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The seismic exploration

The Reverse Time Migration technique (RTM):
– Propagation of the wave field
– Retro-propagation of the data
– Application of an imaging condition



Motivation of the work

• Goal of the thesis:  Migration including topography effects 
with wave equation in 3D (RTM)

• Both the accuracy and the computational cost of the numerical 
method to solve the direct problem are crucial

• Our choice: a finite element method which uses meshes 
adapted to the topography of the domain: the Interior Penality 
Discontinuous Galerkin method (IPDG)



Outline

• Presentation of the IPDG method

• Comparison 1D with a spectral finite element method (SEM) 

• Comparison 2D with SEM and analytic solution

• Results of the propagation in an irregular top domain with 
IPDG

• Conclusion and ongoing works
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The IPDG method

• Method proposed by Douglas and Dupont in the 70’s

• Applied to the wave equation by Grote, Schneebeli and 
Schötzau in 2005

• Continuity is weakly enforced across interfaces by adding 
bilinear forms, so-called fluxes

• Method based on meshes made of triangles in 2D or tetrahedra 
in 3D



Notations -1-
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Notations -2-
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Space discretization -1-
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Space discretization -2-
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Space discretization -3-
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IPDG’s advantages

• Meshes made of triangles in 2D or tetrahedra in 3D. Thus the 
topography of the computational domain is easily discretized.

• The representation of the solution is quasi-explicit because the 
mass matrix is block-diagonal.

To compute easily its coefficients, we use an exact quadrature 
formula which does not hamper the order of convergence.



Comparison 1D IPDG versus SEM

ORDER 2 Uniform mesh Random mesh

IPDG SEM IPDG SEM

nb_ddl = 90 dx = 0.200
dt = 0.0808

err = 24.9565

dx = 0.100
dt = 0.0990
err = 0.2700

dx = 0.200
dt = 0.0761

err = 24.9720

dx = 0.100
dt = 0.0913
err = 1.7403

nb_ddl = 180 dx = 0.100
dt = 0.0404

err = 11.0781

dx = 0.0500
dt = 0.0495
err = 0.0676

dx = 0.100
dt = 0.0380

err = 10.9472

dx = 0.0500
dt = 0.0448
err = 0.5149

nb_ddl = 360 dx = 0.0500
dt = 0.0202
err = 2.9120

dx = 0.0250
dt = 0.0247
err = 0.0169

dx = 0.0500
dt = 0.0190
err = 2.8747

dx = 0.0250
dt = 0.0224
err = 0.1261

nb_ddl = 540 dx = 0.0333
dt = 0.0135
err = 1.3004

dx = 0.0167
dt = 0.0165
err = 0.0075

dx = 0.0333
dt = 0.0127
err = 1.2836

dx = 0.0167
dt = 0.0149
err = 0.0565

nb_ddl = 720 dx = 0.0250
dt = 0.0101
err = 0.7325

dx = 0.0125
dt = 0.0124
err = 0.0042

dx = 0.0250
dt = 0.0095
err = 0.7219

dx = 0.0125
dt = 0.0112
err = 0.0318



Comparison 1D IPDG versus SEM

ORDER 3 Uniform mesh Random mesh

IPDG SEM IPDG SEM

nb_ddl = 180 dx = 0.1500
dt = 0.0347
err = 1.2187

dx = 0.100
dt = 0.0400
err = 1.5961

dx = 0.1500
dt = 0.0320
err = 1.0594

dx = 0.100
dt = 0.0363
err = 1.3152

nb_ddl = 360 dx = 0.0750
dt = 0.0174
err = 0.3040

dx = 0.0500
dt = 0.0200
err = 0.4018

dx = 0.0750
dt = 0.0159
err = 0.2570

dx = 0.0500
dt = 0.0182
err = 0.3327

nb_ddl = 720 dx = 0.0375
dt = 0.0087
err = 0.0760

dx = 0.0250
dt = 0.0100
err = 0.1007

dx = 0.0375
dt = 0.0079
err = 0.0632

dx = 0.0250
dt = 0.0091
err = 0.0827

nb_ddl = 1080 dx = 0.0250
dt = 0.0058
err = 0.0338

dx = 0.0167
dt = 0.0067
err = 0.0448

dx = 0.0250
dt = 0.0053
err = 0.0281

dx = 0.0167
dt = 0.0060
err = 0.0368

nb_ddl = 1440 dx = 0.0187
dt = 0.0043
err = 0.0190

dx = 0.0125
dt = 0.0050
err = 0.0252

dx = 0.0187
dt = 0.0040
err = 0.0159

dx = 0.0125
dt = 0.0125
err = 0.0207



Comparison 1D IPDG versus SEM

ORDER 4 Uniform mesh Random mesh

IPDG SEM IPDG SEM

nb_ddl = 180 dx = 0.200
dt = 0.0307
err = 0.4865

dx = 0.1500
dt = 0.0348
err = 0.6263

dx = 0.200
dt = 0.0305
err = 0.4795

dx = 0.1500
dt = 0.0335
err = 0.5916

nb_ddl = 360 dx = 0.100
dt = 0.0153
err = 0.1215

dx = 0.0750
dt = 0.0174
err = 0.1565

dx = 0.100
dt = 0.0152
err = 0.1195

dx = 0.0750
dt = 0.0168
err = 0.1460

nb_ddl = 720 dx = 0.0500
dt = 0.0077
err = 0.0304

dx = 0.0375
dt = 0.0087
err = 0.0391

dx = 0.0500
dt = 0.0076
err = 0.0299

dx = 0.0375
dt = 0.0084
err = 0.0362

nb_ddl = 1080 dx = 0.0333
dt = 0.0051
err = 0.0135

dx = 0.0250
dt = 0.0058
err = 0.0174

dx = 0.0333
dt = 0.0051
err = 0.0132

dx = 0.0250
dt = 0.0056
err = 0.0163

nb_ddl = 1440 dx = 0.0250
dt = 0.0038
err = 0.0076

dx = 0.0187
dt = 0.0044
err = 0.0098

dx = 0.0250
dt = 0.0038
err =0.0074 

dx = 0.0187
dt = 0.0042
err = 0.0091



Comparison 2D IPDG/SEM/Exact solution

• [0 1400] x [0 2100]

• C1=1500m/s

• C2=3000m/s

• Source position: (700,1050)

• First derivative of a Gaussian

• f =20Hz

• Dirichlet condition on the top, 
absorbing condition elsewhere

• Time propagation: 0.9s

• Position of the receivers:

(5*i,1050)      i=1,…,280



Results for a fine mesh (52 pts/    ) -1-λ



Results for a fine mesh (52 pts/    ) -2-λ



Results for a coarse mesh (20 pts/    ) -1-λ



Results for a coarse mesh (20 pts/    ) -2-λ



The foothill case 

• [0 1440] x [0 730]

• C1=1500m/s

• C2=3000m/s

• Source position: (300,530)

• First derivative of a Gaussian

• f =20Hz

• Dirichlet condition on the top, 
absorbing condition elsewhere

• Time propagation: 1s

• Position of the receivers:

(5*i,530)      i=1,…,288



Influence of the size of the mesh 
for IPDG

Mesh n°1                                                           Mesh n°2

Mesh n°3



Seismograms

Mesh n°1                           Mesh n°2                            Mesh n°3

100 pts/                             30 pts/                                 15 pts/λ λλ



Conclusions and ongoing works

• Conclusions:
– Absorbing conditions must be improved
– It’s only necessary to have a fine mesh at the surface of 

the domain

• Ongoing works:
– Analysis of the numerical dispersion
– Improvement of the absorbing conditions
– Implementation into the MigWE code
– Local time stepping
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