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N —.
Derivative-free optimization
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min f(z)
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N —.
Derivative-free optimization

Solve:

min f(z)

o function with unknown derivatives
@ expensive function evaluations, possibly subject to noise

@ unpractical to compute approximations to derivatives
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-
Model-based trust-region methods

@ One typically minimizes a model m in a trust region B, (x; A):

Trust-region subproblem

min = m(u)
u€Bp (z;A)
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-
Model-based trust-region methods

@ One typically minimizes a model m in a trust region B, (x; A):

Trust-region subproblem

min = m(u)
u€Bp (z;A)

@ m simple enough to be easy to minimize.

@ m complex enough to well approximate f
(e.g., linear models do not capture the curvature of f).
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|
Fully quadratic models

@ Impossible to use Taylor models. — The derivatives are unknown.
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@ We still want models ‘as good' as quadratic Taylor models.

Definition

m is a fully quadratic model for f on B, (x; A) if, Yu € Bp(z; A),
° IV2f(u) = V*m(u)ll2 < ken A,
° IVf(u) = Vm(u)l2 < keg A,
o Ifw —mlu)| < kA
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|
Fully quadratic models

@ Impossible to use Taylor models. — The derivatives are unknown.

@ We still want models ‘as good' as quadratic Taylor models.

Definition

m is a fully quadratic model for f on B, (x; A) if, Yu € Bp(z; A),
° IV2f(u) = V*m(u)ll2 < ken A,
° IVf(u) = Vm(u)l2 < keg A,
o Ifw —mlu)| < kA

@ How to construct fully quadratic models (VA > 0)7
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|
(Quadratic) interpolation

Let P = span{¢1, ..., o } be a finite dimensional functional space (in R™).
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Let P = span{¢1, ..., ¢n} be a finite dimensional functional space (in R").
m = Z;VZI a;¢; interpolates f at W = {wy, ..., wy } iff

M(p, W)a = f(W).

One important example:

Ly Ly
¢ = 1,u1,...,un,§u1,...,Qun,ulu%...,un,lun .

Afonso Bandeira (EUROPT 2010 Motivation and general concepts 7/29



|
(Quadratic) interpolation

Let P = span{¢1, ..., o } be a finite dimensional functional space (in R™).
m = Z;VZI a;¢; interpolates f at W = {wy, ..., wy } iff

M(o,W)a = f(W).
One important example:

e Ly Ly
¢ = 1,u1,...,un,§u1,...,Qun,ulu%...,un,lun .

o Issue: For M (¢, W) to be nonsingular ones needs
N = (n+2)(n+ 1)/2 evaluations of f (often too expensive).
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(Quadratic) interpolation

Let P = span{¢1, ..., o } be a finite dimensional functional space (in R™).
m = Z;VZI a;¢; interpolates f at W = {wy, ..., wy } iff

M(p, W)a = f(W).

One important example:

e Ly Ly
¢ = 1,u1,...,un,§u1,...,Qun,ulu%...,un,lun .

o Issue: For M (¢, W) to be nonsingular ones needs
N = (n+2)(n+ 1)/2 evaluations of f (often too expensive).

@ One possible Fix: Underdetermined Interpolation.
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N —.
Sparsity on the Hessian

@ Many pairs of variables have no correlation, leading to zero second
order partial derivatives in f:
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© Thus, the Hessian V2m(x = 0) of the model (i.e., the vector ag in
the basis ¢) should be sparse.
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N —.
Our main question

Is it possible to build fully quadratic models by quadratic underdetermined
interpolation (i.e., using less than N = (n + 2)(n + 1)/2 = O(n?) points)
in the sparse case?
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-
Compressed sensing — sparse recovery

@ Objective: Find sparse «a subject to a highly underdetermined linear
system Ma = f.
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-
Compressed sensing — sparse recovery

@ Objective: Find sparse «a subject to a highly underdetermined linear
system Ma = f.

min fally = |supp(a)|
° { st Ma—f is NP-Hard.
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Compressed sensing — sparse recovery

@ Objective: Find sparse «a subject to a highly underdetermined linear

system Ma = f.
o J min lallo =fsupp(@)] i np pap
st. Ma=f '
° min - [|ofly often recovers sparse solutions.
st. Ma=f
H,H_J_\i'xhu' £
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-
Restricted isometry property

Definition (RIP)
The RIP Constant of order s of M (k x N) is the smallest § such that

(1= d)llall3 < [Maf3 < (1 +6)llel

for all s—sparse a (||ca||o < s).
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The RIP Constant of order s of M (k x N) is the smallest § such that

(1= d)llall3 < [Maf3 < (1 +6)llel

for all s—sparse a (||ca||o < s).

Theorem (Candes, Tau, 2005, 2006)

If o is s—sparse and 2095 + 05 < 1 then « is recovered by {1-minimization.

v
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Restricted isometry property

Definition (RIP)
The RIP Constant of order s of M (k x N) is the smallest § such that

(1= d)llall3 < [Maf3 < (1 +6)llel

for all s—sparse a (||ca||o < s).

Theorem (Candes, Tau, 2005, 2006)

If o is s—sparse and 2095 + 05 < 1 then « is recovered by {1-minimization.

v

Similar results hold for noisy measurements

Ma = f+e.
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—
Random matrices

@ It is hard to find deterministic matrices that satisfy the RIP for
large s.
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—
Random matrices

@ It is hard to find deterministic matrices that satisfy the RIP for
large s.

@ Using Random Matrices it is possible to find RIP Matrices for

k= O(slogN).

o Gaussian ensembles.
o Bernoulli ensembles.
o Uniformly chosen subsets of discrete Fourier transform.
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N —.
Bounded orthonormal expansions

Question

How to find a basis ¢ and a sample set W such that M (¢, W) satisfies
the RIP?

o Orthogonal bases.
@ No localized functions.

° ‘Il‘ij“'f‘j should be uniformly bounded (by K).
il
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N —.
Bounded orthonormal expansions

Question

How to find a basis ¢ and a sample set W such that M (¢, W) satisfies
the RIP?

o Orthogonal bases.
@ No localized functions.

° ‘Il‘ij“'fm should be uniformly bounded (by K).
L2

o W will be a random sample set.



N —.
Sparse orthonormal bounded expansion recovery

Theorem (Rauhut, 2010)
If @ ¢ is orthonormal in a probably measure i and ||¢;||p~ < K.
@ each point of W is drawn independently according to .

° lo];k > c1K2%s(log s)?log N.
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N —.
Sparse orthonormal bounded expansion recovery

Theorem (Rauhut, 2010)
If @ ¢ is orthonormal in a probably measure i and ||¢;||p~ < K.

@ each point of W is drawn independently according to .
° % > c1K2%s(log s)?log N.

Then, with high probability, for every s—sparse vector «.:

Given noisy samples f = M (¢, W)a + € with |e||a < 1, let o™ be the
solution of

min ||y s.t. [|[M(¢,W)a — flla <.
Then,

N

[l = a™fla <
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|
A suitable basis for quadratics in By (0; A)

Proposition

The following basis 1) for quadratics in By, (0; A) is orthonormal and
satisfies ||, || L~ < 3.

Yo(u) = 1

Pri(u) = L

Poij(u) = Fzuiu,
Uni(w) = B u} -
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|
A suitable basis for quadratics in B, (0; A)

Proposition

The following basis 1) for quadratics in By, (0; A) is orthonormal and
satisfies ||, || L~ < 3.

¢0(u) = 1

bri(u) = Wu

Poij(u) = Rzuiug
You(u) = P-4

@ 1) is very similar to the canonical basis:

o preserves the sparsity of the Hessian (at 0).
o changes fast to the canonical basis (and vice-versa).
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Hessian recovery

Theorem (Main Theorem)

If
@ The Hessian of f at 0 is s—sparse.
o W is a random sample set chosen with respect to the uniform
measure in Boo(0;00).

° % > 9ci(s +n+ 1)log?(s +n + 1)log N.
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|
Hessian recovery

Theorem (Main Theorem)

If
@ The Hessian of f at 0 is s—sparse.
o W is a random sample set chosen with respect to the uniform
measure in Boo(0;00).

° lo];k > 9ci(s +n+ 1)log?(s +n + 1)log N.

Then, with high probability, the quadratic

q* = Zaj¢L

obtained by solving the noisy {1-minimization problem is a fully quadratic
model for f (with error constants not depending on A).
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R
Remarks

@ We recover both the function and the sparsity structure.
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o We are able to construct fully quadratic models with O(n log*n)
points when the number of non-zeros of the Hessian is s = O(n).

@ However, the Theorem only provides motivation because, in a
practical approach we:

e solve )
min ||cx(3J| 1

s. t. M(q/)L, W)aL + M(QECL W)aQ = f(W)v
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R
Remarks

@ We recover both the function and the sparsity structure.

o We are able to construct fully quadratic models with O(n log*n)
points when the number of non-zeros of the Hessian is s = O(n).

@ However, the Theorem only provides motivation because, in a
practical approach we:

e solve )
min ||(l’QJ| 1

s.t. M(on, W)ay + M((EQ, W)CVQ = f(W),
o deal with small n (from the DFO setting) and the bound we obtain is
asymptotical,

e use determinist sampling.
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|
Algorithm: Part |

Initialize the sample set Y with 2n + 1 points and evaluate f there.

Then, repeat until the stopping criterion (small trust-region radius or
model gradient) is achieved:
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Algorithm: Part |

Initialize the sample set Y with 2n + 1 points and evaluate f there.

Then, repeat until the stopping criterion (small trust-region radius or
model gradient) is achieved:

@ Model building: find my in B(xg; Ag).
o If there are enough points use determined quadratic interpolation.

o Otherwise use ¢; (p = 1) or Frobenius (p = 2) minimum norm
quadratic interpolation:

min Lfagll

.t M(or, W)ar +M(og, W)ag = f(W).
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|
Algorithm: Part |

Initialize the sample set Y with 2n + 1 points and evaluate f there.

Then, repeat until the stopping criterion (small trust-region radius or
model gradient) is achieved:

@ Model building: find my in B(xg; Ag).
o If there are enough points use determined quadratic interpolation.

o Otherwise use ¢; (p = 1) or Frobenius (p = 2) minimum norm
quadratic interpolation:

min Lfagll

.t M(or, W)ar +M(og, W)ag = f(W).

o Step calculation: Find si by solving the trust-region subproblem

min ~ mg(zg + 5).
SEBQ(O;Ak)
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N —.
Algorithm: Part |l (inspired by Fasano, Morales, and Nocedal, 2009)
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|
Algorithm: Part |l (inspired by Fasano, Morales, and Nocedal, 2009)

o lIterate and trust-region radius update: Compute

flxr) — flog + sp)

m(xg) — m(zg + sg)

Pk =
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|
Algorithm: Part |l (inspired by Fasano, Morales, and Nocedal, 2009)

o lIterate and trust-region radius update: Compute

flxr) — flog + sp)

m(xg) — m(zg + sg)

o if pp < Mo, then x4 =z and Apiy < A (unsuccessful).
o if ng < pr <1, then xp11 =z + s and Ay 1 < Ay (acceptable).
o if pp >y, then 41 = x + s, and Ay > Ay (successful).
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Algorithm: Part |l (inspired by Fasano, Morales, and Nocedal, 2009)

o lIterate and trust-region radius update: Compute

flxr) — flog + sp)

m(xg) — m(zg + sg)

o if pp < Mo, then x4 =z and Apiy < A (unsuccessful).
o if ng < pr <1, then xp11 =z + s and Ay 1 < Ay (acceptable).
o if pp >y, then 41 = x + s, and Ay > Ay (successful).

@ Sample set update:
o if |Yi| < |Yinaz| set Yir1 = Vi U{zr + sk}
o otherwise set y,,+ = argmax ||y — Zx+1/|2 and
Yit1 = Ye U{zk + s} \Yout-
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|
Algorithm: Part Il (inspired by Fasano, Morales, and Nocedal, 2009)

o lIterate and trust-region radius update: Compute

_ f(r) = [k + )

m(xg) — m(zg + sg)

o if pp < Mo, then x4 =z and Apiy < A (unsuccessful).
o if ng < pr <1, then xp11 =z + s and Ay 1 < Ay (acceptable).
o if pp >y, then 41 = x + s, and Ay > Ay (successful).

@ Sample set update:
o if |Yi| < |Yinaz| set Yir1 = Vi U{zr + sk}
o otherwise set y,,+ = argmax ||y — Zx+1/|2 and
Yit1 = Ye U{zk + s} \Yout-

o 'Criticality step’: If the trust-radius radius is very small discard points
far away from the trust region.
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Performance profiles (accuracy of 10~* in function values)
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Figure: Performance profiles comparing DFO-TR (¢; and Frobenius) and NEWUOA
(Powell) in a test set from CUTEr.
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Performance profiles (accuracy of 107 in function values)
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Figure: Performance profiles comparing DFO-TR (¢; and Frobenius) and NEWUOA
(Powell) in a test set from CUTEr.
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- |
DFO-TR: ¢, versus Frobenius

problem DFO-TR Frob/11 | # f eval f val model V norm
ARWHEAD Frob 338 3.044e-07 3.627e-03
ARWHEAD 11 218 9.168e-11 7.651e-07
BRYDN3D Frob 41 0.000e+00 0.000e+-00
BRYDN3D 11 41 0.000e+00 0.000e+00
DQDRTIC Frob 72 8.709e-11 6.300e+05
DQDRTIC 11 45 8.693e-13 1.926e-06
EXTROSNB Frob 1068 6.465e-02 3.886e+-02
EXTROSNB 11 2070 1.003e-02 6.750e-02
SROSENBR Frob 456 2.157e-03 4.857e-02
SROSENBR 11 297 1.168e-02 3.144e-01
woaDs Frob 5000 1.902e-01 8.296e-01
WooDS 11 5000 1.165e+01 1.118e+01

Table: A sample of test problems from CUTEr (Hessian sparse).
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Concluding remarks

o Compressed Sensing has been tightly connected to Optimization,
since Optimization is a fundamental tool in CS. However, this work
shows that CS can also be ‘applied to’ Optimization.
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|
Concluding remarks

o Compressed Sensing has been tightly connected to Optimization,
since Optimization is a fundamental tool in CS. However, this work
shows that CS can also be ‘applied to’ Optimization.

@ In a sparse scenario, we were able to construct fully quadratic models
with samples of size O(nlog*n) instead of the classical O(n?).

@ We proposed a practical DFO method (using ¢1-minimization) that
was able to outperform state-of-the-art methods in several numerical
tests (in the already ‘tough’ DFO scenario where 7 is small).
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—
Future work

o Gain understanding about the advantages of minimizing the ¢;-norm
of the Hessian (ag) and not of the whole a. Numerical simulations
show that such approach is advantageous.
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—
Future work

o Gain understanding about the advantages of minimizing the ¢;-norm
of the Hessian (ag) and not of the whole a. Numerical simulations
show that such approach is advantageous.

@ Improve the efficiency of the model ¢1-minimization, may be by
finding a way to warmstart it.

@ Study the convergence properties of possibly stochastic model-based
trust-region methods.
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