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Introduction

@ 4D-Var is a statistical estimation method that is widely used for

geoscience applications, especially Numerical Weather Prediction
(NWP).

o It is used by many of the major NWP Centres (ECMWF, Met Office,
Météo France, JMA, Canadian Met Service, etc.), as well as being
used for ocean data-assimilation (e.g. NEMOVAR).

@ |t expresses the estimation problem as an optimisation problem.

@ The task is to estimate a sequence of states, defined over a finite
time interval (the “analysis window"), given an initial state (the
“background” or “prior") and a set of observations.
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Weak-constraint 4D-Var

@ In this talk, | will concentrate on Weak-constraint 4D-Var.

@ Let us define the analysis window as ty < t < tyy1

@ We wish to estimate the sequence of states xg ... xy (valid at times
to...tn), given:
> A prior x, (valid at to).
» A set of observations yp ... yn Each yi is a vector containing, typically,
a large number of measurements of a variety of variables distributed
spatially and in the time interval [tk , tkt1).
@ 4D-Var is a maximum likelihood method. We define the estimate as
the sequence of states that minimizes the cost function:

Jxo...xn) = —log(p(x0-..xn|XbiYo---YN))
+const.
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Weak-constraint 4D-Var

Using Bayes' theorem, and assuming unbiased Gaussian errors, the
weak-constraint 4D-Var cost function can be written as:

J(xo...xn) = (Xo — Xb)T B! (xo0 — xp)

+Z Hic(xi) = vi) " Rt (Hi(xe) — )

N
+> (-3 QM (ak— 7).
k=1

where gy = xx — My(xk—1)

B, Rx and Qy are covariance matrices of background, observation and
model error. Hy is an operator that maps model variables x; to observed
variables y,, and M represents an integration of the numerical model

from time tx_1 to time t. CEMWE
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Weak-constraint 4D-Var

@ 4D-Var is computationally expensive, and NWP is a real-time activity.

@ It is usual to reduce the computational cost of 4D-Var by framing it
as a simplified Gauss-Newton iteration in which a sequence of
quadratic problems is solved.

@ The scale of the problem, and the real-time constraints of weather
forecasting require us to solve the 4D-Var problem on highly parallel
computers.

@ We are reaching the limits of what can be achieved by a purely spatial
decomposition of the problem.

@ We need a new dimension over which to parallelise the problem.
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Weak Constraint 4D-Var: Quadratic Inner Loops

The inner loops of weak-constraint 4D-Var minimise:

J(0x0,...,0xn) = (6x0 — b)Y B™Y (6x0 — b)

N =

N
1 _
+§ ;)(Hkéxk — dk)T Rk 1 (Hk(SXk — dk)

N
1 T A-1
+5 > (ak — )’ Q' (Sak — )
k=1
where (5qk = 5Xk — Mk5Xk_1,
and where b, ¢, and d, come from the outer loop:
b = x,—x
Ck = q—qk
die = yx— Hi(xx)
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Weak Constraint 4D-Var: Quadratic Inner Loops

We simplify the notation by defining some 4D vectors and matrices:

5Xo 5Xo

Ox 1)
P . 1 5p = . a1

Xy daqn

These vectors are related through dq, = dx — Midxp_1.
We can write this relationship in matrix form as:

where:
/
—M; /
L= — M2 /
My |
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Weak Constraint 4D-Var: Quadratic Inner Loops

We will also define:

Ro B
R1 1
R = . ) D= ;
RN QN
Ho b dO
Hq 1 d1
H= b= d=

Hy cN dy
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Weak Constraint 4D-Var: Quadratic Inner Loops

With these definitions, we can write the inner-loop cost function either as
a function of dx:

J(0x) = (Lox — b)TD71(Lox — b) + (Héx — d)TR™}(Hox — d)

Or as a function of fp:

J(6p) = (0p — b)'D(6p — b) + (HL15p — d)TRI(HL 16p — d)

CSECMWF
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Weak Constraint 4D-Var: Quadratic Inner Loops

My |

6p = Léx can be done in parallel: dgx = dx — Midxp_1.
We know all the dxx_1’'s. We can apply all the M,’s simultaneously.
An algorithm involving only L is time-parallel.

dx = L™10p is sequential: dxx = Mydxk_1 + dqx.
We have to generate each dx,_1 in turn before we can apply the next M.
An algorithm involving L™ is sequential.
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Forcing Formulation

J(6p) = (6p —b)'D(6p — b) + (HL 6p — d)"R™I(HL*6p — d)

@ This version of the cost function is sequential, since it contains L1

@ The form of cost function resembles that of strong-constraint 4D-Var,
and it can be minimised using techniques that have been developed
for strong-constrint 4D-Var.

o In particular, we can precondition it using D/2 to diagonalise the first

term:
J(x) = x"x + (HL"'6p — d) "R} (HL 16p — d)

where ép = DY/2y + b.
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4D State Formulation

J(6x) = (Lox — b)TD7}(Léx — b) + (Hox — d)TR™L(Héx — d)

@ This version of the cost function is parallel. It does not contain L™1.

@ Unfortunately, it is difficult to precondition.
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4D State Formulation

J(6x) = (Lox — b)TD7}(Lox — b) 4 (Hox — d)TR™I(Héx — d)

@ The usual method of preconditioning used in 4D-Var defines a control
variable x that diagonalizes the first term of the cost function

ox = L~H(D'/?x + b)
@ With this change-of-variable, the cost function becomes:
J(x) = x"x + (Héx — d)"R™}(Héx — d)

e But, we have introduced a sequential model integration (i.e. L™1)
into the preconditioner.

@ Replacing L™ by something cheaper destroys the preconditioning
because D is extremely ill-conditioned. SECMWF
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4D State Formulation

If we approximate L by L in the preconditioner, the Hessian matrix of the
first term of the cost function becomes

D1/2E7TLTD71LE71D1/2

Because D is highly ill-conditioned, this matrix is not close to the identity
matrix unless L is a very good approximation of L.
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Lagrangian Dual (4D-PSAS)

A third possibility for minimising the cost function is the Lagrangian dual
(known as 4D-PSAS in the meteorological community):

ox = L7!'DL THTsw
where dw = argrginF(éw)
1
and where F(éw) = §5wT(R+HL_lDL_THT)6w+6sz

with z a complicated expression involving b and d.
Clearly, this is a sequential algorithm, since it contains L1,
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The Saddle Point Formulation

J(6x) = (Lox — b)TD7}(Léx — b) 4 (Héx — d) TR (Héx — d)

At the minimum:

VJ=L"D7}(Léx — b) + H'R™}(Hix —d) = 0

Define:
A=D"!b-Léx), pu=Rd-Héx)
Then:
DA+Ldx = b D 0 L A b
Ru+Hix = d } = 0 R H pw |=1d
L' A +H' = 0 LT HT o ox 0
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Saddle Point Formulation

We call this the saddle point formulation of weak-constraint 4D-Var.
The block 3 x 3 matrix is a saddle point matrix.

The matrix is real, symmetric, indefinite.

Note that the matrix contains no inverse matrices.
» We can apply the matrix without requiring multiplication by L.

The saddle point formulation is time paralel.
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Saddle Point Formulation

@ Another way to derive the saddle point formulation is to regard the
minimisation as a constrained problem:

min J(9p,0w) = (dp — b)"D!(6p — b) + (6w — d) "R (Jw — d)
p,ow
subject to dp = Ldx and dw = Héx.

Lagrangian: £(5x, 5p, dw, A, 1)
4D-Var solves the primal problem: minimise along AXB.
4D-PSAS solves the Lagrangian dual problem: maximise along CXD.
The saddle point formulation finds the saddle point of L.
The saddle point formulation is neither 4D-Var nor 4D-PSAS. CEcMwF
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Saddle Point Formulation

@ To solve the saddle point system, we have to precondition it.
@ Preconditioning saddle point systems is the subject of much current
research.
» See e.g. Benzi and Wathen (2008), Benzi, Golub and Liesen (2005).
@ One possibility (c.f. Bergamaschi, et al., 2011) is to approximate the
saddle point matrix by:

) D 0L ) 0 0 "
LT o0 o0 Lt o -—L!'pLT
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Saddle Point Formulation

@ For L =L, we can prove some nice results:

@ The eigenvalues 7 of P~1 A lie on the line R(7) = 1 in the complex
plane.

@ Their distance above/below the real axis is:

n pFHL-IDL-THT;
MFRM,‘
where p; is the ;1 component of the ith eigenvector.

@ The fraction under the square root is the ratio of background+model
error variance to observation error variance associated with the
pattern p;.

@ This is the analogue of the eigenvalue estimate in strong constraint
4D-Var.

e For L # L the conditioning appears to remain reasonable.
ECMWF
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Results from a toy system

@ The practical results shown in the next few slides are for a simplified
(toy) analogue of a real system.

@ The model is a two-level quasi-geostrophic channel model with 1600
gridpoints.
@ The model has realistic error-growth and time-to-nonlinearity

@ There are 100 observations of streamfunction every 3 hours, and 100
wind observations every 6 hours.

@ The error covariances are assumed to be horizontally isotropic and
homogeneous, with a Gaussian spatial structure.

@ The analysis window is 24 hours, and is divided into eight 3-hour
sub-windows.

@ The solution algorithm was GMRES-EN. (A poor choice. GMRES is
much better — see Selime Giirol's poster.)
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Saddle Point Formulation
OOPS QG model. 24-hour window with 8 sub-windows.
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Saddle Point Formulation
OOPS QG model. 24-hour window with 8 sub-windows.
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Saddle Point Formulation
OOPS QG model. 24-hour window with 8 sub-windows.
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Saddle Point Formulation
OOPS, QG model, 24-hour window with 8 sub-windows. GMRES-EN
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Saddle Point Formulation

OOPS, QG model, 24-hour window with 8 sub-windows. GMRES-EN
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Conclusions

@ The future viability of 4D-Var as an algorithm for Numerical Weather
Prediction depends on finding, and exploiting, new dimensions of
parallelism.

@ The saddle point formulation of weak-constraint 4D-Var allows
parallelisation in the time dimension.

@ The algorithm is competitive with existing algorithms and has the
potential to allow 4D-Var to remain computationally viable on
next-generation computer architectures.
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