Parallelisation of 4D-Var in the time dimension using a saddlepoint algorithm

Mike Fisher
ECMWF
July 23, 2013

Outline

(1) Introduction
(2) Weak-Constraint 4D-Var
(3) Characteristics of the problem
(3) Parallelisation in the time dimension

- The Saddle Point Formulation
- Results from a toy system
(4) Conclusions

Introduction

- 4D-Var is a statistical estimation method that is widely used for geoscience applications, especially Numerical Weather Prediction (NWP).
- It is used by many of the major NWP Centres (ECMWF, Met Office, Météo France, JMA, Canadian Met Service, etc.), as well as being used for ocean data-assimilation (e.g. NEMOVAR).
- It expresses the estimation problem as an optimisation problem.
- The task is to estimate a sequence of states, defined over a finite time interval (the "analysis window"), given an initial state (the "background" or "prior") and a set of observations.

Weak-constraint 4D-Var

- In this talk, I will concentrate on Weak-constraint 4D-Var.
- Let us define the analysis window as $t_{0} \leq t \leq t_{N+1}$
- We wish to estimate the sequence of states $x_{0} \ldots x_{N}$ (valid at times $t_{0} \ldots t_{N}$), given:
- A prior x_{b} (valid at t_{0}).
- A set of observations $y_{0} \ldots y_{N}$ Each y_{k} is a vector containing, typically, a large number of measurements of a variety of variables distributed spatially and in the time interval $\left[t_{k}, t_{k+1}\right)$.
- 4D-Var is a maximum likelihood method. We define the estimate as the sequence of states that minimizes the cost function:

$$
\begin{aligned}
J\left(x_{0} \ldots x_{N}\right)= & -\log \left(p\left(x_{0} \ldots x_{N} \mid x_{b} ; y_{0} \ldots y_{N}\right)\right) \\
& + \text { const. }
\end{aligned}
$$

Weak-constraint 4D-Var

Using Bayes' theorem, and assuming unbiased Gaussian errors, the weak-constraint 4D-Var cost function can be written as:

$$
\begin{aligned}
J\left(x_{0} \ldots x_{N}\right)= & \left(x_{0}-x_{b}\right)^{\mathrm{T}} B^{-1}\left(x_{0}-x_{b}\right) \\
& +\sum_{k=0}^{N}\left(\mathcal{H}_{k}\left(x_{k}\right)-y_{k}\right)^{\mathrm{T}} R_{k}^{-1}\left(\mathcal{H}_{k}\left(x_{k}\right)-y_{k}\right) \\
& +\sum_{k=1}^{N}\left(q_{k}-\bar{q}\right)^{\mathrm{T}} Q_{k}^{-1}\left(q_{k}-\bar{q}\right) .
\end{aligned}
$$

where $q_{k}=x_{k}-\mathcal{M}_{k}\left(x_{k-1}\right)$
B, R_{k} and Q_{k} are covariance matrices of background, observation and model error. \mathcal{H}_{k} is an operator that maps model variables x_{k} to observed variables y_{k}, and \mathcal{M}_{k} represents an integration of the numerical model from time t_{k-1} to time t_{k}.

Weak-constraint 4D-Var

- 4D-Var is computationally expensive, and NWP is a real-time activity.
- It is usual to reduce the computational cost of 4D-Var by framing it as a simplified Gauss-Newton iteration in which a sequence of quadratic problems is solved.
- The scale of the problem, and the real-time constraints of weather forecasting require us to solve the 4D-Var problem on highly parallel computers.
- We are reaching the limits of what can be achieved by a purely spatial decomposition of the problem.
- We need a new dimension over which to parallelise the problem.

Weak Constraint 4D-Var: Quadratic Inner Loops

The inner loops of weak-constraint 4D-Var minimise:

$$
\begin{aligned}
J\left(\delta x_{0}, \ldots, \delta x_{N}\right)= & \frac{1}{2}\left(\delta x_{0}-b\right)^{\mathrm{T}} B^{-1}\left(\delta x_{0}-b\right) \\
& +\frac{1}{2} \sum_{k=0}^{N}\left(H_{k} \delta x_{k}-d_{k}\right)^{\mathrm{T}} R_{k}^{-1}\left(H_{k} \delta x_{k}-d_{k}\right) \\
& +\frac{1}{2} \sum_{k=1}^{N}\left(\delta q_{k}-c_{k}\right)^{\mathrm{T}} Q_{k}^{-1}\left(\delta q_{k}-c_{k}\right)
\end{aligned}
$$

where $\delta q_{k}=\delta x_{k}-M_{k} \delta x_{k-1}$, and where b, c_{k} and d_{k} come from the outer loop:

$$
\begin{aligned}
b & =x_{b}-x_{0} \\
c_{k} & =\bar{q}-q_{k} \\
d_{k} & =y_{k}-\mathcal{H}_{k}\left(x_{k}\right)
\end{aligned}
$$

Weak Constraint 4D-Var: Quadratic Inner Loops

We simplify the notation by defining some 4D vectors and matrices:

$$
\delta \mathbf{x}=\left(\begin{array}{l}
\delta x_{0} \\
\delta x_{1} \\
\vdots \\
\delta x_{N}
\end{array}\right) \quad \delta \mathbf{p}=\left(\begin{array}{l}
\delta x_{0} \\
\delta q_{1} \\
\vdots \\
\delta q_{N}
\end{array}\right)
$$

These vectors are related through $\delta q_{k}=\delta x_{k}-M_{k} \delta x_{k-1}$. We can write this relationship in matrix form as:

$$
\delta \mathbf{p}=\mathbf{L} \delta \mathbf{x}
$$

where:

$$
\mathbf{L}=\left(\begin{array}{ccccc}
l & & & & \\
-M_{1} & I & & & \\
& -M_{2} & l & & \\
& & \ddots & \ddots & \\
& & & -M_{N} & I
\end{array}\right)
$$

Weak Constraint 4D-Var: Quadratic Inner Loops

We will also define:

$$
\begin{gathered}
\mathbf{R}=\left(\begin{array}{cccc}
R_{0} & & & \\
& R_{1} & & \\
& & \ddots & \\
& & & R_{N}
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{llll}
B & & & \\
& Q_{1} & & \\
& & \ddots & \\
& & & Q_{N}
\end{array}\right), \\
\mathbf{H}=\left(\begin{array}{llll}
H_{0} & & & \\
& H_{1} & & \\
& & \ddots & \\
& & & H_{N}
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
b \\
c_{1} \\
\vdots \\
c_{N}
\end{array}\right) \quad \mathbf{d}=\left(\begin{array}{l}
d_{0} \\
d_{1} \\
\vdots \\
d_{N}
\end{array}\right) .
\end{gathered}
$$

Weak Constraint 4D-Var: Quadratic Inner Loops

With these definitions, we can write the inner-loop cost function either as a function of $\delta \mathbf{x}$:

$$
J(\delta \mathbf{x})=(\mathbf{L} \delta \mathbf{x}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\mathbf{L} \delta \mathbf{x}-\mathbf{b})+(\mathbf{H} \delta \mathbf{x}-\mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H} \delta \mathbf{x}-\mathbf{d})
$$

Or as a function of $\delta \mathbf{p}$:

$$
J(\delta \mathbf{p})=(\delta \mathbf{p}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\delta \mathbf{p}-\mathbf{b})+\left(\mathbf{H L}^{-1} \delta \mathbf{p}-\mathbf{d}\right)^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{H L}^{-1} \delta \mathbf{p}-\mathbf{d}\right)
$$

Weak Constraint 4D-Var: Quadratic Inner Loops

$$
\mathbf{L}=\left(\begin{array}{ccccc}
I & & & & \\
-M_{1} & I & & & \\
& -M_{2} & I & & \\
& & \ddots & \ddots & \\
& & & -M_{N} & I
\end{array}\right)
$$

$\delta \mathbf{p}=\mathbf{L} \delta \mathbf{x}$ can be done in parallel: $\delta q_{k}=\delta x_{k}-M_{k} \delta x_{k-1}$. We know all the $\delta x_{k-1}{ }^{\prime} s$. We can apply all the $M_{k}{ }^{\prime} s$ simultaneously. An algorithm involving only \mathbf{L} is time-parallel.
$\delta \mathbf{x}=\mathbf{L}^{-1} \delta \mathbf{p}$ is sequential: $\delta x_{k}=M_{k} \delta x_{k-1}+\delta q_{k}$.
We have to generate each δx_{k-1} in turn before we can apply the next M_{k}. An algorithm involving \mathbf{L}^{-1} is sequential.

Forcing Formulation

$$
J(\delta \mathbf{p})=(\delta \mathbf{p}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\delta \mathbf{p}-\mathbf{b})+\left(\mathbf{H L}^{-1} \delta \mathbf{p}-\mathbf{d}\right)^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{H L}^{-1} \delta \mathbf{p}-\mathbf{d}\right)
$$

- This version of the cost function is sequential, since it contains \mathbf{L}^{-1}.
- The form of cost function resembles that of strong-constraint 4D-Var, and it can be minimised using techniques that have been developed for strong-constrint 4D-Var.
- In particular, we can precondition it using $\mathbf{D}^{1 / 2}$ to diagonalise the first term:

$$
J(\chi)=\chi^{\mathrm{T}} \chi+\left(\mathbf{H L}^{-1} \delta \mathbf{p}-\mathbf{d}\right)^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{H L}^{-1} \delta \mathbf{p}-\mathbf{d}\right)
$$

where $\delta \mathbf{p}=\mathbf{D}^{1 / 2} \chi+\mathbf{b}$.

4D State Formulation

$$
J(\delta \mathbf{x})=(\mathbf{L} \delta \mathbf{x}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\mathbf{L} \delta \mathbf{x}-\mathbf{b})+(\mathbf{H} \delta \mathbf{x}-\mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H} \delta \mathbf{x}-\mathbf{d})
$$

- This version of the cost function is parallel. It does not contain \mathbf{L}^{-1}.
- Unfortunately, it is difficult to precondition.

4D State Formulation

$$
J(\delta \mathbf{x})=(\mathbf{L} \delta \mathbf{x}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\mathbf{L} \delta \mathbf{x}-\mathbf{b})+(\mathbf{H} \delta \mathbf{x}-\mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H} \delta \mathbf{x}-\mathbf{d})
$$

- The usual method of preconditioning used in 4D-Var defines a control variable χ that diagonalizes the first term of the cost function

$$
\delta \mathbf{x}=\mathbf{L}^{-1}\left(\mathbf{D}^{1 / 2} \chi+\mathbf{b}\right)
$$

- With this change-of-variable, the cost function becomes:

$$
J(\chi)=\chi^{\mathrm{T}} \chi+(\mathbf{H} \delta \mathbf{x}-\mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H} \delta \mathbf{x}-\mathbf{d})
$$

- But, we have introduced a sequential model integration (i.e. \mathbf{L}^{-1}) into the preconditioner.
- Replacing \mathbf{L}^{-1} by something cheaper destroys the preconditioning because \mathbf{D} is extremely ill-conditioned.

4D State Formulation

If we approximate \mathbf{L} by $\tilde{\mathbf{L}}$ in the preconditioner, the Hessian matrix of the first term of the cost function becomes

$$
\mathbf{D}^{1 / 2} \tilde{\mathbf{L}}^{-\mathrm{T}} \mathbf{L}^{\mathrm{T}} \mathbf{D}^{-1} \mathbf{L} \tilde{\mathbf{L}}^{-1} \mathbf{D}^{1 / 2}
$$

Because \mathbf{D} is highly ill-conditioned, this matrix is not close to the identity matrix unless $\tilde{\mathbf{L}}$ is a very good approximation of \mathbf{L}.

Lagrangian Dual (4D-PSAS)

A third possibility for minimising the cost function is the Lagrangian dual (known as 4D-PSAS in the meteorological community):

$$
\delta \mathbf{x}=\mathbf{L}^{-1} \mathbf{D L}^{-\mathrm{T}} \mathbf{H}^{\mathrm{T}} \delta \mathbf{w}
$$

$$
\text { where } \quad \delta \mathbf{w}=\arg \min _{\delta \mathbf{w}} F(\delta \mathbf{w})
$$

$$
\text { and where } F(\delta \mathbf{w})=\frac{1}{2} \delta \mathbf{w}^{\mathrm{T}}\left(\mathbf{R}+\mathbf{H L}^{-1} \mathbf{D L}^{-\mathrm{T}} \mathbf{H}^{\mathrm{T}}\right) \delta \mathbf{w}+\delta \mathbf{w}^{\mathrm{T}} \mathbf{z}
$$

with \mathbf{z} a complicated expression involving \mathbf{b} and \mathbf{d}.
Clearly, this is a sequential algorithm, since it contains \mathbf{L}^{-1}.

The Saddle Point Formulation

$$
J(\delta \mathbf{x})=(\mathbf{L} \delta \mathbf{x}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\mathbf{L} \delta \mathbf{x}-\mathbf{b})+(\mathbf{H} \delta \mathbf{x}-\mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H} \delta \mathbf{x}-\mathbf{d})
$$

At the minimum:

$$
\nabla J=\mathbf{L}^{\mathrm{T}} \mathbf{D}^{-1}(\mathbf{L} \delta \mathbf{x}-\mathbf{b})+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H} \delta \mathbf{x}-\mathbf{d})=\mathbf{0}
$$

Define:

$$
\lambda=\mathbf{D}^{-1}(\mathbf{b}-\mathbf{L} \delta \mathbf{x}), \quad \mu=\mathbf{R}^{-1}(\mathbf{d}-\mathbf{H} \delta \mathbf{x})
$$

Then:

Saddle Point Formulation

- We call this the saddle point formulation of weak-constraint 4D-Var.
- The block 3×3 matrix is a saddle point matrix.
- The matrix is real, symmetric, indefinite.
- Note that the matrix contains no inverse matrices.
- We can apply the matrix without requiring multiplication by \mathbf{L}^{-1}.
- The saddle point formulation is time paralel.

Saddle Point Formulation

- Another way to derive the saddle point formulation is to regard the minimisation as a constrained problem:

$$
\begin{aligned}
\min _{\delta \mathbf{p}, \delta \mathbf{w}} J(\delta \mathbf{p}, \delta \mathbf{w})= & (\delta \mathbf{p}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\delta \mathbf{p}-\mathbf{b})+(\delta \mathbf{w}-\mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1}(\delta \mathbf{w}-\mathbf{d}) \\
& \text { subject to } \delta \mathbf{p}=\mathbf{L} \delta \mathbf{x} \text { and } \delta \mathbf{w}=\mathbf{H} \delta \mathbf{x} .
\end{aligned}
$$

Lagrangian: $\mathcal{L}(\delta \mathbf{x}, \delta \mathbf{p}, \delta \mathbf{w}, \lambda, \mu)$

- 4D-Var solves the primal problem: minimise along AXB.
- 4D-PSAS solves the Lagrangian dual problem: maximise along CXD.
- The saddle point formulation finds the saddle point of \mathcal{L}.
- The saddle point formulation is neither 4D-Var nor 4D-PSAS.

Saddle Point Formulation

- To solve the saddle point system, we have to precondition it.
- Preconditioning saddle point systems is the subject of much current research.
- See e.g. Benzi and Wathen (2008), Benzi, Golub and Liesen (2005).
- One possibility (c.f. Bergamaschi, et al., 2011) is to approximate the saddle point matrix by:

$$
\tilde{\mathcal{P}}=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \tilde{\mathbf{L}} \\
\mathbf{0} & \mathbf{R} & \mathbf{0} \\
\tilde{\mathbf{L}}^{\mathrm{T}} & \mathbf{0} & \mathbf{0}
\end{array}\right) \quad \Rightarrow \quad \tilde{\mathcal{P}}^{-1}=\left(\begin{array}{ccc}
\mathbf{0} & \mathbf{0} & \tilde{\mathbf{L}}^{-\mathrm{T}} \\
\mathbf{0} & \mathbf{R}^{-1} & \mathbf{0} \\
\tilde{\mathbf{L}}^{-1} & \mathbf{0} & -\tilde{\mathbf{L}}^{-1} \mathbf{D} \tilde{\mathbf{L}}^{-\mathrm{T}}
\end{array}\right)
$$

Saddle Point Formulation

- For $\tilde{\mathbf{L}}=\mathbf{L}$, we can prove some nice results:
(1) The eigenvalues τ of $\tilde{\mathcal{P}}^{-1} \mathcal{A}$ lie on the line $\Re(\tau)=1$ in the complex plane.
(2) Their distance above/below the real axis is:

$$
\pm \sqrt{\frac{\mu_{i}^{\mathrm{T}} \mathbf{H L}^{-1} \mathbf{D} \mathbf{L}^{-\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mu_{i}}{\mu_{i}^{\mathrm{T}} \mathbf{R} \mu_{i}}}
$$

where μ_{i} is the μ component of the i th eigenvector.

- The fraction under the square root is the ratio of background+model error variance to observation error variance associated with the pattern μ_{i}.
- This is the analogue of the eigenvalue estimate in strong constraint 4D-Var.
- For $\tilde{\mathbf{L}} \neq \mathbf{L}$ the conditioning appears to remain reasonable.

Results from a toy system

- The practical results shown in the next few slides are for a simplified (toy) analogue of a real system.
- The model is a two-level quasi-geostrophic channel model with 1600 gridpoints.
- The model has realistic error-growth and time-to-nonlinearity
- There are 100 observations of streamfunction every 3 hours, and 100 wind observations every 6 hours.
- The error covariances are assumed to be horizontally isotropic and homogeneous, with a Gaussian spatial structure.
- The analysis window is 24 hours, and is divided into eight 3-hour sub-windows.
- The solution algorithm was GMRES-EN. (A poor choice. GMRES is much better - see Selime Gürol's poster.)

Saddle Point Formulation

OOPS QG model. 24-hour window with 8 sub-windows.

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.

Saddle Point Formulation

OOPS QG model. 24-hour window with 8 sub-windows.

Saddle Point Formulation

OOPS QG model. 24-hour window with 8 sub-windows.

Saddle Point Formulation

OOPS, QG model, 24-hour window with 8 sub-windows. GMRES-EN

Convergence as a function of iteration. Solid: Forcing formulation; Dashed: saddlepoint $\tilde{\mathbf{L}}=\mathbf{L}$; Dotted: saddlepoint $\tilde{\mathbf{L}}=\mathbf{I}$.

Saddle Point Formulation

OOPS, QG model, 24-hour window with 8 sub-windows. GMRES-EN

Convergence as a function of sequential sub-window integrations.

Conclusions

- The future viability of 4D-Var as an algorithm for Numerical Weather Prediction depends on finding, and exploiting, new dimensions of parallelism.
- The saddle point formulation of weak-constraint 4D-Var allows parallelisation in the time dimension.
- The algorithm is competitive with existing algorithms and has the potential to allow 4D-Var to remain computationally viable on next-generation computer architectures.

