menting paths from unmatched vertices in the relaxed layered
graph and use these paths to augment the matching. A third
algorithm is Parallel Disjoint BFS-based (PDBFS), which does
not use a layered graph construction at all, but performs vertex-
disjoint BFS’s in the original graph from unmatched vertices in
X to find unmatched vertices in Y , and augments the matching
directly using these augmenting paths.
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C. Parallel Initialization Algorithms

Many iterations of one of the parallel algorithms described
earlier might be needed to find a matching of maximum
cardinality. The number of iterations needed can be reduced
substantially by using an initialization algorithm to compute
an initial matching fast. In many cases, the initialization
algorithms are good enough to find all or a large fraction
of the maximum cardinality of a matching. Duff et al. [5]
have described the use of initialization algorithms to compute
maximum matchings in serial. They found that an algorithm
due to Karp and Sipser is among the best initialization
algorithms in terms of the cardinality of the matchings found.

The Parallel Karp-Sipser algorithm is described in Algo-
rithm 6. All vertices with initial degree one in the set X are
stored in Q1 and processed first in parallel. Degrees of the
vertices adjacent to matched Y vertices are updated, and if
a new vertex of current degree one in X is discovered, it is
processed immediately. After processing Q1 other unmatched
vertices in X from queue Q∗ are processed in parallel. The
degree update and immediate processing of newly discovered
degree one vertices are done synchronously and described in
a separate routine MATCHANDUPDATE in Algorithm 7.

Note that, before a degree one vertex u is discovered in
dynamic degree update by a thread, a higher degree vertex v
can be picked by another thread. Hence the processing order
of the parallel implementation can deviate from that of a serial
implementation, and consequently when the number of threads
increases, the matching size is expected to decrease.

We have also implemented a Greedy initial matching algo-
rithm that finds a maximal matching (i.e., a matching such
that its size cannot be increased any further without changing
some of its matched edges to unmatched edges). The Parallel
Greedy algorithm examines, in parallel, (unmatched) vertices
u belonging to one of the vertex sets X , and does an atomic
fetch and add operation to lock an unmatched vertex v ∈ Y
in u’s adjacency list, and then matches the two vertices u and
v. We omit a detailed description.

III. RELATED WORK

The literature on parallel matching algorithms spans several
models of parallel computers: parallel random access machine
(PRAM), coarse grained multicomputer (CGM), bulk syn-
chronous parallel (BSP), and the massively parallel computer
(MPP). However, much of work is theoretical in nature, e.g.,
Karpinski and Rytter [6].

Considerable interest in parallel algorithms has been ob-
served in recent time with work on approximation as well
as optimal algorithms on shared and distributed memory
platforms. Langguth et al. [7] describe their work on paral-
lelizing the Push-Relabel algorithm [8] for bipartite maximum
matching on a distributed-memory platform. Although they
conclude that strong scaling or speedup is difficult to achieve,
good parallel performance justifies the effort to parallelize for
memory-scaling reasons. Patwary, Bisseling and Manne [9]
have implemented a parallel Karp-Sipser algorithm on a
distributed memory machine using an edge partitioning of

the graph rather than a vertex partitioning. Setubal [10] has
implemented the push-relabel algorithm on a shared memory
machine obtaining a speed-up of two to three on twelve
processors.

Parallel algorithms for weighted matching have also been
studied. There is an extensive literature on parallelization
of auction algorithms [11], [12], [13]. A general conclusion
from the work on auction algorithms is that they are suitable
for large dense problems. Recently Sathe and Schenk have
reported speedups of 32 on a 1024 processor Cray XE6 for a
parallel auction algorithm [14].

Several experimental results were presented as part of the
first DIMACS Implementation Challenge held in 1990—1991.
The results showed performance of augmenting-path based
as well as auction based algorithms on platforms such as
WaveTracer Zephyr, MasPar MP-1, and Silicon Graphics IRIS
4D/340 DVX. Of particular interest are the results of Brady et
al. [1], who compare the performance of auction algorithms on
the different parallel architectures mentioned above. Brady et
al. describe their results as a “little short of disastrous”.
However, we believe their conclusions on an “ideal” platform
for auction-like algorithms still hold: “relatively few numbers
of powerful processors, support for block transfers, lots of
memory and a high processor-memory bandwidth to this
memory”. After two decades, modern multi-core processors
feature some of these characteristics.

Unlike optimal algorithms, approximation algorithms for
matching are more amenable to parallelization. In particular,
half-approximation algorithms for weighted matching has been
explored by Manne and Bisseling [15], Halappanavar [16],
and Çatalyürek et al. [17] on distributed-memory platforms.
Speedups on up to 16, 000 processors for a class of graphs was
demonstrated by Catalyürek et al. Recently, Halappanavar et
al. [18] explored the half-approximation algorithm on several
multi-threaded platforms including general purpose graphics
processing units. They demonstrated good speedups for several
classes of graphs.

In designing our parallel algorithms we have started from
the best implementations of serial algorithms. From this per-
spective, Duff et al. [5] is the closest to our work. In addition
to introducing a new variant algorithm, Duff et al. conducted
an extensive empirical study of bipartite maximum matching
algorithms in serial. They compared eight algorithms based
on augmenting paths, ranging from simple BFS and DFS
based algorithms to sophisticated Pothen-Fan (PF), Hopcroft-
Karp (HK) and their variants. They used three different
methods for greedy initializations: simple greedy, Karp-Sipser,
and minimum degree. They implemented all these algorithms
consistently in a single library.

Duff et al. concluded that greedy initialization has a signif-
icant impact on performance. In particular, Karp-Sipser and
minimum-degree algorithms are clearly better than the simple
greedy algorithm. The performance of optimal algorithms
varied significantly and there was no clear winner across
the input set. Overall, PF with fairness (PF+) and HK with
the Duff-Wiberg modification (HKDW) were the two best

4



methods. Thus, we chose to focus on these algorithms. Duff et
al. also studied the effect of random permutations of the input,
and observed that this may significantly impact performance.
They point out in the conclusion section that this poses a great
challenge for parallel matching algorithms, since parallel tasks
may be executed in non-deterministic order.

IV. EXPERIMENTAL PLATFORMS

The three platforms selected for this study—Opteron, Ne-
halem and XMT—represent two state-of-the-art multicore
architectures as well as a non-traditional massively mul-
tithreaded architecture. Together, the platforms represent a
broad spectrum of capabilities with respect to clock speeds,
ranging from 0.5 GHz (XMT) to about 2.6 GHz (Nehalem);
hardware multithreading, ranging from none (Opteron) to
128 threads per processor (XMT); cache hierarchies, ranging
from none (XMT) to three levels (Nehalem and Opteron);
and memory interconnects, ranging from DDR1 (XMT) to
DDR3 (Nehalem). The XMT is cache-less, and uses massive
multithreading to tolerate the large latency to memory by
having some threads that are ready to execute while others
wait for outstanding memory accesses. The Nehalem and the
Opteron depend on moderate multithreading, cache hierarchies
and lower latencies to memory.

A few key features of the three platforms and references to
detailed information are provided in Table I. For the Opteron,
while the theoretical peak bandwidth to memory is 42.7 GB/s,
speeds in practice are limited to 28.8 GB/s due to the speed
of Northbridge links. The base clock frequency of Nehalem is
2.266 GHz, and the maximum turbo frequency is 2.666 GHz.

V. EXPERIMENTAL RESULTS

We present experimental results in this section on a set
of test problems whose sizes, degree distributions, and de-
scriptions are included in Table V. Greedy initialization plays
a key role in determining the overall performance of maxi-
mum matching algorithms, and we start this section with a
presentation on the greedy initialization algorithms. Matching
algorithms are sensitive to the order in which vertices are
processed. Therefore, we provide experimental results on
sensitivity and prove that the variance in runtime is small
enough to make experimental comparisons meaningful. We
then proceed to present strong scaling results for two of the
best performing algorithms, comparing the performance cross
algorithms, problem classes, and architectures. We discuss the
moderately multithreaded Opteron and Nehalem first, before
discussing results on the massively multithreaded XMT.

In the DFS-based matching algorithms (which search for
multiple augmenting paths in parallel), we used dynamic
scheduling for load balancing the threads. In BFS-based
matching algorithms (which compute vertices in the layered
graph two levels at a time), we used static or block-dynamic
scheduling for low overhead costs.

A. Quality and Impact of Initialization Algorithms

We measure the quality of a matching M obtained by
an initialization algorithm by the ratio of the cardinality of
the matching |M | to the cardinality of a maximum matching
in that graph. A high quality initialization algorithm reduces
the work that an exact matching algorithm needs to do, and
thereby reduces the overall runtime. For parallel algorithms, by
reducing the number of iterations that an exact matching algo-
rithm needs to perform, initialization can have a large impact
on the run time of the algorithm. The quality of Karp-Sipser
is better than Greedy initialization for all the test problems we
have considered. We show results for a representative example,
ER22, in Figure 1. Karp-Sipser computes matchings that are
better than Greedy by 6% for this graph. Since the graph has
random connectivity, it has poor spatial and temporal cache
locality in the matching computation. The small difference in
the quality of the matching decreases run times for the PRHK
algorithm (the fastest among our algorithms for this problem)
by a factor of four or more, as can be seen from the right
figure in Fig. 1. However, for very sparse graphs with good
spatial locality, the decrease in run times is not as significant.
An example is the USA-Roadmap problem, where the Karp-
Sipser algorithm obtains an initial matching with cardinality
that is 15% greater than the Greedy algorithm, but where the
improvement in run times is only a factor of 1.5 for the PPF
algorithm on an Opteron (again, this is the fastest algorithm
for this problem).

Different architectural features influence the performance
and behavior of algorithms. Fig. 1 also demonstrates the
influence of concurrency on the quality of matchings. The
number of threads executing on the XMT is several orders
larger than those on AMD, and therefore, we observe that
the quality of matching computed on the XMT is lower than
that on the AMD. Note that we request 100 threads per
processor on the XMT. The runtime determines the number
of threads that get allocated. We expect (and observe) that
from twenty to hundred threads execute concurrently over
the entire period of execution in a dynamic fashion. The
difference in quality is more pronounced for the Karp-Sipser
algorithm. When the number of threads exceeds the number of
vertices with current degree one, then vertices of higher degree
are matched at random, and consequently the cardinality of
matching decreases. Given that a large number of threads run
concurrently on XMT, degradation of quality for Karp-Sipser
is seen as expected. This influence is less pronounced for the
Greedy matching algorithm.

For all the input graphs in our study, Greedy initializa-
tion is faster than Karp-Sipser by a factor of two to four.
But the total runtime of an exact matching algorithm when
initialized with the Karp-Sipser algorithm is almost always
smaller than the combination with Greedy initialization due to
the improved quality that Karp-Sipser provides. This agrees
with earlier findings for initializations in serial matching
algorithms [5], [22]. Hence, from now on, we consider only the
Karp-Sipser initialization with exact matching algorithms. For
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Platform: Opteron 6176 SE Xeon X7560 ThreadStorm-2
(Opteron) (Nehalem) (XMT)

Processing Units
Clock (GHz) 2.30 2.266 0.5
Sockets 4 4 128
Cores/socket 12 8 1
Threads/core 1 2 128
Total threads 48 64 16,384

Memory System
L1 (KB)/core:Inst/Data 64/64 32/32 –
L2 (KB)/core 512 256 –
L3 (MB)/socket 12 24 –
Memory/socket (GB) 64 64 8
Total memory (GB) 256 256 1,024
Peak Bandwidth (GB/s) 42.7 (DDR3) 34.1 (DDR3) 86.4 (DDR1)

per socket per socket per system
Software

C Compiler GCC 4.1.2 Intel 11.1 Cray C 6.5.0
Flags -O3 -fast -par
Reference [19] [20] [21]

TABLE I
SUMMARY OF ARCHITECTURAL FEATURES OF PLATFORMS USED IN THIS PAPER.

Name |V | |E| Max. Deg. Avg. Deg. Std. Dev. Deg. Description
amazon0312 801,454 3,200,440 10 7.99 3.07 Amazon product co-purchasing network
coPapersDBLP 1,080,972 30,491,458 3,299 56.41 66.24 Citation Networks in DBLP
hamrle3 2,894,720 5,514,242 6 3.81 1.55 Circuit simulation matrix
as-skitter 3,392,830 22,190,596 35,455 13.08 136.86 Internet topology graph
roadNet-CA 3,942,562 5,533,214 12 2.81 1.01 California street networks
kkt power 4,126,988 12,771,361 96 7.08 7.40 Optimal power flow, nonlinear optimization (KKT)
cit-patents 7,549,536 16,518,948 770 4.38 7.78 Citation network among US Patents
ER22 (RMAT) 8,398,608 67,080,546 59 16.00 10.07 Erdos-Renyi Random graphs
good22 (RMAT) 8,398,608 67,080,546 965 15.99 23.77 Random power law graph
bad22 (RMAT) 8,398,608 67,080,546 26,832 15.81 87.28 Random power law graph with wider degree distribution
hugetrace-0000 9,176,968 13,758,266 3 2.99 0.02 Frames from 2D Dynamic Simulations
hugetrace-0020 32,004,826 47,997,626 3 2.99 0.02 Frames from 2D Dynamic Simulations
delaunay n24 33,554,632 100,663,202 26 6.00 1.34 Delaunay triangulations of random points in the plane
USA-Roadmap 47,894,694 57,708,624 9 2.41 0.93 USA street networks

TABLE II
STATISTICS AND DESCRIPTION OF THE SET OF 14 TEST PROBLEMS TAKEN FROM THE UNIVERSITY OF FLORIDA COLLECTION.

many problems, after initialization with Karp-Sipser, only few
unmatched vertices remain to match with an exact matching
algorithm. In order to enable a meaningful comparison of exact
algorithms, we have chosen input graphs such that after greedy
initialization a significant number of unmatched vertices still
remain for an exact algorithm to match. Thus the time for
initialization becomes a small fraction of the total runtime to
compute a maximum matching.

B. Sensitivity of Runtimes

By randomly permuting the vertices, Duff et al. [5] have
shown that there is a significant variation in the runtimes
of serial matching algorithms when unmatched vertices are
processed in different orders. This raises a serious issue
for parallel algorithms: In a multithreaded context, different
executions of an algorithm are likely to process vertices to
match in different orders. We cannot assign threads to specific
vertices or impose an order in which threads must execute
without severe loss of concurrency. Hence we conduct an

experiment to determine the variability in run times of our
parallel matching algorithms.

We measure the parallel sensitivity (ψ) of an algorithm as
the ratio of the standard deviation (σ) of runtimes from N
runs, to the mean of runtimes (µ): ψ = σ

µ × 100. We report
the parallel sensitivity of three algorithms on Opteron for three
input graphs in Fig. 2, based on ten repetitions of the same
algorithm for the same number of threads.

The first observation we make is that the variations in run
times are relatively small (bounded by 30% for the largest
number of threads), when compared to the speedups we
obtain. Second, we observe that BFS-based algorithms are less
sensitive to different executions as compared to the DFS-based
PPF algorithm. In contrast to DFS-based algorithms, for the
BFS and HK algorithms we generally have many vertices in
a level where each thread performs a relatively small amount
of work. Thus, the impact of load imbalance is small. A third
observation we make is that as the number of threads increases,
DFS-based algorithms become more sensitive. Load balancing
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Fig. 1. Quality of Initial Matchings and Impact on Runtimes: The figure on the left shows the fraction of the maximum matching computed in the
initialization step by the Greedy and Karp-Sipser algorithms. Processing units are cores (one thread per core) for AMD Opteron and number of processors
(20 to 100 interleaved threads per processor) for Cray XMT. The figure on the right shows the run time of the Relaxed Hopcroft-Karp algorithm on an AMD
Opteron. Both figures are for the random graph ER22 generated from RMAT.

becomes difficult with a larger number of threads, especially
when the tasks have varying work loads.

In light of these results, we report results from the best
performing run from a set of three independent runs, for all
subsequent experiments in this paper. Given a small margin
of variance, we make conclusions by ignoring sensitivity
where relevant, and not make conclusions when the margin
of difference is small.

C. Scalability of Maximum Matching Algorithms

We experimented with five different maximum matching
algorithms on three different architectures. Initially we discuss
results for the Nehalem and the Opteron processors with
a relatively small number of threads in a system; we will
consider the massively multithreaded Cray XMT towards the
end of this discussion.

We show the scaling of two of the best performing parallel
algorithms, Parallel Pothen-Fan (PPF) and Parallel Relaxed-
HK (PRHK) algorithms for three problems on the AMD
Opteron platform in Fig. 3. The serial runtimes are for Pothen-
Fan and HKDW algorithms; the latter is a variant of the
Hopcroft-Karp algorithm due to Duff and Wiberg, when after
finding shortest augmenting paths in the layered graph, a
disjoint DFS is done on the remaining unmatched vertices
before the next layered graph is constructed. These results are
obtained from the implementations of Duff et al. [5] of the two
serial algorithms also run on the same platform. We believe
their implementations are among the best open-source, serial
implementations currently available. We make a number of
observations from the data presented here.

The first and most important observation we make is that we
obtain significant speed-ups from the parallel implementations
of different matching algorithms. This is demonstrated from
the results on three problems shown in Fig. 3, as well those
that will be presented soon. Indeed, we observe superlinear
speedups for the amazon and cit-patents problems on
the Opteron for the PPF algorithm. The reason for this is that

the number of iterations needed by a DFS-based algorithm
decreases for these problems when the number of threads
increase, on machines with a moderate number of threads such
as the Opteron and the Nehalem.

It should be noted that the serial algorithms we have
compared against are the best performers from a large set
of algorithms developed over the last few decades and im-
plementations targeted for high performance. In comparison,
our parallel implementations have room for improvement from
optimizations, some of them inspired from serial algorithms.
For example, the PPF algorithm can benefit from an imple-
mentation of fairness both in scanning adjacency lists and
the order of processing unmatched vertices. Duff et al. have
demonstrated the benefits of this optimization in their work.

Our second observation links the performance of algorithms
to the characteristics of input. The relative performance of
DFS-based and BFS-based parallel algorithms is dependent
on the structure of a given problem. For many problems, we
see that DFS-based algorithms are faster and scale better, as
can be seen in results from hugetrace and cit-patents.
For these problems, the average number of edges traversed
in an iteration to discover vertex-disjoint augmenting-paths is
considerably smaller for DFS. The amazon problem features
degree distribution characteristics of a scale-free graph, and
here, BFS-based algorithms are faster due to the availability
of a large number of short vertex-disjoint augmenting-paths
that can be identified quickly. For scale-free graphs, when the
number of threads increase, DFS-based algorithms are able to
discover a large number of short vertex-disjoint augmenting-
paths, and these algorithms tend to become faster than BFS-
based algorithms.

Our third observation in on the general behavior of different
algorithmic approaches. In general, BFS-based algorithms
require fewer iterations than DFS-based algorithms to compute
a maximum matching. However, BFS-based algorithms have
a greater cost per iteration. This is due to two reasons: one

7



0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

1 2 4 8 16 32 48 

Pa
ra

lle
l S

en
si

tiv
ity

 (%
) 

Number of processing units 

PPF PRHK PHK 

(a) roadNet-CA

0 

5 

10 

15 

20 

25 

30 

35 

1 2 4 8 16 32 48 

Pa
ra

lle
l S

en
si

tiv
ity

 (%
) 

Number of processing units 

PPF PRHK PHK 

(b) CopaperDBLP

0 

5 

10 

15 

20 

25 

1 2 4 8 16 32 48 

Pa
ra

lle
l S

en
si

tiv
ity

 (%
) 

Number of processing units 

PPF PRHK PHK 

(c) ER22

Fig. 2. Sensitivity of maximum matching algorithms: Sensitivity of different maximum matching algorithms with parallel Karp-Sipser for greedy
initialization; runs are on Opteron.

is that they tend to search more edges in each iteration,
and the second is caused by the level-based synchronization
in the algorithm compared to path-based synchronization in
DFS-based algorithms. Thus, while the latter run faster on
a per-iteration basis, they have to run many more iterations
to complete. The results in Fig. 3 show that quite often the
product of the number of iterations and the average time per
iteration, which is the total time taken by the algorithm, is in
favor of the parallel DFS-based algorithms, especially when
lookahead is employed. However, this is also influenced by
the structure of the graph. We have also noticed that the
number of iterations in a BFS-based algorithm is relatively
independent of the number of threads. In contrast, for many
problems the number of iterations decreases linearly with the
increasing number of threads for DFS-based algorithms. This
is because for a large number of threads, DFS is capable of
finding many short vertex-disjoint augmenting-paths much the
same way that BFS does.

D. Comparison Across Different Platforms

We now provide details and observations on performance
across platforms. In Fig. 4, we present scalability of the
PPF algorithm on the three platforms. On both Nehalem
and Opteron, with a relatively small number of threads, we
obtain good scaling for three graphs with different character-
istics: USA-Roadmap is a sparse graph with good locality,
Copaper-DBLP is a scale-free graph, and ER22 is a sparse
random graph with poor locality characteristics. Note that the
algorithm runs faster on Nehalem compared to Opteron, and
is slowest on the XMT. Fig. 5 shows the performance of two
DFS-based algorithms and three BFS-based algorithms on our
fourteen test problems, on 16 processing units of the Opteron
and the XMT. Note that on the Opteron, the DFS-based PPF
is the fastest algorithm.

BFS-based algorithms are more naturally suited to the XMT
architecture, which uses a large number (up to hundred) of
threads per processor to hide the large memory latencies.
This is seen in the performance profiles of four different
algorithms on the Cray XMT for the fourteen test problems

in the subfigure on the right in Fig. 5. The best performing
algorithm on the XMT is a parallel disjoint BFS (PDBFS)
algorithm, followed by the parallel Relaxed Hopcroft-Karp
(PRHK), then the DFS-based PPF, and finally the parallel
Hopcroft-Karp (PHK) algorithm. In level-synchronized BFS,
there are a large number of vertices in each level that the
large number of threads can process, and BFS does a better
job than DFS in keeping the lengths of augmenting paths (i.e.,
the number of levels in the layered-graph in the context of the
PHK and related algorithms) short. On the XMT which has
hardware-based synchronization, the costs of synchronizing
the threads at the end of each level is also relatively smaller
compared to the Nehalem and the Opteron. The DFS-based
algorithms have a much bigger variation in the lengths of
augmenting paths, but each iteration can be implemented
faster than BFS-based algorithms, due to the relatively lower
synchronization costs (at the granularity of paths rather than
levels), and the short augmenting paths that lookahead helps
DFS-based algorithms to find. However, the last few iterations
of a DFS-based algorithm have few vertices to match, and the
augmenting paths now are relatively long, and such iterations
cannot make effective use of the massive number of threads
on the XMT. Consequently, these iterations serialize on the
XMT, and the parallel DFS-based algorithms perform poorly.

In comparing the performance of the XMT against the
two other architectures, a few other features should be borne
in mind: The XMT can compute matchings in much larger
graphs, which are beyond the memory limitations of the
Nehalem and the Opteron, and the larger problems will yield
better performance on the XMT since they can take better
advantage of the massive multithreading. The XMT has the
slowest clock among these three processors, and the newer
XMT-2 systems with a faster and larger memory system will
potentially yield better relative performance against the other
two architectures.

We conclude this section by discussing the execution profile
we have seen in Figure 5 in more detail. The execution
profiles provide a comparison of overall performance of the
algorithms irrespective of the input characteristics. We report

8



0.25 

0.5 

1 

2 

4 

8 

16 

32 

64 

128 

1 2 4 8 16 32 48 

C
om

pu
te

 ti
m

e 
in

 se
co

nd
s 

Number of processing units 

PPF PRHK 
PF HKDW 

(a) amazon0312

8 

16 

32 

64 

128 

256 

512 

1024 

1 2 4 8 16 32 48 

C
om

pu
te

 ti
m

e 
in

 se
co

nd
s 

Number of processing units 

PPF PRHK 
PF HKDW 

(b) hugetrace0020

0.5 

1 

2 

4 

8 

16 

32 

64 

128 

1 2 4 8 16 32 48 

C
om

pu
te

 ti
m

e 
in

 se
co

nd
s 

Number of processing units 

PPF PRHK 
PF HKDW 

(c) cit-patents

Fig. 3. Scaling of maximum matching algorithms: The scaling of exact matching algorithms with parallel Karp-Sipser algorithm as an initializer on
Opteron for three problems. Serial runtimes of PF and HKDW are from the implementation of Duff et al. [5].
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Fig. 4. Parallel PF algorithm on different architectures: Scaling of the PPF algorithm with parallel Karp-Sipser algorithm as the initializer.

relative performance of the algorithms for fourteen of our
test problems on 16 processing units of the Opteron and the
XMT. For each problem, we compute the relative performance
with respect to the best algorithm for that problem. On the
Opteron, the PPF algorithm is the best performer for half the
problems, and is the best or within a factor of two of the
performance of the best algorithm for 90% of the problems.
In contrast, variants of HK perform poorly on Opteron. For
example, PRHK does worse by a factor of three or more
relative to the best algorithm for 70% of the problems. The
second observation we make from execution profiles is that on
XMT, PDBFS is the best algorithm for 90% of the problems.
The PRHK algorithm does better than both PHK and PPF on
the XMT; however, it is slower than PDBFS by a factor of
two to three for about 40% of the problems.

Due to space limitations, we have restricted the results
presented in this paper. However, we are continuing to work
on improving our algorithms and codes, will provide greater
details in subsequent publications, and will make our source
code publicly available. In conclusion, we have established
that parallel matching algorithms have great potential to benefit
from modern multithreaded parallel architectures.
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Algorithm 1 The Parallel Pothen-Fan Algorithm.
Input: A graph G. Output: A matching M .

1: procedure PPF(G(X ∪ Y, E))
2: M ← InitMatch(G) . E.g., Karp Sipser
3: Initialize lookahead[i] to the first neighbor of i . For each vertex: i← 1..n
4: repeat . Each iteration
5: path found← 0
6: visited[v]← 0 . For v ∈ Y
7: for all unmatched vertices u ∈ X in parallel do . Look for augmenting paths in parallel
8: P ← DFS-LA-TS(u) . Find a vertex-disjoint augmenting path from u
9: if P found then

10: path found← 1
11: M ←M ⊕ P . Augment the matching with the path found
12: until path found = 0 . Repeat until no augmenting paths exist

Algorithm 2 Find a vertex-disjoint augmenting path using DFS with lookahead in a threadsafe way. Input: A graph G, a
source vertex u, a matching M , vectors visited and lookAhead. Output: An augmenting path P if found.

1: procedure DFS-LA-TS(u)
2: for all v ∈ adj[u] starting at lookAhead[u] do . Lookahead step
3: lookAhead[u]← next neighbor of u . Set to ∅ if v is the last neighbor
4: if v is not matched then
5: if Atomic-Fetch-Add(visited[v], 1) = 0 then . First thread to reach v in the lookahead step
6: return v . Treat path ending at v as an augmenting path.
7: for all v ∈ adj[u] do . DFS step
8: if Atomic-Fetch-Add(visited[v], 1) = 0 then . First thread to reach v in vertex-disjoint DFS
9: index ← DFS-LA-TS(M(v)) . Recursive call to continue DFS from mate of v

10: if index != invalid then return index
11: return invalid

Algorithm 3 Find a vertex-disjoint augmenting path using DFS in a threadsafe way. Input: A graph G, a source vertex u, a
matching M and a vector visited. Output: An augmenting path P if found.

1: procedure DFS-TS(u)
2: for all v ∈ adj[u] do
3: if Atomic-Fetch-Add(visited[v], 1) = 0 then . First thread to reach v
4: if v is unmatched then
5: return v
6: else
7: index ← DFS-TS(M(v)) . Recursive call to continue DFS from mate of v
8: if index != invalid then return index
9: return invalid

Algorithm 4 The Parallel Hopcroft-Karp Algorithm.
Input: A graph G. Output: A maximum matching M .

1: procedure PHK(G(X ∪ Y, E))
2: M ← InitMatch(G) . E.g., Karp Sipser
3: repeat . Each iteration
4: for all u ∈ X do
5: next[u]← first neighbor of u
6: for all w ∈ X ∪ Y do
7: visited[w]← 0 . visited is set to false.
8: P← ∅
9: (GL, Lk)← LAYERED-GRAPH-TS(G, M) . Construct layered graph from all unmatched vertices

10: for all w ∈ X ∪ Y do
11: visited[w]← 0 . visited is reset to false for DFS-TS.
12: for all v ∈ Lk \ V (M) in parallel do . Unmatched vertices in last level
13: Pv ← DFS-TS(v) . Find augmenting paths using DFS in GL

14: P← P ∪ Pv

15: M ← P⊕M
16: until P = ∅ . No augmenting paths exist
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Algorithm 5 Construction of the layered graph in parallel. Input: A graph G(X ∪ Y,E) and a matching M . Output: A
layered graph GL and a set Lk ⊂ Y .

1: procedure LAYERED-GRAPH-TS(G(X ∪ Y, E), M, visited)
2: P← ∅
3: L0 ← unmatched vertices in X
4: k ← 0
5: while true do . Level-synchronous BFS to find shortest augmenting paths
6: Lk+1 ← ∅ . Will consist of vertices from Y
7: Lk+2 ← ∅ . Will consist of vertices from X
8: for all u ∈ Lk in parallel do
9: for all v ∈ adj[u] do

10: if Atomic-Fetch-Add(visited[v], 1) = 0 then . First thread to visit vertex v
11: Add vertex v to layer k + 1 locally in a thread . Thread-private vector of vertices
12: Add edge {u, v} to the local set of edges . Thread-private vector of edges
13: if v ∈ V (M) then . If vertex v is matched, add the next layer
14: Add vertex {M [v]} to layer k + 2 locally in a thread
15: Add edge {v, M [v]} to local set of edges
16: Concatenate local layers k + 1 and k + 2 from all threads to Lk+1 and Lk+2

17: Concatenate local edges from all threads to E(GL)
18: if (Lk+1 = ∅) OR (Lk+1 \ V (M) 6= ∅) then . Last level is either empty or we have found an unmatched vertex
19: GL ← {(

S
0≤i≤k+1 Li, E(GL)}

20: return (GL, Lk+1) . Augmenting paths do not exist if Lk+1 is empty
21: else
22: k = k + 2 . Proceed to construct the next two levels

Algorithm 6 The Parallel Karp-Sipser Algorithm.
Input: A graph G. Output: A maximal matching M .

1: procedure PARALLEL-KARP-SIPSER(G(X ∪ Y, E))
2: M ← ∅
3: Q1 ← ∅
4: Q∗ ← ∅
5: for all u ∈ X ∪ Y in parallel do
6: visited[u]← 0 . visited[u] is set to false.
7: for all u ∈ X in parallel do
8: if deg[u] = 1 then
9: Q1 ← Q1 ∪ {u} . Add vertices of degree=1 in Q1 and remaining to in Q∗

10: else
11: Q∗ ← Q∗ ∪ {u}
12: for all u ∈ Q1 in parallel do
13: MATCHANDUPDATE(G, M, u, visited) . Match degree=1 vertices, update degrees, and look for new degree=1 vertices
14: for all u ∈ Q∗ in parallel do
15: MATCHANDUPDATE(G, M, u, visited) . Match a higher degree vertex, update degrees, and look for new degree=1 vertices
16: return M

Algorithm 7 Match a vertex if possible and process its neighbors. Input: A graph G, a matching M , a source vertex u, and
a vector visited.

1: procedure MATCHANDUPDATE(G, M, u, visited)
2: if Atomic-Fetch-Add(visited[u], 1) = 0 then . First thread to visit unmatched u
3: for all v ∈ adj[u] do
4: if Atomic-Fetch-Add(visited[v], 1) = 0 then . First thread to visit unmatched v
5: M ←M ∪ {u, v} . Found a mate for u
6: for all w ∈ adj[v] do
7: if Atomic-Fetch-Add(deg[w],−1) = 2 then . Update the degree of neighbors of v
8: MATCHANDUPDATE(G, M, w, visited) . Recursive call to match the new vertex w of degree=1
9: break . Stop search when u gets matched
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