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Derivative-free optimization

Solve:

min
x∈Rn

f(x)

function with unknown derivatives

expensive function evaluations, possibly subject to noise

unpractical to compute approximations to derivatives
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Model-based trust-region methods

One typically minimizes a model m in a trust region Bp(x; ∆):

Trust-region subproblem

min
u∈Bp(x;∆)

m(u)

m simple enough to be easy to minimize.

m complex enough to well approximate f
(e.g., linear models do not capture the curvature of f).
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Fully quadratic models

Impossible to use Taylor models. — The derivatives are unknown.

We still want models ‘as good’ as quadratic Taylor models.

Definition

m is a fully quadratic model for f on Bp(x; ∆) if, ∀u ∈ Bp(x; ∆),

‖∇2f(u)−∇2m(u)‖2 ≤ κeh ∆,

‖∇f(u)−∇m(u)‖2 ≤ κeg ∆2,

|f(u)−m(u)| ≤ κef ∆3.

How to construct fully quadratic models (∀∆ > 0)?
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(Quadratic) interpolation

Let P = span{φ1, ..., φN} be a finite dimensional functional space (in Rn).

m =
∑N

j=1 αjφj interpolates f at W = {w1, ..., wk} iff

M(φ,W )α = f(W ).

One important example:

φ̄ =
{

1, u1, ..., un,
1
2
u2

1, ...,
1
2
u2
n, u1u2, ..., un−1un

}
.

Issue: For M(φ,W ) to be nonsingular ones needs
N = (n+ 2)(n+ 1)/2 evaluations of f (often too expensive).

One possible Fix: Underdetermined Interpolation.
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Sparsity on the Hessian

Many pairs of variables have no correlation, leading to zero second
order partial derivatives in f :

Thus, the Hessian ∇2m(x = 0) of the model (i.e., the vector αφ̄ in
the basis φ̄) should be sparse.
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Our main question

Is it possible to build fully quadratic models by quadratic underdetermined
interpolation (i.e., using less than N = (n+ 2)(n+ 1)/2 = O(n2) points)

in the sparse case?
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Compressed sensing — sparse recovery

Objective: Find sparse α subject to a highly underdetermined linear
system Mα = f .

{
min ‖α‖0 = | supp(α)|
s.t. Mα = f

is NP-Hard.

{
min ‖α‖1
s.t. Mα = f

often recovers sparse solutions.
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Restricted isometry property

Definition (RIP)

The RIP Constant of order s of M (k ×N) is the smallest δs such that

(1− δs)‖α‖22 ≤ ‖Mα‖22 ≤ (1 + δs)‖α‖22

for all s−sparse α (‖α‖0 ≤ s).

Theorem (Candès, Tau, 2005, 2006)

If α is s−sparse and 2δ2s + δs < 1 then α is recovered by `1-minimization.

Similar results hold for noisy measurements

Mα = f + ε.
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Random matrices

It is hard to find deterministic matrices that satisfy the RIP for
large s.

Using Random Matrices it is possible to find RIP Matrices for

k = O(s logN).

Gaussian ensembles.
Bernoulli ensembles.
Uniformly chosen subsets of discrete Fourier transform.
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Bounded orthonormal expansions

Question

How to find a basis φ and a sample set W such that M(φ,W ) satisfies
the RIP?

Orthogonal bases.

No localized functions.

‖φi‖L∞
‖φi‖L2

should be uniformly bounded (by K).

W will be a random sample set.
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Sparse orthonormal bounded expansion recovery

Theorem (Rauhut, 2010)

If φ is orthonormal in a probably measure µ and ‖φi‖L∞ ≤ K.

each point of W is drawn independently according to µ.
k

log k ≥ c1K
2s(log s)2logN .

Then, with high probability, for every s−sparse vector α:

Given noisy samples f = M(φ,W )α+ ε with ‖ε‖2 ≤ η, let α∗ be the
solution of

min ‖α‖1 s. t. ‖M(φ,W )α− f‖2 ≤ η.

Then,

‖α− α∗‖2 ≤
d√
k
η.
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A suitable basis for quadratics in B∞(0; ∆)

Proposition

The following basis ψ for quadratics in B∞(0; ∆) is orthonormal and
satisfies ‖ψι‖L∞ ≤ 3.

ψ0(u) = 1
ψ1,i(u) =

√
3

∆ ui

ψ2,ij(u) = 3
∆2uiuj

ψ2,i(u) = 3
√

5
2

1
∆2u

2
i −

√
5

2 .

ψ is very similar to the canonical basis:

preserves the sparsity of the Hessian (at 0).
changes fast to the canonical basis (and vice-versa).
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Hessian recovery

Theorem (Main Theorem)

If
The Hessian of f at 0 is s−sparse.

W is a random sample set chosen with respect to the uniform
measure in B∞(0;∞).
k

log k ≥ 9c1(s+ n+ 1) log2(s+ n+ 1)logN .

Then, with high probability, the quadratic

q∗ =
∑

α∗ιψι

obtained by solving the noisy `1-minimization problem is a fully quadratic
model for f (with error constants not depending on ∆).
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Remarks

We recover both the function and the sparsity structure.

We are able to construct fully quadratic models with O(n log4n)
points when the number of non-zeros of the Hessian is s = O(n).

However, the Theorem only provides motivation because, in a
practical approach we:

solve
min ‖αQ‖1
s. t. M(φ̄L,W )αL +M(φ̄Q,W )αQ = f(W ),

deal with small n (from the DFO setting) and the bound we obtain is
asymptotical,

use determinist sampling.
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Algorithm: Part I

Initialize the sample set Y with 2n+ 1 points and evaluate f there.

Then, repeat until the stopping criterion (small trust-region radius or
model gradient) is achieved:

Model building: find mk in B(xk; ∆k).

If there are enough points use determined quadratic interpolation.

Otherwise use `1 (p = 1) or Frobenius (p = 2) minimum norm
quadratic interpolation:

min 1
p‖αQ‖pp

s. t. M(φ̄L,W )αL +M(φ̄Q,W )αQ = f(W ).

Step calculation: Find sk by solving the trust-region subproblem

min
s∈B2(0;∆k)

mk(xk + s).
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Algorithm: Part II (inspired by Fasano, Morales, and Nocedal, 2009)

Iterate and trust-region radius update: Compute

ρk =
f(xk)− f(xk + sk)
m(xk)−m(xk + sk)

.

if ρk < η0, then xk+1 = xk and ∆k+1 < ∆k (unsuccessful).
if η0 ≤ ρk < η1, then xk+1 = xk + sk and ∆k+1 < ∆k (acceptable).
if ρk ≥ η1, then xk+1 = xk + sk and ∆k+1 ≥ ∆k (successful).

Sample set update:

if |Yk| ≤ |Ymax|, set Yk+1 = Yk ∪ {xk + sk}.
otherwise set yout = argmax ‖y − xk+1‖2 and
Yk+1 = Yk ∪ {xk + sk}\yout.

‘Criticality step’: If the trust-radius radius is very small discard points
far away from the trust region.
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Performance profiles (accuracy of 10−4 in function values)

Figure: Performance profiles comparing DFO-TR (`1 and Frobenius) and NEWUOA
(Powell) in a test set from CUTEr.
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Performance profiles (accuracy of 10−6 in function values)

Figure: Performance profiles comparing DFO-TR (`1 and Frobenius) and NEWUOA
(Powell) in a test set from CUTEr.
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DFO-TR: `1 versus Frobenius

problem DFO-TR Frob/l1 # f eval f val model ∇ norm
ARWHEAD Frob 338 3.044e-07 3.627e-03
ARWHEAD l1 218 9.168e-11 7.651e-07
BRYDN3D Frob 41 0.000e+00 0.000e+00
BRYDN3D l1 41 0.000e+00 0.000e+00
DQDRTIC Frob 72 8.709e-11 6.300e+05
DQDRTIC l1 45 8.693e-13 1.926e-06
EXTROSNB Frob 1068 6.465e-02 3.886e+02
EXTROSNB l1 2070 1.003e-02 6.750e-02
SROSENBR Frob 456 2.157e-03 4.857e-02
SROSENBR l1 297 1.168e-02 3.144e-01
WOODS Frob 5000 1.902e-01 8.296e-01
WOODS l1 5000 1.165e+01 1.118e+01

Table: A sample of test problems from CUTEr (Hessian sparse).
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Concluding remarks

Compressed Sensing has been tightly connected to Optimization,
since Optimization is a fundamental tool in CS. However, this work
shows that CS can also be ‘applied to’ Optimization.

In a sparse scenario, we were able to construct fully quadratic models
with samples of size O(n log4n) instead of the classical O(n2).

We proposed a practical DFO method (using `1-minimization) that
was able to outperform state-of-the-art methods in several numerical
tests (in the already ‘tough’ DFO scenario where n is small).
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Future work

Gain understanding about the advantages of minimizing the `1-norm
of the Hessian (αQ) and not of the whole α. Numerical simulations
show that such approach is advantageous.

Improve the efficiency of the model `1-minimization, may be by
finding a way to warmstart it.

Study the convergence properties of possibly stochastic model-based
trust-region methods.
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