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Let A € C™" be large, sparse and nonsingular matrix.

Introduction Let W and Vi be sparse matrix subspaces of C"*" with
nonsingular elements of V; being readily invertible.

To approximately factor A into product WVl_l, consider
AW ~ Vi, (1)

with non-zero matrices W € W and Vj € V; regarded as
variables both.



A”
Introduction |l

Aalto University
School of Science|
and Technology

Approximate
factoring of
the inverse

Mikk kling

PR Define a linear operator L : W —— C"™" as

Introduction
W— LW = (I — P1)AW, (2)
where P; denotes orthogonal projection on C"*" onto V.

If W is in the nullspace of L, then AWVI_1 =lisa
factorization of the inverse with V; = P{AW = AW.
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With these, we have AW = V; = P{AW if and only if
(I — P1)AW = 0.

Hu n

Introduction

This leads to optimality criterion

i I — POAW|| -, 3
i 10— POAW| )

for generating approximate factors W and Vj in terms of the
singular values of the linear map (2).
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Adjoint operator of L is

PwA*(/ — Pl) . (Cnxn - W,

Approximate
factors

where P)y denotes orthogonal projection on C"*" onto W.

We numerically approximate the smallest eigenpairs of
W — L*LW = Py A*(l — P1)AW.
To this end, we apply power method to operator
al — PwA* (I — P1)Aon W,

2, 1/2<r<3/a

where o € RT is chosen as a = r||A|
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S 1: Set a € R* and choose an initial factor W € W
2: repeat

3: M = (I — P1)AW

4: N = PyyA*M

5. W:i=aW-N

6: W= W/|[|W||g

7: until stopped

Basic algorithm

Once the iteration is stopped V; is acquired by computing
Vi = PLAW.
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= patterns of W and V; determine their dimension.

Then projectors P; and Pyy can be regarded as acting
columnwise and the whole algorithm is readily parallelizable.

Denote by w; the jth column of W and by (I — P1);, (I — Pw);
and Pyy j projections of the jth column.

Implementation

To have m; = (I — P1);Aw;, only entries appearing in the
complement of V1 on the jth column have to be computed.

To have n; = Pyy jA*m;, only entries appearing on the jth
column of W have to be computed.

Finally aw; — n; overwrites w;
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Let W and V; be standard matrix subspaces.

Assume nz(A)= O(kin), nz(W)= O(kzn) and
0 nz(V1)= O(ksn) with ki, ko, k3 < n.

complexity

Then one iteration round requires O((2k; + 5)kan) operations.
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Dropping leads to sparsity structures that greatly differ from
the sparsity structures of A, A* or A*A.

Let v € C" with the entries v;. Numerically drop entries by

Subspaces W = relative tolerance 7. Store only entries v; for which
and V;
|vj| = 75 = 7]|v||2 holds.

m count p. Store only the p largest elements of v.

Usually 7 = 1le — 5 and p = 10.

Numerical dropping can be computationally expensive.
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e 1: Let a € RY and W = [wq,...,w,] €W

2: repeat
3: for all columns j=1,...,n in parallel do
4 mj = (I = P1);Aw;
5: Find large entries of (/ — Pyy);A*m;, update W
6: nj = PWJA*mj
7
8
9

Introduction

wj i= aw; — n;

Practical

:g""fm‘ Apply numerical dropping to w; and update W
experiments : end for
10: W= W/||W||g

11: until stopped
12: Compute Vi = PiAW and apply numerical dropping to V
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AMy = b with x = My, (4)
with b € C" and matrix A € C"™ " that is large and sparse.
With approximate factors, we have M = WVl’l.

Right-hand side is b = b/||b||» where b= (1,1,...,1). Initial
guess was set as xp = (0,0,...,0).

Iteration was considered converged when

Numerical

experiments | | b - AXm| |2
1b]]2

<1076,

Subspace V; was chosen to be a set of block diagonal matrices
with blocksize k.
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Let A to be the sherman2 from Matrix Market arising in oil
reservoir simulation having n = 1080, nz(A)= 23094 and
k(A) = 1.4E + 12.

Use GMRES(30) to solve the preconditioned linear system (4).

Determine the sparsity pattern of VW using numerical dropping
with 7 = 1le — 10 and p = 10 and initial guess Wy = /.

Choose V; as the set of block diagonal matrices with blocksize
Sherman2 k = 72. Use numerical dropping with 7 = 1le — 10 and p = 15.
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(b) V1

Figure: Sparsity patterns of the factors W and V; and the
preconditioner WV, ! after 5 iterations. Number of nonzeroes
nz(W)= 9204, nz(V;)= 12190 and nz(WV; !)= 198837.

Sherman2
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Figure: (a) Convergence of GMRES(30) with SPAI(0.3) having
nz(M) = 21336 (dashed line) and approximate factors algorithm
(solid line). (b) The spectrum of the preconditioned matrix AWV, *.

Sherman2
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Let A to be the saylor4d matrix from Matrix Market arising in
petroleum engineering simulation having n = 3564 with
nz(A)= 22316 and k(A) = 1E + 2.

Use GMRES(20) to solve the preconditioned linear system (4).

Determine the sparsity pattern of VW using numerical dropping
with 7 = 1le — 5 and p = 10 and initial guess Wy = /.

Choose V; as the set of block diagonal matrices with blocksize
k = 198. Use numerical dropping with 7 = 1e — 5 and p = 20.

Saylor4
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(a) w (b) V1 (c) wv!

Figure: Sparsity patterns of the factors W and V; and the
preconditioner WV, ! after 5 iterations. Number of nonzeroes
nz(W)=26482, nz(V1)=15626 and nz(WV; ')=2009304

Saylor4
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(a) (b)

Figure: (a) Convergence of GMRES(20) with SPAI(0.1) using 10
refinements and 10 new non-zeroes per refinement having

nz(M)= 202343 (dashed line) and approximate factors algorithm
(solid line). (b) The spectrum of the preconditioned matrix AWV, *.

12 14 18 18 2
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— Usx — Uy + T(XxUx + yuy) +nu =1, (5)

on unit square Q = (0, 1) x (0,1) with Dirichlet boundary
conditions on 0€2. Choose 7 = 10 and 1 = —100.
Use centered differences with n gridpoints in both directions.

After discretization A= H + V, with A € R™*" where H and
V correspond to x- and y-directions on the grid.

Nonsymmetric
PDE
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Approximate Let W be determined by the sparsity pattern of A% and V; by
SSS  the sparsity pattern of H2 (V; is block diagonal with
pentadiagonal blocks of size n). Let initial guess Wy = I.

" Use FGMRES(30) preconditioned with GMRES(10)-SPAT or
GMRES(10)-AF to solve the linear system (4).

nxn nz(A) nz(M) nz(W) +nz(Vy) | SPAI | AF
16x16 1216 7834 4196 16 19
32x32 4992 22513 17604 22 22
64 %64 20224 | 83418 72068 51 30
128x128 | 81408 295121 291588 49 30
256256 | 326656 | 1326396 | 1172996 121 64

Lyt Table: Iteration counts of FGMRES(30) for discretized (5)
preconditioned with GMRES(10)-SPAI and GMRES(10)-AF.
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Approximate factors can be computed by using the power
method to have preconditioners of the form WV, .

m To have preconditioners of good quality, about 5 to 10
iterations of the power method seems to suffice.

m Preconditioners can be dense and are nearly optimal.

m Choice of subspaces VW and V; is very important (and
challenging) for obtaining a good preconditioner.

m Good sparsity structures for W and V1 can be computed
by using approximate factors algorithm with numerical
dropping.

Conclusions
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