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Introduction I

Let A ∈ Cn×n be large, sparse and nonsingular matrix.

Let W and V1 be sparse matrix subspaces of Cn×n with
nonsingular elements of V1 being readily invertible.

To approximately factor A into product WV−1
1 , consider

AW ≈ V1, (1)

with non-zero matrices W ∈ W and V1 ∈ V1 regarded as
variables both.
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Introduction II

Define a linear operator L :W 7−→ Cn×n as

W 7−→ LW = (I − P1)AW , (2)

where P1 denotes orthogonal projection on Cn×n onto V1.

If W is in the nullspace of L, then AWV−1
1 = I is a

factorization of the inverse with V1 = P1AW = AW .



Approximate
factoring of
the inverse

Mikko Byckling,
Marko

Huhtanen

Introduction

Approximate
factors

Basic algorithm

Implementation

Computational
complexity

SubspacesW
and V1
Practical
algorithm

Numerical
experiments

Sherman2

Saylor4

Nonsymmetric
PDE

Conclusions

Introduction III

With these, we have AW ≈ V1 = P1AW if and only if
(I − P1)AW ≈ 0.

This leads to optimality criterion

min
W∈W,||W ||F =1

||(I − P1)AW ||F , (3)

for generating approximate factors W and V1 in terms of the
singular values of the linear map (2).
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Approximate factors

To solve the minimization problem (3), we need approximately
compute the smallest singular values of the linear operator (2).

Adjoint operator of L is

PWA∗(I − P1) : Cn×n →W,

where PW denotes orthogonal projection on Cn×n onto W.

We numerically approximate the smallest eigenpairs of

W 7−→ L∗LW = PWA∗(I − P1)AW .

To this end, we apply power method to operator

αI − PWA∗(I − P1)A on W,

where α ∈ R+ is chosen as α = r ||A||22, 1/2 < r ≤ 3/4.
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Power method for computing approximate factors

Power method for computing approximate factors

1: Set α ∈ R+ and choose an initial factor W ∈ W
2: repeat
3: M = (I − P1)AW
4: N = PWA∗M
5: W := αW − N
6: W := W / ||W ||F
7: until stopped

Once the iteration is stopped V1 is acquired by computing
V1 = P1AW .
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Implementation

Let W and V1 be standard matrix subspaces, i.e., the sparsity
patterns of W and V1 determine their dimension.

Then projectors P1 and PW can be regarded as acting
columnwise and the whole algorithm is readily parallelizable.

Denote by wj the jth column of W and by (I −P1)j , (I −PW)j

and PW,j projections of the jth column.

To have mj = (I − P1)jAwj , only entries appearing in the
complement of V1 on the jth column have to be computed.

To have nj = PW,jA
∗mj , only entries appearing on the jth

column of W have to be computed.

Finally αwj − nj overwrites wj
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Computational complexity

Let W and V1 be standard matrix subspaces.

Assume nz(A)= O(k1n), nz(W)= O(k2n) and
nz(V1)= O(k3n) with k1, k2, k3 � n.

Then one iteration round requires O((2k1 + 5)k2n) operations.
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Choosing subspaces W and V1

Sparsity structures for subspaces W and V1 can be adaptively
constructed with numerical dropping.

Dropping leads to sparsity structures that greatly differ from
the sparsity structures of A, A∗ or A∗A.

Let v ∈ Cn with the entries vj . Numerically drop entries by

relative tolerance τ . Store only entries vj for which
|vj | ≥ τj = τ ||v ||2 holds.

count p. Store only the p largest elements of v .

Usually τ ≈ 1e − 5 and p ≈ 10.

Numerical dropping can be computationally expensive.
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Power method for computing approximate factors

Power method for computing approximate factors

1: Let α ∈ R+ and W = [w1, . . . ,wn] ∈ W
2: repeat
3: for all columns j = 1, . . . , n in parallel do
4: mj = (I − P1)jAwj

5: Find large entries of (I − PW)jA
∗mj , update W

6: nj := PW,jA
∗mj

7: wj := αwj − nj

8: Apply numerical dropping to wj and update W
9: end for

10: W := W / ||W ||F
11: until stopped
12: Compute V1 = P1AW and apply numerical dropping to V1
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Numerical experiments

We iteratively solve the preconditioned linear system

AMy = b with x = My , (4)

with b ∈ Cn and matrix A ∈ Cn×n that is large and sparse.
With approximate factors, we have M = WV−1

1 .

Right-hand side is b = b̂/||b̂||2 where b̂ = (1, 1, . . . , 1). Initial
guess was set as x0 = (0, 0, . . . , 0).

Iteration was considered converged when

||b − Axm||2
||b||2

≤ 10−6.

Subspace V1 was chosen to be a set of block diagonal matrices
with blocksize k.
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Matrix sherman2 I

Let A to be the sherman2 from Matrix Market arising in oil
reservoir simulation having n = 1080, nz(A)= 23094 and
κ(A) = 1.4E + 12.

Use GMRES(30) to solve the preconditioned linear system (4).

Determine the sparsity pattern of W using numerical dropping
with τ = 1e − 10 and p = 10 and initial guess W0 = I .

Choose V1 as the set of block diagonal matrices with blocksize
k = 72. Use numerical dropping with τ = 1e − 10 and p = 15.
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Matrix sherman2 II

(a) W (b) V1 (c) WV−1
1

Figure: Sparsity patterns of the factors W and V1 and the
preconditioner WV−1

1 after 5 iterations. Number of nonzeroes
nz(W )= 9204, nz(V1)= 12190 and nz(WV−1

1 )= 198837.
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Matrix sherman2 III

(a) (b)

Figure: (a) Convergence of GMRES(30) with SPAI(0.3) having
nz(M) = 21336 (dashed line) and approximate factors algorithm
(solid line). (b) The spectrum of the preconditioned matrix AWV−1

1 .
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Matrix saylor4 I

Let A to be the saylor4 matrix from Matrix Market arising in
petroleum engineering simulation having n = 3564 with
nz(A)= 22316 and κ(A) = 1E + 2.

Use GMRES(20) to solve the preconditioned linear system (4).

Determine the sparsity pattern of W using numerical dropping
with τ = 1e − 5 and p = 10 and initial guess W0 = I .

Choose V1 as the set of block diagonal matrices with blocksize
k = 198. Use numerical dropping with τ = 1e − 5 and p = 20.
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Matrix saylor4 II

(a) W (b) V1 (c) WV−1
1

Figure: Sparsity patterns of the factors W and V1 and the
preconditioner WV−1

1 after 5 iterations. Number of nonzeroes
nz(W )=26482, nz(V1)=15626 and nz(WV−1

1 )=2009304
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Matrix saylor4 III

(a) (b)

Figure: (a) Convergence of GMRES(20) with SPAI(0.1) using 10
refinements and 10 new non-zeroes per refinement having
nz(M)= 202343 (dashed line) and approximate factors algorithm
(solid line). (b) The spectrum of the preconditioned matrix AWV−1

1 .
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Nonsymmetric PDE I

Consider the partial differential equation

− uxx − uyy + τ(xux + yuy ) + ηu = f , (5)

on unit square Ω = (0, 1)× (0, 1) with Dirichlet boundary
conditions on ∂Ω. Choose τ = 10 and η = −100.

Use centered differences with n gridpoints in both directions.

After discretization A = H + V , with A ∈ Rn2×n2
where H and

V correspond to x- and y -directions on the grid.
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Nonsymmetric PDE II

Let W be determined by the sparsity pattern of A2 and V1 by
the sparsity pattern of H2 (V1 is block diagonal with
pentadiagonal blocks of size n). Let initial guess W0 = I .

Use FGMRES(30) preconditioned with GMRES(10)-SPAI or
GMRES(10)-AF to solve the linear system (4).

n × n nz(A) nz(M) nz(W ) + nz(V1) SPAI AF
16×16 1216 7834 4196 16 19
32×32 4992 22513 17604 22 22
64×64 20224 83418 72068 51 30
128×128 81408 295121 291588 49 30
256×256 326656 1326396 1172996 121 64

Table: Iteration counts of FGMRES(30) for discretized (5)
preconditioned with GMRES(10)-SPAI and GMRES(10)-AF.
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Conclusions

Approximate factors can be computed by using the power
method to have preconditioners of the form WV−1

1 .

To have preconditioners of good quality, about 5 to 10
iterations of the power method seems to suffice.

Preconditioners can be dense and are nearly optimal.

Choice of subspaces W and V1 is very important (and
challenging) for obtaining a good preconditioner.

Good sparsity structures for W and V1 can be computed
by using approximate factors algorithm with numerical
dropping.
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Questions?

Thank you for your interest!
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