

Analysis of the performance of the Interior Penality Discontinuous Galerkin method

C. BALDASSARI, H. BARUCQ, H. CALANDRA, B. DENEL, J. DIAZ

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche BORDEAUX - SUD-OUEST

The seismic exploration

The Reverse Time Migration technique (RTM):

- Propagation of the wave field
- Retro-propagation of the data
- Application of an imaging condition

Motivation of the work

- Goal of the thesis: Migration including topography effects with wave equation in 3D (RTM)
- Both the accuracy and the computational cost of the numerical method to solve the direct problem are crucial
- Our choice: a finite element method which uses meshes adapted to the topography of the domain: the Interior Penality Discontinuous Galerkin method (IPDG)

Outline

- Presentation of the IPDG method
- Comparison 1D with a spectral finite element method (SEM)
- Comparison 2D with SEM and analytic solution
- Results of the propagation in an irregular top domain with IPDG
- Conclusion and ongoing works

Initial problem

$$\begin{cases} \frac{1}{\mu} \frac{\partial^2 u}{\partial t^2} - \nabla \cdot \left(\frac{1}{\rho} \nabla u\right) = f & in \quad I \times \Omega \\ u(0, x) = 0 & in \quad \Omega \\ \frac{\partial u}{\partial t}(0, x) = 0 & in \quad \Omega \\ u = 0 & on \quad \Gamma_D \quad \Gamma_a \\ \nabla u \cdot n = 0 & on \quad \Gamma_N \\ \frac{1}{\sqrt{\mu}} \frac{\partial u}{\partial t} + \frac{1}{\sqrt{\rho}} \nabla u \cdot n = 0 & on \quad \Gamma_{abs} \end{cases}$$

Notations

- I =]0, T[: a finite time interval
- Ω : a bounded domain in IR^{*d*}, d = 2, 3
- $\Gamma_D \cup \Gamma_N \cup \Gamma_{abs} = \partial \Omega$
- ρ : the density of the medium satisfying $0 < \rho_* < \rho(x) < \rho^* < \infty$
- μ : the compressibility satisfying $0 < \mu_* < \mu(x) < \mu^* < \infty$
- n: the unit outward normal of Ω

The IPDG method

- Method proposed by Douglas and Dupont in the 70's
- Applied to the wave equation by Grote, Schneebeli and Schötzau in 2005
- Continuity is weakly enforced across interfaces by adding bilinear forms, so-called fluxes
- Method based on meshes made of triangles in 2D or tetrahedra in 3D

Notations -1-

 T_h : a shape-regular mesh of Ω composed by elements (triangles) K; $\overline{\Omega} = \bigcup_{K \in T_h} \overline{K}$

 F_i an interior face of T_h define by two elements ; $F_i = \partial K^+ \cap \partial K^-$ E the set of all F_i

 F_i the set of all F_i

- F_b a boundary face of T_h ; $F_b = \partial K \cap \partial \Omega$
- F_b the set of all F_b

 $F_{\rm h} = F_{\rm i} \bigcup F_{\rm b}$

- n^{\pm} the unit outward vectors on the boundaries ∂K^{\pm}
- v^{\pm} the traces of a fonction v on K^{\pm}

Notations -2-

$$\begin{bmatrix} [v] \end{bmatrix} = v^{+}n^{+} + v^{-}n^{-} : \text{the jump of } v \text{ at } x \in F ; F \in F_{i} \\ \{\{v\}\}\} = (v^{+} + v^{-})/2 : \text{the average of } v \text{ at } x \in F ; F \in F_{i} \\ \begin{bmatrix} [v] \end{bmatrix} = vn : \text{the jump of } v \text{ at } x \in F ; F \in F_{b} \\ \{\{v\}\}\} = v : \text{the average of } v \text{ at } x \in F ; F \in F_{b} \\ \text{For a smooth vector-valued function, we analogously define the jump and the average}$$

$$V_{l}^{h} = \left\{ v \in L^{2}(\Omega) : v_{|K} \in P_{l}(K) \forall K \in T_{h} \right\} : \text{the finite element space}$$

Space discretization -1-

After space discretization, we obtain the scheme:

$$M \frac{\partial^2 U_h}{\partial t^2} + B \frac{\partial U_h}{\partial t} + K U_h = F_h$$

where

 U_h is the vector defined by the composants of $u_h \in V_l^h$ The mass matrix *M* is block-diagonal and its coefficients are:

$$M_{ij} = \sum_{K \in T_h} \int_K \frac{1}{\mu} v_i v_j dx, \quad \forall v_i, v_j \in V_l^h$$

The matrix *B* is equal to zero except for Γ_{abs} 's elements:

$$B_{ij} = \sum_{F_b \in F_b \cap \Gamma_{abs}} \int_{F_b} \frac{1}{\sqrt{\mu\rho}} v_i v_j dF, \quad \forall v_i, v_j \in V_l^h$$

Space discretization -2-

The stiffness matrix *K* is symmetric and has for entries the terms:

$$\begin{split} K_{ij} &= \sum_{K \in T_h} \int_K \frac{1}{\rho} \nabla v_i \cdot \nabla v_j dx - \sum_{F_i \in F_i} \int_{F_i} \left[\left[v_i \right] \right] \cdot \left\{ \left\{ \frac{1}{\rho} \nabla v_j \right\} \right\} dF \\ &- \sum_{F_i \in F_i} \int_{F_i} \left[\left[v_j \right] \right] \cdot \left\{ \left\{ \frac{1}{\rho} \nabla v_i \right\} \right\} dF + \sum_{F_i \in F_i} \int_{F_i} \gamma \left[\left[v_i \right] \right] \cdot \left[\left[v_j \right] \right] dF \\ &- \sum_{F_b \in F_b} \int_{F_b} \left[\left[v_i \right] \right] \cdot \left\{ \left\{ \frac{1}{\rho} \nabla v_j \right\} \right\} dF - \sum_{F_b \in F_b} \int_{F_b} \left[\left[v_j \right] \right] \cdot \left\{ \left\{ \frac{1}{\rho} \nabla v_i \right\} \right\} dF \\ &+ \sum_{F_b \in F_b} \int_{F_b} \gamma \left[\left[v_i \right] \right] \cdot \left[\left[v_j \right] \right] dF, \quad \forall v_i, v_j \in V_l^h \end{split}$$

Space discretization -3-

The function γ penalizes the jump of v_i and v_j on T_h 's faces. It is defined by: $\forall F \in F_h = F_i \cup F_b$, $\gamma_{|F} = \alpha c_{\max} h_{\min}^{-1}$ The source vector F_h has for components the terms:

$$F_{h,i} = \sum_{K \in T_h} \int_K f v_i dx$$

IPDG's advantages

- Meshes made of triangles in 2D or tetrahedra in 3D. Thus the topography of the computational domain is easily discretized.
- The representation of the solution is quasi-explicit because the mass matrix is block-diagonal.

To compute easily its coefficients, we use an exact quadrature formula which does not hamper the order of convergence.

Comparison 1D IPDG versus SEM

ORDER 2	Uniform mesh		Random mesh	
	IPDG	SEM	IPDG	SEM
nb_ddl = 90	dx = 0.200 dt = 0.0808 err = 24.9565	dx = 0.100 dt = 0.0990 err = 0.2700	dx = 0.200 dt = 0.0761 err = 24.9720	dx = 0.100 dt = 0.0913 err = 1.7403
nb_ddl = 180	dx = 0.100 dt = 0.0404 err = 11.0781	dx = 0.0500 dt = 0.0495 err = 0.0676	dx = 0.100 dt = 0.0380 err = 10.9472	dx = 0.0500 dt = 0.0448 err = 0.5149
nb_ddl = 360	dx = 0.0500 dt = 0.0202 err = 2.9120	dx = 0.0250 dt = 0.0247 err = 0.0169	dx = 0.0500 dt = 0.0190 err = 2.8747	dx = 0.0250 dt = 0.0224 err = 0.1261
nb_ddl = 540	dx = 0.0333 dt = 0.0135 err = 1.3004	dx = 0.0167 dt = 0.0165 err = 0.0075	dx = 0.0333 dt = 0.0127 err = 1.2836	dx = 0.0167 dt = 0.0149 err = 0.0565
nb_ddl = 720	dx = 0.0250dt = 0.0101err = 0.7325	dx = 0.0125dt = 0.0124err = 0.0042	dx = 0.0250dt = 0.0095err = 0.7219	dx = 0.0125dt = 0.0112err = 0.0318

Comparison 1D IPDG versus SEM

ORDER 3	Uniform mesh		Random mesh	
	IPDG	SEM	IPDG	SEM
nb_ddl = 180	dx = 0.1500 dt = 0.0347 err = 1.2187	dx = 0.100 dt = 0.0400 err = 1.5961	dx = 0.1500 dt = 0.0320 err = 1.0594	dx = 0.100 dt = 0.0363 err = 1.3152
nb_ddl = 360	dx = 0.0750 dt = 0.0174 err = 0.3040	dx = 0.0500 dt = 0.0200 err = 0.4018	dx = 0.0750 dt = 0.0159 err = 0.2570	dx = 0.0500 dt = 0.0182 err = 0.3327
nb_ddl = 720	dx = 0.0375 dt = 0.0087 err = 0.0760	dx = 0.0250 dt = 0.0100 err = 0.1007	dx = 0.0375dt = 0.0079err = 0.0632	dx = 0.0250 dt = 0.0091 err = 0.0827
nb_ddl = 1080	dx = 0.0250 dt = 0.0058 err = 0.0338	dx = 0.0167 dt = 0.0067 err = 0.0448	dx = 0.0250 dt = 0.0053 err = 0.0281	dx = 0.0167 dt = 0.0060 err = 0.0368
nb_ddl = 1440	dx = 0.0187 dt = 0.0043 err = 0.0190	dx = 0.0125dt = 0.0050err = 0.0252	dx = 0.0187 dt = 0.0040 err = 0.0159	dx = 0.0125dt = 0.0125err = 0.0207

Comparison 1D IPDG versus SEM

ORDER 4	Uniform mesh		Random mesh	
	IPDG	SEM	IPDG	SEM
nb_ddl = 180	dx = 0.200 dt = 0.0307 err = 0.4865	dx = 0.1500 dt = 0.0348 err = 0.6263	dx = 0.200 dt = 0.0305 err = 0.4795	dx = 0.1500 dt = 0.0335 err = 0.5916
nb_ddl = 360	dx = 0.100	dx = 0.0750	dx = 0.100	dx = 0.0750
	dt = 0.0153	dt = 0.0174	dt = 0.0152	dt = 0.0168
	err = 0.1215	err = 0.1565	err = 0.1195	err = 0.1460
nb_ddl = 720	dx = 0.0500	dx = 0.0375	dx = 0.0500	dx = 0.0375
	dt = 0.0077	dt = 0.0087	dt = 0.0076	dt = 0.0084
	err = 0.0304	err = 0.0391	err = 0.0299	err = 0.0362
nb_ddl = 1080	dx = 0.0333	dx = 0.0250	dx = 0.0333	dx = 0.0250
	dt = 0.0051	dt = 0.0058	dt = 0.0051	dt = 0.0056
	err = 0.0135	err = 0.0174	err = 0.0132	err = 0.0163
nb_ddl = 1440	dx = 0.0250	dx = 0.0187	dx = 0.0250	dx = 0.0187
	dt = 0.0038	dt = 0.0044	dt = 0.0038	dt = 0.0042
	err = 0.0076	err = 0.0098	err = 0.0074	err = 0.0091

Comparison 2D IPDG/SEM/Exact solution

- [0 1400] x [0 2100]
- C1=1500m/s
- C2=3000m/s
- Source position: (700,1050)
- First derivative of a Gaussian
- *f*=20Hz
- Dirichlet condition on the top, absorbing condition elsewhere
- Time propagation: 0.9s
- Position of the receivers: (5*i,1050) i=1,...,280

Results for a fine mesh (52 pts/ λ) -1-

Results for a fine mesh (52 pts/ λ) -2-

Results for a coarse mesh (20 pts/ λ) -1-

Results for a coarse mesh (20 pts/ λ) -2-

The foothill case

- [0 1440] x [0 730]
- C1=1500m/s
- C2=3000m/s
- Source position: (300,530)
- First derivative of a Gaussian
- *f*=20Hz
- Dirichlet condition on the top, absorbing condition elsewhere
- Time propagation: 1s
- Position of the receivers: (5*i,530) i=1,...,288

Influence of the size of the mesh for IPDG

Seismograms

Conclusions and ongoing works

- <u>Conclusions:</u>
 - Absorbing conditions must be improved
 - It's only necessary to have a fine mesh at the surface of the domain
- Ongoing works:
 - Analysis of the numerical dispersion
 - Improvement of the absorbing conditions
 - Implementation into the MigWE code
 - Local time stepping

Fonction test v_j telle que:

$$\left[\left[v_{j} \right] \right] \neq 0 \text{ et } \left[\left[\frac{1}{\rho} \nabla v_{j} \right] \right] = 0$$

$$K_{ij} = \sum_{K \in T_h} \int_K \frac{1}{\rho} \nabla v_i \cdot \nabla v_j dx - \sum_{F_i \in \mathbf{F}_i} \int_{F_i} \left[\left[v_i \right] \right] \cdot \left\{ \left\{ \frac{1}{\rho} \nabla v_j \right\} \right\} dF$$
$$- \sum_{F_i \in \mathbf{F}_i} \int_{F_i} \left[\left[v_j \right] \right] \cdot \left\{ \left\{ \frac{1}{\rho} \nabla v_i \right\} \right\} dF + \sum_{F_i \in \mathbf{F}_i} \int_{F_i} \gamma \left[\left[v_i \right] \right] \cdot \left[\left[v_j \right] \right] dF$$
$$- \sum_{F_b \in \mathbf{F}_b} \int_{F_b} \left[\left[v_i \right] \right] \cdot \left\{ \left\{ \frac{1}{\rho} \nabla v_j \right\} \right\} dF - \sum_{F_b \in \mathbf{F}_b} \int_{F_b} \left[\left[v_j \right] \right] \cdot \left\{ \left\{ \frac{1}{\rho} \nabla v_i \right\} \right\} dF$$
$$+ \sum_{F_b \in \mathbf{F}_b} \int_{F_b} \gamma \left[\left[v_i \right] \right] \cdot \left[\left[v_j \right] \right] dF$$