Optimizing City Traffic using Time-Expanded Graphs

Orange Labs

Sébastien FELIX, Research & Development

July 26th 2013, Recent Advances in Optimization

Optimizing city traffic using Time-Expanded Graphs

- section 1 Introduction
- section 2 Existing approaches
- section 3 Proposed model
- section 4 Experimentations and results
- section 5 Conclusion and further work

- Growing number of vehicles and demands.
- Lot of data available (G.P.S, magnetic loops, data from telecommunication networks, ...).
- Automatization of driving (Google cars, vehicle pools, ...).

 Congestion cost was estimated at over 100 billion dollars in the United States in 2009.

- Full automatic cars :
 - Google automatic car
 - Volkswagen
- Connected cars :
 - Apple
 - Google API
- Pool of shared vehicles

Google's experimental driverless car

(picture from http://www.KeyDatabase.in)

unrestricted

- Goal : devellop a framework to manage a fleet of automatic cars in a city and reduce the transportation cost.

(picture from http://images.math.cnrs.fr)

Existing approaches

Existing approaches (Lighthill, Whitham and Richards model)

 Model based on fluid mechanics and Partial Differential Equations [1]:

- Relation between the density and the speed of trafic

$$\partial_t \rho + \partial_x f(\rho) = 0$$
 with $f(\rho) = \rho v(\rho)$

- Traffic is modelled as a continuous density function
- Trajectories are fixed
- Speed is variable
- No overtakings allowed

[1] R.M. Colombo, P. Goatin and M.D Rosini, On the modeling and Management of Traffic

Existing approaches (Lighthill, Whitham and Richards model)

Pros :

- Method based on P.D.E (efficient and stable framework)
- Solution given is close to a real-world trafic behaviour
- Work efficiently on Highway network to reduce congestion [2]

- Cons :
 - Can't be applied on a large city
 - Trajectories are fixed
 - No available data for a single car

[2] Serge Hoogendoorn, Effective Dynamic Speed Limit Control approaches

Existing approaches (multicommodity flow model)

- Model based on graph theory [3]
- Traffic is modelled as a set of commodities associated with an amount of flow
- Trajectories are not fixed
- Speed could vary with a fixed rule over time
- No overtakings allowed

[3] A. Hall, S. Hippler and M. Skutella, Multicommodity flows over time : Efficient algorithms and complexity

Existing approaches (multicommodity flow model)

Pros :

- Method based on Linear Programming (existence of polynomial complexity algorithms)
- Work efficiently on large graphs

Cons :

- Don't takes into account the relation between density and speed
- No available data for a single car

Proposed model

Proposed model

- Each car is represented by a particle
- Trajectories are NOT fixed
- Speed is variable
- No overtakings allowed
- Model based on Graph theory (vertex disjoint path problem)

g=(V,E) with |V|=n and |E|=m

 For each e=(u,v) in E, the OpenStreetMap database provides :

- Length
- Maximum speed
- Number of lanes
- Direction

 Security distance (delta) = 2s between two cars (not depending on speed)

unrestricted

- t = 0s •
- t = 2s •
- t = 4s •
- t = 6s •
- t = 8s •
- t = 10s
 - T=10

• $\Theta_{max} = 3$

unrestricted

e' overtakes e

Incompatibilities graph

- Let G be a Time-Expanded graph, we note $\mathcal{I}\ (G)$ the incompatibilities graph of G.

 e and e' in E(G) and incompatible if one of these conditions is verified:

head(e) = head(e') tail(e) = tail(e') e overtakes e' e' overtakes e

• We have :

V(I (G))=E(G) and (e,e') belongs to I: (G)) if e and e' are incompatible.

Linear Programming formulation

$$\begin{split} \min \sum_{k \in \mathcal{K}} \sum_{P \in \mathcal{P}_k} \sum_{e \in P} c(e) \phi_P \\ \text{under constraints} \\ \sum_{k \in \mathcal{K}} \sum_{\substack{P \in \mathcal{P}_k \\ e \in P \text{ or } e' \in P}} \phi_P \leq 1, \forall (e, e') \in E(\mathcal{I}(G)) \end{split}$$

 $\phi_P \in \{0, 1\}, \forall k \in \mathcal{K}, \forall P \in \mathcal{P}_k$

• Where *K* is the set of request (a request *k* is represented by a origin vertex o_k in V(g) a starting time t_k and a destination vertex d_k in V(g)), and P_k is the set of paths from o_k to d_k in g (which corresponds to a set of pathes in G).

unrestricted

Clique covering problem

- Let C be a clique of \mathcal{I} (G), we have :

$$\sum_{k \in \mathcal{K}} \sum_{\substack{P \in \mathcal{P}_k \\ P \cap C \neq \emptyset}} \phi_P \le 1$$

• If we find a collection of cliques C such that every e in $\mathbb{I}((G))$ belongs to a clique in C (C is a clique cov $\mathcal{I}r$ of (G)), then the two following statements are equivalent :

(1)
$$\sum_{k \in \mathcal{K}} \sum_{\substack{P \in \mathcal{P}_k \\ P \cap C \neq \emptyset}} \phi_P \leq 1, \ \forall C \in \mathcal{C}$$

(2)
$$\sum_{k \in \mathcal{K}} \sum_{\substack{P \in \mathcal{P}_k \\ e \in P \text{ or } e' \in P}} \phi_P \leq 1, \forall (e, e') \in E(\mathcal{I}(G))$$

Clique covering problem

Hall Theorem :

Let G be a graph, we can find a clique cover of G such that $|C| \le \left\lfloor \frac{|V(G)|^2}{4} \right\rfloor$

- Let C be a clique covering of ${\boldsymbol{\mathcal{I}}}$ (G), thanks to Hall theorem, we have :

$$\left| C \right| \le \left\lfloor \frac{T^2 m^2 \Theta_{max}^2}{4} \right\rfloor \le \frac{T^2 m^2 \Theta_{max}^2}{4}$$

Our result :

$$|\mathbf{C}| \leq 2nT + m(T + \Theta_{max})(\frac{\Theta_{max}^2 \log(\Theta_{max})}{2} + \frac{5\Theta_{max}^2}{4}))$$

- Since T>> Θ_{max} , we reduced the number of constraints by a factor T/log(Θ_{max})

Linear Programming formulation using clique covering

$$\min \sum_{k \in \mathcal{K}} \sum_{P \in \mathcal{P}_k} \sum_{e \in P} c(e) \phi_P$$

under constraints

$$\sum_{k \in \mathcal{K}} \sum_{\substack{P \in \mathcal{P}_k \\ P \cap C \neq \emptyset}} \phi_P \mid \leq 1, \ \forall C \in \mathcal{C}$$

 $\phi_P \in \{0, 1\}, \forall k \in \mathcal{K}, \forall P \in \mathcal{P}_k$

unrestricted

Linear Programming formulation using clique covering : relaxing to fractionary flows

$$\min \sum_{k \in \mathcal{K}} \sum_{P \in \mathcal{P}_k} \sum_{e \in P} c(e) \phi_P$$

under constraints
$$\sum_{k \in \mathcal{K}} \sum_{\substack{P \in \mathcal{P}_k \\ P \cap C \neq \emptyset}} \phi_P \le 1, \ \forall C \in \mathcal{C}$$
$$\phi_P \in [0, 1] \ , \forall k \in \mathcal{K}, \forall P \in \mathcal{P}_k$$

- In fractionary flows, most values are integers.
- Apply column generation in the dual linear program (subroutine is a shortest path problem)

Experimentations and results

Experimentations and results

		vertex	edges	theta	constraints
Nice	Nice reduced 4	26360	28491	4	142344000
	Nice_reduced_2	26405	28536	2	142587000
	Nice_reduced_3	26369	28500	3	142392600
	Nice reduced 4 contracted Infinity	5648	7779	56	30499200
	Nice_reduced_4_contracted_10	5721	7852	10	30893400
	Nice_reduced_4_contracted_8	5750	7881	8	31050000
	Nice_reduced_4_contracted_6	5812	7943	6	31384800
	Nice reduced 4 contracted 5	5890	8021	5	31806000
	Nice_reduced_4_contracted_4	6007	8138	4	32437800
	Nice_reduced_3_contracted_Infinity	5648	7779	56	30499200
	Nice_reduced_3_contracted_10	5721	7852	10	30893400
	Nice reduced 3 contracted 8	5750	7881	8	31050000
	Nice_reduced_3_contracted_6	5812	7943	6	31384800
	Nice_reduced_3_contracted_5	5889	8020	5	31800600
	Nice_reduced_3_contracted_4	6005	8136	4	32427000
	Nice_reduced 3_contracted_3	6205	8336	3	33507000
	Nice_reduced_2_contracted_Infinity	5648	7779	56	30499200
	Nice_reduced_2_contracted_10	5721	7852	10	30893400
	Nice_reduced_2_contracted_8	5750	7881	8	31050000
	Nice reduced 2 contracted 6	5812	7943	6	31384800
	Nice_reduced_2_contracted_5	5889	8020	5	31800600
	Nice_reduced_2_contracted_4	6004	8135	4	32421600
	Nice_reduced_2_contracted_3	6200	8331	3	33480000
	Nice reduced 2 contracted 2	6705	8836	2	36207000

delta=2 and T=2700

Experimentations and results

		vertex	edges	theta	constraints
Toulouse	Toulouse_reduced_11	62746	70087	11	338828400
	Toulouse_reduced_2	62925	70266	2	339795000
	Toulouse_reduced_3	62774	70115	3	338979600
	Toulouse_reduced_4	62756	70097	4	338882400
	Toulouse_reduced_11_contracted_Infinity	20057	27398	45	108307800
	Toulouse_reduced_4_contracted_Infinity	20057	27398	45	108307800
	Toulouse_reduced_4_contracted_10	20077	27418	10	108415800
	Toulouse_reduced_4_contracted_8	20094	27435	8	108507600
	Toulouse_reduced_4_contracted_6	20136	27477	6	108734400
	Toulouse reduced 4 contracted 5	20195	27536	5	109053000
	Toulouse_reduced_4_contracted_4	20315	27656	4	109701000
	Toulouse_reduced_3_contracted_Infinity	20057	27398	45	108307800
	Toulouse_reduced_3_contracted_10	20077	27418	10	108415800
	Toulouse reduced 3 contracted 8	20094	27435	8	108507600
	Toulouse_reduced_3_contracted_6	20136	27477	6	108734400
	Toulouse_reduced_3_contracted_5	20195	27536	5	109053000
	Toulouse_reduced_3_contracted_4	20314	27655	4	109695600
	Toulouse_reduced_3_contracted_3	20601	27942	3	111245400
	Toulouse_reduced_2_contracted_Infinity	20057	27398	45	108307800
	Toulouse_reduced_2_contracted_10	20077	27418	10	108415800
	Toulouse_reduced_2_contracted_8	20094	27435	8	108507600
	Toulouse_reduced_2_contracted_6	20136	27477	6	108734400
	Toulouse reduced 2 contracted 5	20195	27536	5	109053000
	Toulouse_reduced_2_contracted_4	20312	27653	4	109684800
	Toulouse_reduced_2_contracted_3	20601	27942	3	111245400
	Toulouse reduced 2 contracted 2	21390	28731	2	115506000

delta=2 and T=2700

Conclusion and further work

unrestricted

Conclusion and further work

Using clique covering makes problems tractable.

Incorporate multi-lane roads.

Smarter crossroads management (increase the number of constraints).

 Use divide and conquer (Arora's techniques for TSP : recursive partitionning and dynamic programming).

thank you

