

Motivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

Solving sparse linear systems in a many-core environment

Mikko Byckling Special thanks: Peter Råback

CSC - IT Center for Science Ltd., Espoo, Finland. (mikko.byckling@csc.fi)

Sparse Days, 17th of June, 2013

Contents

Motivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

1 Motivation

2 Shared memory systems

3 Symmetric FE test problems

4 Conclusions

Motivation I

Motivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

In a modern supercomputer, a single node has several cores with shared memory. In addition, many-core coprocessors have recently appeared to complement the traditional CPUs.

Q: Are sparse flops free?

Is it already possible to leverage the available processing power when solving *sparse* linear systems?

Motivation II

Motivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

In this talk, we study the scalability and efficiency of

- sparse direct methods
- iterative methods

in a purely shared memory environment.

Main purpose is to gain insight into the implementation of iterative methods in a multi/many-core environment.

Xeon

Motivation

Shared memory systems

Xeon Xeon Phi

Symmetric FE test problems

Test setup Test domain Test problem 1 Heat equation Test problem 2 Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

Typically each node in a supercomputer has CPU's with a shared address space.

Technical specifications for Xeon E5 2670

■ Up to 8 full cores with 2-way HT (X86)

- Frequency 2.6Ghz (up to 3.3Ghz with turbo-mode)
- 256-bit SIMD unit per core
- Typically at least 2Gb of DDR3 memory available per core
- 32kb of L1 cache per core
- 256kB of L2 cache per core
- 20Mb of shared L3 cache per die
- ~0.15Tflops in DGEMM
- TDP 130 Watts

Xeon Phi I

Motivation

- Shared memory systems Xeon Xeon Phi coprocessor
- Symmetric FE test problems
- Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG
- Conclusions

- Officially launched at SC12
- Standard software stack available (C/C++, Fortran, etc.)
- Single Xeon Phi core *much* slower than a regular Xeon core
 - Use of SIMD vectorization necessary for performance
 - Use of parallelism necessary for performance
- Porting code is very easy, getting performance is not

Xeon Phi II

Technical specifications

Motivation

- Shared memory systems Xeon Xeon Phi
- coprocessor Symmetric F
- Test setup Test domain Test problem 1 Heat equation Test problem 2 Linear elasticity Direct method, results NUMA matvecs NUMA PCG
- Conclusions

- Separate accelerator card
- Local host OS with Linux
- Up to 61 stripped down cores with 4-way HT (X86)
- Frequency 1.26Ghz
- 512-bit SIMD unit per core
- Up to 8Gb of GDDR5 memory
- 32kb of L1 cache per core (8-way associative)
- 512kB of L2 cache per core (8-way associative)
- FMA and gather/scatter support
- \sim 0.83Tflops in DGEMM
- TDP 300 Watts

Test setup

Motivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup

Test domain Test problem 1 Heat equation Test problem 2 Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

- Direct method: Intel MKL Pardiso
- Iterative method: Conjugate gradient (without preconditioning)

Sparse matrix-vector products from MKL.

Two different test problems with three different mesh sizes.

Test problem	n	nz(A)	$\rho = \operatorname{nz}(A)/n$
3D_heat_small	35721	896761	25.1
3D_heat_med	105300	2702656	25.6
$3D_heat_large$	291060	7580368	26.0
3D_elas_small	24843	1786545	71.9
3D_elas_med	107163	8070849	75.3
3D_elas_large	315900	24323904	77.0

Domain: two intersecting square pipes in 3D

Motivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain

Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

Set domain as two intersecting square pipes in an L-shape, with both free ends of the pipes, denoted by Γ_1 and Γ_2 , having non-trivial boundary conditions.

Discretization with multiphysical FE code Elmer¹.

¹http://www.csc.fi/english/pages/elmer

Test problem 1: Heat equation (heat) I

Motivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

Consider the heat equation in a steady state with constant coefficients

$$\begin{array}{rcl} -\Delta u &=& f, & \text{in } \Omega \\ u &=& 0, & \text{on } \Gamma_1 \text{ and } \Gamma_2 \\ \frac{\delta u}{\delta n} &=& 0, & \text{otherwise} \end{array}$$

(1)

Let the heat loading of the system to be constant f = 1.

The resulting system is symmetric positive definite.

Test problem 1: Heat equation (heat) II

Motivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs

NUMA PCG

Conclusions

Figure: Solution of the steady-state heat equation with h = 0.05

Test problem 2: Linear elasticity (elas) I

f

Consider the linear elasticity equation with isotropic material

$$\begin{array}{rcl} \frac{\delta^{2}\vec{d}}{\delta t^{2}}-\nabla\tau&=&\vec{f}\,, & \text{in }\Omega\\ &\vec{d}&=&\vec{0}\,, & \text{on }\Gamma_{1}\\ &\tau\bar{n}&=&\vec{g}\,, & \text{on }\Gamma_{2}\\ &\tau\bar{n}&=&0\,, & \text{otherwise}\,, \end{array}$$

where ρ is the density and the stress tensor τ is given as

$$\tau = 2\mu\epsilon + \lambda\nabla\cdot\bar{d}I,$$

where the Lame parameters μ and λ are defined in terms of Youngs modulus Y and Poisson ratio κ as $\lambda = \frac{Y\kappa}{(1+\kappa)(1-2\kappa)}, \ \mu = \frac{Y}{2(1+\kappa)}$.

Let the system be free of volume loading $\overline{f} = 0$ and set $\rho = 1e3$, Y = 1e9, $\kappa = 0.2$ and $\overline{g} = (0, 1e6, 0)^T$.

The resulting system is symmetric positive definite.

Mikko Byckling, Solving sparse linear systems in a many-core environment, Sparse Days, 17th of June, 2013

Motivation

Shared memor systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

Test problem 2: Linear elasticity (elas) II

Motivation

- Shared memory systems Xeon Xeon Phi coprocessor
- Symmetric FE test problems
- Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

Figure: Solution of the linear elasticity equation with h = 0.05.

Direct method, results

Xeon, Intel MKL Pardiso, $KMP_AFFINITY=granularity=fine,compact$

NЛ	± 11	t١	

Shared memor systems Xeon Xeon Phi

Symmetric FE test problems

Test setup Test domain Test problem 1 Heat equation Test problem 2 Linear elasticit Direct method, results NUMA matvecs

Conclusions

	Time (s	5)	Speedup, T_{nt}/T_1		
Test problem	nt=1	nt=16	nt=32	nt=16	nt=32
3D_heat_small	0.99	0.67	0.67	1.47	1.47
3D_heat_med	5.34	2.25	2.24	2.38	2.38
3D_heat_large	30.63	8.84	8.89	3.47	3.45
3D_elas_small	1.06	0.61	0.59	1.73	1.81
3D_elas_med	12.64	3.81	3.83	3.32	3.30
3D_elas_large	92.21	19.00	18.89	4.85	4.88

Xeon Phi, Intel MKL Pardiso, KMP_AFFINITY=granularity=fine, balanced

	Time (s)		Speedup, $T_{\rm nt}/T_1$		
Test problem	nt=1	nt=60	nt=120	nt=60	nt=120
3D_heat_small	10.93	3.82	4.38	2.86	2.50
3D_heat_med	67.86	12.36	12.90	5.49	5.26
3D_heat_large	429.55	49.02	48.23	8.76	8.91
3D_elas_small	12.92	3.14	3.50	4.12	3.70
3D_elas_med	169.91	18.63	19.28	9.12	8.81
3D_elas_large	1492.79	86.46	79.28	17.26	18.83

\implies As expected, not enough parallelism for 240 threads.

Motivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG Assumption: Sparse matrix stored in CRS format. Symmetry *not* taken into account.

Consider sparse matrix-vector product y = Ax, where $A \in \mathbb{R}^{n \times n}$ is large and sparse.

Flops to byte ratio is approximately $O(\frac{1}{6})$ (memory bound operation).

In the FE code Elmer used to generate the test problems, in a distributed memory setting sparse matrix vector products may take up to 80% of the total runtime.

NOTE: In CRS format, starting addresses of the rows are 64-byte *unaligned* in general, i.e., the compiler has to generate peel loops in order to vectorize the computation of the dot products.

Motivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

Distributing the original matrix rowwise among threads, we have y = Ax as

$$A = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_k \end{bmatrix}, \quad y = A_X \Leftrightarrow \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{bmatrix} = \begin{bmatrix} A_1 x \\ A_2 x \\ \vdots \\ A_k x \end{bmatrix}$$

where k denotes the maximum number of threads, A_j denotes a thread local submatrix held by thread j and y_j the local part of the result vector.

Sparse matrix-vector products, Xeon

Xeon, time to compute 100 repetitions of y = Ax.

	Time ((s)		Speedup, T_{nt}/T_1		
Test problem	nt=1	nt=16	nt=32	nt=16	nt=32	
CRS						
3D_heat_small	0.11	0.02	0.02	5.75	4.63	
3D_heat_med	0.43	0.09	0.09	4.79	4.84	
3D_heat_large	1.20	0.27	0.27	4.46	4.43	
3D_elas_small	0.22	0.04	0.04	5.82	5.92	
3D_elas_med	1.05	0.27	0.27	3.98	3.93	
3D_elas_large	3.20	0.78	0.78	4.12	4.11	
NUMA CRS						
3D_heat_small	0.11	0.03	0.05	3.96	2.33	
3D_heat_med	0.39	0.10	0.04	4.08	9.99	
3D_heat_large	1.06	0.29	0.16	3.72	6.73	
3D_elas_small	0.19	0.04	0.08	4.55	2.49	
3D_elas_med	0.94	0.27	0.17	3.47	5.43	
3D_elas_large	2.73	0.78	0.42	3.50	6.53	

Mikko Byckling, Solving sparse linear systems in a many-core environment, Sparse Days, 17th of June, 2013

Motivation

systems Xeon Xeon Phi

Symmetric FE

Test setup Test domain Test problem 1 Heat equation Test problem 2 Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

Sparse matrix-vector products, Xeon Phi

Xeon Phi, time to compute 100 repetitions of y = Ax.

Time (s) Speedup, $T_{\rm nt}/T_1$ Test problem nt=1nt=60nt=240 nt=60nt=240 CRS 3D_heat_small 1.25 0.16 0.32 8.00 3.93 3D heat med 3.57 0.32 0.33 11 10 10 70 9.89 0.64 0.55 15.39 18.09 3D_heat_large 3D_elas_small 1.90 0.17 0.29 10.91 6.48 3D elas med 8 06 0.38 0.43 21 42 18 89 0.69 3D_elas_large 23.92 1.01 23.70 34.69 NUMA CRS 3D_heat_small 1.22 0.26 0.07 4.70 16.33 0.12 3D_heat_med 3.62 0.36 9.97 30.81 3D_heat_large 9.89 0.26 0.19 38.75 52.54 3D elas small 1 80 0.25 0.08 7 16 22.86 3D elas med 8 03 0.20 0.14 39.26 56 62 3D_elas_large 23.87 0.53 0.28 45.37 85.82

Mikko Byckling, Solving sparse linear systems in a many-core environment, Sparse Days, 17th of June, 2013

Motivation

systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1 Heat equation Test problem 2 Linear elasticity Direct method, results NUMA matvecs

Conclusions

Motivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

Avoid false sharing and enable better vectorization by distributing the rows of matrix *A* and work vectors in blocks of size 64 bytes. Use !DEC\$ ASSUME_ALIGNED and !DEC\$ SIMD pragmas to inform the compiler.

Avoid thread join/fork overhead by letting each thread to operate only on predefined section of x, q, z and r.

Use local variables and OpenMP barriers to implement reductions and thread synchronization.

NUMA aware conjugate gradient iteration II

Preconditioned conjugate gradient algorithm

```
for all threads in parallel do
     reduce bnrm2 \leftarrow_+ ||b_{l+t}||_2^2
     r = b - Ax
     harrier
     reduce ||r||_{2}^{2} \leftarrow_{+} ||r_{l:t}||_{2}^{2}
     resnorm<sub>L</sub> = \sqrt{||r||_2^2/\text{bnrm2}}
     if resnorm<sub>1</sub> < tol stop
     for t = 1, \ldots, maxit do
          Solve Mz = r
           barrier
          reduce \rho \leftarrow_{+} r_{l:t}^{T} z_{l:t}
          if t > 1 then
                \beta_I = \rho / \rho_I
               p_{l:t} = z_{l:t} + \beta_L p_{l:t}
           else
               p_{I:t} = z_{I:t}
           end if
           barrier
          q = Ap
           barrier
          reduce pdotq \leftarrow_+ p_{l+}^T q_{l+}
          \alpha_I = \rho / \text{pdotq}
          x_{l\cdot t} = x_{l\cdot t} + \alpha_l p_{l\cdot t}
          r_{l:t} = r_{l:t} - \alpha_L q_{l:t}
          reduce ||r||_{2}^{2} \leftarrow + ||r_{l:t}||_{2}^{2}
          \operatorname{resnorm}_{L} = \sqrt{||r||_{2}^{2}/\operatorname{bnrm2}}
          if resnorm<sub>1</sub> < tol stop
           \rho_I = \rho
     end for
end for
```

Mikko Byckling, Solving sparse linear systems in a many-core environment, Sparse Days, 17th of June, 2013

Motivation

Shared memor systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1 Heat equation Test problem 2 Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

Conjugate gradient iteration, Xeon

Motivation

Test setup Test domain Test problem 3 Heat equation Test problem 3 Linear elasticit Direct method, results NUMA matvec NUMA PCG

Conclusions

Xeon,	time	to	solve	of	Ax	= <i>b</i> .	
-------	------	----	-------	----	----	--------------	--

	Time (s)	Speedup, $T_{\rm nt}/T_1$		
Test problem	nt=1	nt=16	nt=32	nt=16	nt=32
CRS					
3D_heat_small	0.17	0.03	0.06	5.27	2.95
3D_heat_med	0.85	0.20	0.24	4.17	3.50
3D_heat_large	3.36	0.87	0.94	3.84	3.55
3D_elas_small	1.13	0.25	0.33	4.50	3.43
3D_elas_med	8.59	2.51	2.67	3.43	3.22
3D_elas_large	36.34	10.39	10.72	3.50	3.39
NUMA CRS					
3D_heat_small	0.17	0.02	0.01	7.75	11.59
3D_heat_med	0.87	0.20	0.05	4.43	16.48
3D_heat_large	3.45	0.86	0.46	4.00	7.48
3D_elas_small	1.15	0.20	0.07	5.81	16.44
3D_elas_med	8.83	2.57	1.28	3.44	6.90
3D_elas_large	36.49	10.76	5.69	3.39	6.41

Conjugate gradient iteration, Xeon Phi

Motivation

Symmetric FE test problems

Test setup Test domain Test problem Heat equation Test problem Linear elasticit Direct method, results NUMA matvec NUMA PCG

Conclusions

Xeon	Phi,	time	to	solve	of	Ax	=	b.	
------	------	------	----	-------	----	----	---	----	--

	Time (s)	Speedup, $T_{\rm nt}/T_1$		
Test problem	nt=1	nt=60	nt=240	nt=60	nt=240
CRS					
3D_heat_small	1.80	0.65	1.34	2.76	1.34
3D_heat_med	7.26	1.07	1.50	6.81	4.85
3D_heat_large	28.29	2.66	2.34	10.62	12.07
3D_elas_small	10.23	3.22	7.46	3.18	1.37
3D_elas_med	72.53	6.17	11.24	11.76	6.45
3D_elas_large	303.35	9.87	15.85	30.73	19.13
NUMA CRS					
3D_heat_small	1.75	0.10	0.13	17.24	13.65
3D_heat_med	7.34	0.24	0.33	30.21	21.94
3D_heat_large	28.70	0.80	0.70	35.87	40.78
3D_elas_small	10.19	0.35	0.59	28.96	17.32
3D_elas_med	73.12	1.86	1.69	39.34	43.22
3D_elas_large	306.20	7.14	4.51	42.86	67.83

Computational complexity of Krylov methods I

Motivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

Is conventional wisdom correct?

In a purely shared memory environment, is it correct to estimate the performance of a Krylov solver based on matrix-vector products alone?

Computational complexity of Krylov methods II

Motivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

	Xeon, time (s)			Xeon Phi, time (s)			
Test problem	its	mvp	pcg	Ratio	mvp	pcg	Ratio
CRS							
$3D_heat_large$	270	0.73	0.94	77.20%	1.48	2.34	62.98%
3D_elas_large	1236	9.60	10.72	89.61%	8.52	15.85	53.77%
NUMA CRS							
$3D_heat_large$	270	0.43	0.46	92.30%	0.51	0.70	72.24%
3D_elas_large	1236	5.16	5.69	90.64%	3.44	4.51	76.16%

As the system gets larger, when properly implemented sparse matrix-vector products become more dominant on a many-core system.

Conclusions

Motivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

For (large) dense systems flops have become free.

For sparse linear systems flops are still expensive, but..

- Hardware is rapidly evolving
 - gather/scatter support
 - increased memory bandwidth
 - transactional memory
 - many-core
- To take advantage of the nested parallelism (SIMD & thread & node), consider
 - data formats
 - (legacy) code
 - algorithms

csc

Wotivation

Shared memory systems Xeon Xeon Phi coprocessor

Symmetric FE test problems

Test setup Test domain Test problem 1: Heat equation Test problem 2: Linear elasticity Direct method, results NUMA matvecs NUMA PCG

Conclusions

Thank you for your interest!

Questions?