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Context

F. Lopez @ IRIT-Toulouse

Evaluate the efficiency of modern
runtime systems for heterogeneous
and irregular workloads such as
Multifrontal solvers on
homogeneous, multicore
architectures.

A. Decollas @ Inria-Bordeaux

Develop dense linear algebra
kernels specific to sparse, direct
solvers capable of achieving high
efficiency on heterogeneous
systems equipped with multiple
CPUs and GPUs.

These two activities will ultimately be merged into a sparse, direct
solver for accelerated multicore systems.
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The multifrontal method

The multifrontal factorization is guided
by a graph called elimination tree:

• At each node of the tree k pivots are
eliminated

• Each node of the tree is associated
with a relatively small dense matrix
called frontal matrix (or, simply, front)
which contains the k rows/columns
related to the pivots and all the other
coefficients concerned by their
elimination
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The multifrontal method

The tree is traversed in topological order
(i.e., bottom-up) and, at each node, two
operations are performed:

• assembly: a set of coefficients from the
original matrix associated with the
pivots and a number of contribution
blocks produced by the treatment of
the child nodes are summed to form
the frontal matrix

• factorization: the k pivots are
eliminated through a partial
factorization of the frontal matrix. As
a result we get:
◦ k rows/columns of the global factors
◦ A contribution block that will be

assembled into the parent’s front
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CPU-GPU hybrid architectures

GPUs may be used as powerful accelerators for HPC applications:

N High computational performance (comparison GPU-CPU: 10×
faster, memory access 5× faster)

N Energy efficient

despite these capabilities, the use of GPUs is challenging:

H Complex architectures (comparison GPU-CPU : 100× more cores)

H CPU-GPU programming models incompatible.

H CPU ↔ GPU transfers are expensive (no shared memory)

⇒ specific algorithms
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CPU-GPU hybrid architectures

Heterogeneous platform

CPU CPU

CPU CPU GPU

RAM GPU

CPU CPU

CPU CPU

GPU

RAM

RAM

RAM

RAM

Elimination tree

• An extremely heterogeneous workload

• A heterogeneous architecture

• mapping tasks is challenging
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One option is to do the mapping by hand (see T. Davis’ talk at SIAM
PP12). This requires a very accurate performance models difficult to
achieve.
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CPU-GPU hybrid architectures
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StarPU

sc
h
e
d
u
le

r
DSM

drivers
(CPU, GPU, SPU)

Runtime system

Another option is to exploit the features of a modern runtime system
capable of handling the scheduling and the data coherency in a
dynamic way.
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Runtime systems

Runtime system: abstract layer between application and machine with
the following features:

• Automatic detection of the task dependencies

• Dynamic task scheduling on different types of processing units.

• Management of multi-versioned tasks (an implementation for each
type of processing unit)

• Coherency management of manipulated data.
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Multifrontal QR factorization
on multicores



The multifrontal QR factorization

The multifrontal QR factorization of a sparse matrix A = QR follows
the pattern defined by the Cholesky factorization of the associated
normal equations ATA = LLT because of the equivalence of R and L.

It shares most of the features of the multifrontal Cholesky algorithm
apart from (most importantly):

• Frontal matrices are, in general, rectangular (both over or
under-determined)

• Frontal matrices are fully factorized

• Contribution blocks are stacked and not summed
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The multifrontal QR factorization: parallelism

Parallelism comes from two sources:

• Tree: nodes in separate branches can be treated independently

• Node: large nodes can be treated by multiple processes

In qr mumps both sources are exploited consistently, by partitioning
the frontal matrices and replacing the elimination tree with a DAG:
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The multifrontal QR factorization: StarPU integration

StarPU Task

-Code CPU
-Code GPU
-Code SPU

Priority

Input 1

Input n

...

Output 1

Output m

...

• Depending on the input/output, StarPU detects the dependencies
among tasks

• Depending on the availability of resources and the data placement,
StarPU decides where to run a task
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The multifrontal QR factorization: StarPU integration

StarPU Task

-Code CPU
-Code GPU
-Code SPU

Priority

Input 1

Input n

...

Output 1

Output m

...

The easy way: replace all the
call operation1(i1, ..., in, o1, ..., om)

with
call submit task(operation1, i1, ..., in, o1, ..., om)

and let StarPU do all the work
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The multifrontal QR factorization: StarPU integration

StarPU Task

-Code CPU
-Code GPU
-Code SPU

Priority

Input 1

Input n

...

Output 1

Output m

...

This is functionally correct but the DAG may have millions of nodes
which makes the scheduling job too complex and memory consuming
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The multifrontal QR factorization: StarPU integration

StarPU Task

-Code CPU
-Code GPU
-Code SPU

Priority

Input 1

Input n

...

Output 1

Output m

...

Our approach: We give to StarPU a limited view of the DAG; this is
achieved by defining tasks that submit ohter tasks.

11/41 Sparse Days 2012. Toulouse, June 25th



The multifrontal QR factorization: StarPU integration

In the DAG we define

• activation tasks, i.e., tasks in charge of allocating the memory and
preparing the data structures needed for processing a front
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The multifrontal QR factorization: StarPU integration

• All the activation tasks are submitted
at once with the right dependencies
and very low priority. Each of them
submits other tasks with higher priority

• The runtime handles a DAG whose size
is proportional only to the number of
fronts that are active at a given
moment

• Tree traversal orders can be identified
such that the size of this dynamic DAG
is as small as possible but big enough
to feed all the threads
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Experimental setup

• Platform:
◦ 4× AMD hexacore
◦ 76 GB of memory (in 4 NUMA modules)
◦ GNU 4.4 compilers
◦ MKL 10.2

• Problems: some relatively small matrices from the UF collection
Matrix m n nnz flops

degme 185501 659415 8127528 591 G
karted 46502 133115 1770349 258 G

flower 7 4 27693 67593 202218 4261 G
EternityII E 11077 262144 1503732 544 G
cat ears 4 4 19020 44448 132888 716 G

tp-6 142752 1014301 11537419 255 G
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Experimental results
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Experimental results

AMD 24 cores -- flower_7_4
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Experimental results

AMD 24 cores -- cat_ears_4_4
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Experimental results

Execution trace for the degme matrix:

Two main problems can be identified:

• Too much time is spent into tasks submission (in red). The issue is
under investigation

• At the moment, parent-child dependencies are not finely managed
which means that it is not possible to start working on a node until
all of its children are completely factorized
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Multifrontal Cholesky: front
factorization on Cpu-Gpu
hybrid systems



From elimination tree to frontal matrix

Bottom-up traversal of the
elimination tree.
At each vertex (front):

• Assembling of contribution
blocks from children

• Partial factorization of the
frontal matrix

Elimination tree
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Tile Cholesky front factorization

• Derived from: A class of parallel tiled linear algebra algorithms for
multicore architectures. Buttari et al., Parallel Comput., 2009

• Extension: Partial factorization of NPiv variables and computation
of the Schur complement

• Use of a runtime system: StarPU

NPiv

Elimination tree

Frontal matrix (zoom)
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Tile Cholesky front factorization, NB |NPiv case

• NB: tile size
• NPiv: number of pivots

NPiv

k

Up-to-date data

current pannel

trailing submatrix

Symetric tiles

KERNELS

NB

22/41 Sparse Days 2012. Toulouse, June 25th



Tile Cholesky front factorization, NB |NPiv case

• NB: tile size
• NPiv: number of pivots

NPiv

k

Up-to-date data

trsm

trailing submatrix

Symetric tiles

KERNELS

potrf

NB

22/41 Sparse Days 2012. Toulouse, June 25th



Tile Cholesky front factorization, NB |NPiv case

• NB: tile size
• NPiv: number of pivots

NPiv

k

Up-to-date data

trsm

gemm

Symetric tiles

KERNELS

potrf

syrk

NB

22/41 Sparse Days 2012. Toulouse, June 25th



Tile Cholesky front factorization, NB |NPiv case
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Task flow

• Fine granularity
• High concurrency
• Out-of-order execution

trsmpotrf

syrk gemm
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Multicore architecture

• 12 cores, 2,67 GHz Dual-socket Hexa-core Westmere Intel Xeon
X5650 processor

• 12 MB L3 cache

• 36 GB RAM
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Performance (multicore architecture)

N

N
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Cholesky front factorization, general case (any NPiv)
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Cholesky front factorization, general case (any NPiv)

NPiv

potrf

syrk

trsm

gemm

potrf_sc

KERNELS

trsm_sc
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Performance (multicore architecture)

N

N
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CPU-GPU hybrid architecture

• 12 cores, 2,67 GHz Dual-socket Hexa-core Westmere Intel Xeon
X5650 processor

• 12 MB L3 cache

• 36 GB RAM

• 3 NVIDIA Tesla M2070 (Fermi) GPUs
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Performance (CPU-GPU hybrid architecture) - N=40K
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Execution trace (CPU-GPU hybrid architecture)

Task execution Idle Active waiting
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Conclusion, perspectives



Conclusion

• Preliminary work towards a functioning multifrontal code

• Not as efficient (for now) as codes designed for a specific
architecture

• Performance portability across architectures

• Dense kernels to be released in the MAGMA library
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Future work

• Robust solver (Cholesky assembly step, solution steps)

• Memory consumption (progressive task activation)

• Cluster of heterogeneous nodes

• Investigate explicit data dependencies management (DAGuE)

Thanks!
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Appendix



Validation (step 1)

• Factorization on nelim
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Validation (step 1)

• Update the trailing submatrix
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Validation (step 1)

• Update the trailing submatrix
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Validation (step 2)

• Finish factorization of ”nelim” tile
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Validation (step 2)

• Update the rest of the matrix
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Validation (step 2)

• Factorize the rest of the matrix, as if NB | nelim
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