
Parallelisation of 4D-Var in the time dimension using a
saddlepoint algorithm

Mike Fisher

ECMWF

July 23, 2013

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 1 / 28



Outline

1 Introduction

2 Weak-Constraint 4D-Var

3 Characteristics of the problem

3 Parallelisation in the time dimension
The Saddle Point Formulation
Results from a toy system

4 Conclusions

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 2 / 28



Introduction

4D-Var is a statistical estimation method that is widely used for
geoscience applications, especially Numerical Weather Prediction
(NWP).

It is used by many of the major NWP Centres (ECMWF, Met Office,
Météo France, JMA, Canadian Met Service, etc.), as well as being
used for ocean data-assimilation (e.g. NEMOVAR).

It expresses the estimation problem as an optimisation problem.

The task is to estimate a sequence of states, defined over a finite
time interval (the “analysis window”), given an initial state (the
“background” or “prior”) and a set of observations.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 3 / 28



Weak-constraint 4D-Var

In this talk, I will concentrate on Weak-constraint 4D-Var.

Let us define the analysis window as t0 ≤ t ≤ tN+1

We wish to estimate the sequence of states x0 . . . xN (valid at times
t0 . . . tN), given:

I A prior xb (valid at t0).
I A set of observations y0 . . . yN Each yk is a vector containing, typically,

a large number of measurements of a variety of variables distributed
spatially and in the time interval [tk , tk+1).

4D-Var is a maximum likelihood method. We define the estimate as
the sequence of states that minimizes the cost function:

J(x0 . . . xN) = − log (p(x0 . . . xN |xb; y0 . . . yN))

+const.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 4 / 28



Weak-constraint 4D-Var

Using Bayes’ theorem, and assuming unbiased Gaussian errors, the
weak-constraint 4D-Var cost function can be written as:

J(x0 . . . xN) = (x0 − xb)T B−1 (x0 − xb)

+
N∑

k=0

(Hk(xk)− yk)T R−1k (Hk(xk)− yk)

+
N∑

k=1

(qk − q̄)TQ−1k (qk − q̄) .

where qk = xk −Mk(xk−1)

B, Rk and Qk are covariance matrices of background, observation and
model error. Hk is an operator that maps model variables xk to observed
variables yk , and Mk represents an integration of the numerical model
from time tk−1 to time tk .

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 5 / 28



Weak-constraint 4D-Var

4D-Var is computationally expensive, and NWP is a real-time activity.

It is usual to reduce the computational cost of 4D-Var by framing it
as a simplified Gauss-Newton iteration in which a sequence of
quadratic problems is solved.

The scale of the problem, and the real-time constraints of weather
forecasting require us to solve the 4D-Var problem on highly parallel
computers.

We are reaching the limits of what can be achieved by a purely spatial
decomposition of the problem.

We need a new dimension over which to parallelise the problem.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 6 / 28



Weak Constraint 4D-Var: Quadratic Inner Loops
The inner loops of weak-constraint 4D-Var minimise:

J(δx0, . . . , δxN) =
1

2
(δx0 − b)T B−1 (δx0 − b)

+
1

2

N∑
k=0

(Hkδxk − dk)T R−1k (Hkδxk − dk)

+
1

2

N∑
k=1

(δqk − ck)TQ−1k (δqk − ck)

where δqk = δxk −Mkδxk−1,
and where b, ck and dk come from the outer loop:

b = xb − x0

ck = q̄ − qk

dk = yk −Hk(xk)

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 7 / 28



Weak Constraint 4D-Var: Quadratic Inner Loops
We simplify the notation by defining some 4D vectors and matrices:

δx =


δx0
δx1
...
δxN

 δp =


δx0
δq1
...
δqN


These vectors are related through δqk = δxk −Mkδxk−1.
We can write this relationship in matrix form as:

δp = Lδx

where:

L =


I
−M1 I

−M2 I
. . .

. . .

−MN I


Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 8 / 28



Weak Constraint 4D-Var: Quadratic Inner Loops

We will also define:

R =


R0

R1

. . .

RN

 , D =


B

Q1

. . .

QN

 ,

H =


H0

H1

. . .

HN

 , b =


b
c1
...
cN

 d =


d0
d1
...
dN

 .

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 9 / 28



Weak Constraint 4D-Var: Quadratic Inner Loops

With these definitions, we can write the inner-loop cost function either as
a function of δx:

J(δx) = (Lδx− b)TD−1(Lδx− b) + (Hδx− d)TR−1(Hδx− d)

Or as a function of δp:

J(δp) = (δp− b)TD−1(δp− b) + (HL−1δp− d)TR−1(HL−1δp− d)

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 10 / 28



Weak Constraint 4D-Var: Quadratic Inner Loops

L =


I
−M1 I

−M2 I
. . .

. . .

−MN I



δp = Lδx can be done in parallel: δqk = δxk −Mkδxk−1.
We know all the δxk−1

′s. We can apply all the Mk
′s simultaneously.

An algorithm involving only L is time-parallel.

δx = L−1δp is sequential: δxk = Mkδxk−1 + δqk .
We have to generate each δxk−1 in turn before we can apply the next Mk .
An algorithm involving L−1 is sequential.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 11 / 28



Forcing Formulation

J(δp) = (δp− b)TD−1(δp− b) + (HL−1δp− d)TR−1(HL−1δp− d)

This version of the cost function is sequential, since it contains L−1.

The form of cost function resembles that of strong-constraint 4D-Var,
and it can be minimised using techniques that have been developed
for strong-constrint 4D-Var.

In particular, we can precondition it using D1/2 to diagonalise the first
term:

J(χ) = χTχ+ (HL−1δp− d)TR−1(HL−1δp− d)

where δp = D1/2χ+ b.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 12 / 28



4D State Formulation

J(δx) = (Lδx− b)TD−1(Lδx− b) + (Hδx− d)TR−1(Hδx− d)

This version of the cost function is parallel. It does not contain L−1.

Unfortunately, it is difficult to precondition.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 13 / 28



4D State Formulation

J(δx) = (Lδx− b)TD−1(Lδx− b) + (Hδx− d)TR−1(Hδx− d)

The usual method of preconditioning used in 4D-Var defines a control
variable χ that diagonalizes the first term of the cost function

δx = L−1(D1/2χ+ b)

With this change-of-variable, the cost function becomes:

J(χ) = χTχ+ (Hδx− d)TR−1(Hδx− d)

But, we have introduced a sequential model integration (i.e. L−1)
into the preconditioner.

Replacing L−1 by something cheaper destroys the preconditioning
because D is extremely ill-conditioned.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 14 / 28



4D State Formulation

If we approximate L by L̃ in the preconditioner, the Hessian matrix of the
first term of the cost function becomes

D1/2L̃−TLTD−1LL̃−1D1/2

Because D is highly ill-conditioned, this matrix is not close to the identity
matrix unless L̃ is a very good approximation of L.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 15 / 28



Lagrangian Dual (4D-PSAS)

A third possibility for minimising the cost function is the Lagrangian dual
(known as 4D-PSAS in the meteorological community):

δx = L−1DL−THTδw

where δw = arg min
δw

F (δw)

and where F (δw) =
1

2
δwT(R + HL−1DL−THT)δw + δwTz

with z a complicated expression involving b and d.
Clearly, this is a sequential algorithm, since it contains L−1.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 16 / 28



The Saddle Point Formulation

J(δx) = (Lδx− b)TD−1(Lδx− b) + (Hδx− d)TR−1(Hδx− d)

At the minimum:

∇J = LTD−1(Lδx− b) + HTR−1(Hδx− d) = 0

Define:
λ = D−1(b− Lδx), µ = R−1(d−Hδx)

Then:

Dλ+ Lδx = b
Rµ+ Hδx = d

LTλ+ HTµ = 0

 =⇒

 D 0 L
0 R H
LT HT 0

 λ
µ
δx

 =

 b
d
0



Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 17 / 28



Saddle Point Formulation

 D 0 L
0 R H
LT HT 0

 λ
µ
δx

 =

 b
d
0



We call this the saddle point formulation of weak-constraint 4D-Var.

The block 3× 3 matrix is a saddle point matrix.

The matrix is real, symmetric, indefinite.

Note that the matrix contains no inverse matrices.
I We can apply the matrix without requiring multiplication by L−1.

The saddle point formulation is time paralel.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 18 / 28



Saddle Point Formulation

Another way to derive the saddle point formulation is to regard the
minimisation as a constrained problem:

min
δp,δw

J(δp, δw) = (δp− b)TD−1(δp− b) + (δw − d)TR−1(δw − d)

subject to δp = Lδx and δw = Hδx.

Lagrangian: L(δx, δp, δw, λ, µ)

4D-Var solves the primal problem: minimise along AXB.

4D-PSAS solves the Lagrangian dual problem: maximise along CXD.

The saddle point formulation finds the saddle point of L.

The saddle point formulation is neither 4D-Var nor 4D-PSAS.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 19 / 28



Saddle Point Formulation

To solve the saddle point system, we have to precondition it.

Preconditioning saddle point systems is the subject of much current
research.

I See e.g. Benzi and Wathen (2008), Benzi, Golub and Liesen (2005).

One possibility (c.f. Bergamaschi, et al., 2011) is to approximate the
saddle point matrix by:

P̃ =

 D 0 L̃
0 R 0

L̃T 0 0

 ⇒ P̃−1 =

 0 0 L̃−T

0 R−1 0

L̃−1 0 −L̃−1DL̃−T



Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 20 / 28



Saddle Point Formulation

For L̃ = L, we can prove some nice results:
1 The eigenvalues τ of P̃−1A lie on the line <(τ) = 1 in the complex

plane.
2 Their distance above/below the real axis is:

±

√
µT
i HL−1DL−THTµi

µT
i Rµi

where µi is the µ component of the ith eigenvector.

The fraction under the square root is the ratio of background+model
error variance to observation error variance associated with the
pattern µi .

This is the analogue of the eigenvalue estimate in strong constraint
4D-Var.

For L̃ 6= L the conditioning appears to remain reasonable.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 21 / 28



Results from a toy system

The practical results shown in the next few slides are for a simplified
(toy) analogue of a real system.

The model is a two-level quasi-geostrophic channel model with 1600
gridpoints.

The model has realistic error-growth and time-to-nonlinearity

There are 100 observations of streamfunction every 3 hours, and 100
wind observations every 6 hours.

The error covariances are assumed to be horizontally isotropic and
homogeneous, with a Gaussian spatial structure.

The analysis window is 24 hours, and is divided into eight 3-hour
sub-windows.

The solution algorithm was GMRES-EN. (A poor choice. GMRES is
much better — see Selime Gürol’s poster.)

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 22 / 28



Saddle Point Formulation
OOPS QG model. 24-hour window with 8 sub-windows.

−80 −60 −40 −20 0 20 40 60 80
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ritz Values of A.

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 23 / 28



Saddle Point Formulation
OOPS QG model. 24-hour window with 8 sub-windows.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−40

−30

−20

−10

0

10

20

30

40

Ritz Values of P̃−1A for L̃ = L.

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 24 / 28



Saddle Point Formulation
OOPS QG model. 24-hour window with 8 sub-windows.

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−3

−2

−1

0

1

2

3

Ritz Values of P̃−1A for L̃ = I.

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 25 / 28



Saddle Point Formulation
OOPS, QG model, 24-hour window with 8 sub-windows. GMRES-EN

Convergence as a function of iteration. Solid: Forcing formulation;
Dashed: saddlepoint L̃ = L; Dotted: saddlepoint L̃ = I.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 26 / 28



Saddle Point Formulation

OOPS, QG model, 24-hour window with 8 sub-windows. GMRES-EN

Convergence as a function of sequential sub-window integrations.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 27 / 28



Conclusions

The future viability of 4D-Var as an algorithm for Numerical Weather
Prediction depends on finding, and exploiting, new dimensions of
parallelism.

The saddle point formulation of weak-constraint 4D-Var allows
parallelisation in the time dimension.

The algorithm is competitive with existing algorithms and has the
potential to allow 4D-Var to remain computationally viable on
next-generation computer architectures.

Mike Fisher (ECMWF) Long Window 4D-Var July 23, 2013 28 / 28


	Outline
	Introduction
	Weak-Constraint 4D-Var
	Characteristics of the problem
	Parallelisation in the time dimension
	The Saddle Point Formulation
	Results from a toy system

	Conclusions

