Computation of Sparse Low Degree Interpolating Polynomials and their Application to DFO

Afonso Bandeira¹ Katya Scheinberg² Luis Nunes Vicente¹

¹University of Coimbra ²Columbia University

EUROPT 2010, Aveiro, July 9, 2010

Presentation outline

- 1 Motivation and general concepts
- 2 Sparse reconstruction
- Sparse Hessian construction
- A practical interpolation-based trust-region method for DFO
- Concluding remarks

Presentation outline

- Motivation and general concepts
 - 2) Sparse reconstruction
- 3 Sparse Hessian construction
- 4 A practical interpolation-based trust-region method for DFO
- 5 Concluding remarks

Solve:

Solve:

 $\min_{x \in \mathbb{R}^n} f(x)$

function with unknown derivatives

Solve:

 $\min_{x \in \mathbb{R}^n} f(x)$

function with unknown derivatives

• expensive function evaluations, possibly subject to noise

Solve:

 $\min_{x \in \mathbb{R}^n} f(x)$

- function with unknown derivatives
- expensive function evaluations, possibly subject to noise
- unpractical to compute approximations to derivatives

Model-based trust-region methods

• One typically minimizes a model m in a trust region $B_p(x; \Delta)$:

Trust-region subproblem

 $\min_{u \in B_p(x;\Delta)} m(u)$

Model-based trust-region methods

• One typically minimizes a model m in a trust region $B_p(x; \Delta)$:

Trust-region subproblem

 $\min_{u \in B_p(x;\Delta)} m(u)$

• *m* simple enough to be easy to minimize.

Model-based trust-region methods

• One typically minimizes a model m in a trust region $B_p(x; \Delta)$:

Trust-region subproblem

 $\min_{u \in B_p(x;\Delta)} m(u)$

• *m* simple enough to be easy to minimize.

m complex enough to well approximate *f* (e.g., linear models do not capture the curvature of *f*).

• Impossible to use Taylor models. — The derivatives are unknown.

- Impossible to use Taylor models. The derivatives are unknown.
- We still want models 'as good' as quadratic Taylor models.

- Impossible to use Taylor models. The derivatives are unknown.
- We still want models 'as good' as quadratic Taylor models.

Definition

m is a fully quadratic model for f on $B_p(x; \Delta)$ if, $\forall u \in B_p(x; \Delta)$,

•
$$\|\nabla^2 f(u) - \nabla^2 m(u)\|_2 \leq \kappa_{eh} \Delta,$$

•
$$\|\nabla f(u) - \nabla m(u)\|_2 \leq \kappa_{eg} \Delta^2,$$

•
$$|f(u) - m(u)| \leq \kappa_{ef} \Delta^3.$$

- Impossible to use Taylor models. The derivatives are unknown.
- We still want models 'as good' as quadratic Taylor models.

Definition

m is a fully quadratic model for f on $B_p(x; \Delta)$ if, $\forall u \in B_p(x; \Delta)$,

•
$$\|\nabla^2 f(u) - \nabla^2 m(u)\|_2 \leq \kappa_{eh} \Delta,$$

•
$$\|\nabla f(u) - \nabla m(u)\|_2 \leq \kappa_{eg} \Delta^2,$$

•
$$|f(u) - m(u)| \leq \kappa_{ef} \Delta^3.$$

• How to construct fully quadratic models $(\forall \Delta > 0)$?

Let $\mathcal{P} = \operatorname{span}\{\phi_1, ..., \phi_N\}$ be a finite dimensional functional space (in \mathbb{R}^n).

Let $\mathcal{P} = \operatorname{span}\{\phi_1, ..., \phi_N\}$ be a finite dimensional functional space (in \mathbb{R}^n).

 $m = \sum_{j=1}^{N} \alpha_j \phi_j$ interpolates f at $W = \{w_1, ..., w_k\}$ iff

 $M(\phi, W)\alpha = f(W).$

Let $\mathcal{P} = \operatorname{span}\{\phi_1, ..., \phi_N\}$ be a finite dimensional functional space (in \mathbb{R}^n).

$$m = \sum_{j=1}^{N} \alpha_j \phi_j$$
 interpolates f at $W = \{w_1, ..., w_k\}$ iff
$$M(\phi, W)\alpha = f(W).$$

One important example:

$$\bar{\phi} = \left\{1, u_1, \dots, u_n, \frac{1}{2}u_1^2, \dots, \frac{1}{2}u_n^2, u_1u_2, \dots, u_{n-1}u_n\right\}$$

•

Let $\mathcal{P} = \operatorname{span}\{\phi_1, ..., \phi_N\}$ be a finite dimensional functional space (in \mathbb{R}^n).

$$m = \sum_{j=1}^{N} \alpha_j \phi_j$$
 interpolates f at $W = \{w_1, ..., w_k\}$ iff
$$M(\phi, W)\alpha = f(W).$$

One important example:

$$\bar{\phi} = \left\{1, u_1, \dots, u_n, \frac{1}{2}u_1^2, \dots, \frac{1}{2}u_n^2, u_1u_2, \dots, u_{n-1}u_n\right\}$$

• Issue: For $M(\phi, W)$ to be nonsingular ones needs N = (n+2)(n+1)/2 evaluations of f (often too expensive).

Let $\mathcal{P} = \operatorname{span}\{\phi_1, ..., \phi_N\}$ be a finite dimensional functional space (in \mathbb{R}^n).

$$m = \sum_{j=1}^{N} \alpha_j \phi_j$$
 interpolates f at $W = \{w_1, ..., w_k\}$ iff
$$M(\phi, W)\alpha = f(W).$$

One important example:

$$\bar{\phi} = \left\{1, u_1, \dots, u_n, \frac{1}{2}u_1^2, \dots, \frac{1}{2}u_n^2, u_1u_2, \dots, u_{n-1}u_n\right\}$$

• Issue: For $M(\phi, W)$ to be nonsingular ones needs N = (n+2)(n+1)/2 evaluations of f (often too expensive).

• One possible Fix: Underdetermined Interpolation.

Sparsity on the Hessian

• Many pairs of variables have no correlation, leading to zero second order partial derivatives in *f*:

Sparsity on the Hessian

• Many pairs of variables have no correlation, leading to zero second order partial derivatives in *f*:

Sparsity on the Hessian

• Many pairs of variables have no correlation, leading to zero second order partial derivatives in *f*:

• Thus, the Hessian $\nabla^2 m(x=0)$ of the model (i.e., the vector $\alpha_{\bar{\phi}}$ in the basis $\bar{\phi}$) should be sparse.

Is it possible to build fully quadratic models by quadratic underdetermined interpolation (i.e., using less than $N = (n+2)(n+1)/2 = O(n^2)$ points) in the sparse case?

Presentation outline

- Motivation and general concepts
- 2 Sparse reconstruction
- 3 Sparse Hessian construction
- 4 A practical interpolation-based trust-region method for DFO
 - 5 Concluding remarks

• Objective: Find sparse α subject to a highly underdetermined linear system $M\alpha = f$.

• Objective: Find sparse α subject to a highly underdetermined linear system $M\alpha = f$.

•
$$\begin{cases} \min & \|\alpha\|_0 = |\operatorname{supp}(\alpha)| \\ \text{s.t.} & M\alpha = f \end{cases}$$
 is NP-Hard.

• Objective: Find sparse α subject to a highly underdetermined linear system $M\alpha = f$.

•
$$\begin{cases} \min & \|\alpha\|_0 = |\operatorname{supp}(\alpha)| \\ \text{s.t.} & M\alpha = f \end{cases}$$
 is NP-Hard.
•
$$\begin{cases} \min & \|\alpha\|_1 \\ \text{s.t.} & M\alpha = f \end{cases}$$
 often recovers sparse solutions

• Objective: Find sparse α subject to a highly underdetermined linear system $M\alpha = f$.

•
$$\begin{cases} \min & \|\alpha\|_0 = |\operatorname{supp}(\alpha)| \\ \text{s.t.} & M\alpha = f \end{cases}$$
 is NP-Hard.

•
$$\begin{cases} \min & \|\alpha\|_1 \\ \text{s.t.} & M\alpha = f \end{cases}$$
 often recovers sparse solutions.

Definition (RIP)

The RIP Constant of order s of M $(k \times N)$ is the smallest δ_s such that

$$(1 - \delta_s) \|\alpha\|_2^2 \le \|M\alpha\|_2^2 \le (1 + \delta_s) \|\alpha\|_2^2$$

for all *s*-sparse α ($\|\alpha\|_0 \leq s$).

Definition (RIP)

The RIP Constant of order s of M $(k \times N)$ is the smallest δ_s such that

$$(1 - \delta_s) \|\alpha\|_2^2 \le \|M\alpha\|_2^2 \le (1 + \delta_s) \|\alpha\|_2^2$$

for all s-sparse α ($\|\alpha\|_0 \leq s$).

Theorem (Candès, Tau, 2005, 2006)

If α is s-sparse and $2\delta_{2s} + \delta_s < 1$ then α is recovered by ℓ_1 -minimization.

Definition (RIP)

The RIP Constant of order s of M $(k \times N)$ is the smallest δ_s such that

$$(1 - \delta_s) \|\alpha\|_2^2 \le \|M\alpha\|_2^2 \le (1 + \delta_s) \|\alpha\|_2^2$$

for all s-sparse α ($\|\alpha\|_0 \leq s$).

Theorem (Candès, Tau, 2005, 2006)

If α is s-sparse and $2\delta_{2s} + \delta_s < 1$ then α is recovered by ℓ_1 -minimization.

Similar results hold for noisy measurements

$$M\alpha = f + \epsilon.$$

• It is hard to find deterministic matrices that satisfy the RIP for large *s*.

• It is hard to find deterministic matrices that satisfy the RIP for large *s*.

• Using Random Matrices it is possible to find RIP Matrices for

$$k = \mathcal{O}(s \log N).$$

- Gaussian ensembles.
- Bernoulli ensembles.
- Uniformly chosen subsets of discrete Fourier transform.

Presentation outline

- 1 Motivation and general concepts
- 2 Sparse reconstruction
- Sparse Hessian construction
- 4 Practical interpolation-based trust-region method for DFO
- 5 Concluding remarks

How to find a basis ϕ and a sample set W such that $M(\phi, W)$ satisfies the RIP?

How to find a basis ϕ and a sample set W such that $M(\phi, W)$ satisfies the RIP?

• Orthogonal bases.

How to find a basis ϕ and a sample set W such that $M(\phi, W)$ satisfies the RIP?

- Orthogonal bases.
- No localized functions.

How to find a basis ϕ and a sample set W such that $M(\phi, W)$ satisfies the RIP?

- Orthogonal bases.
- No localized functions.

•
$$\frac{\|\phi_i\|_{L^{\infty}}}{\|\phi_i\|_{L^2}}$$
 should be uniformly bounded (by *K*).

How to find a basis ϕ and a sample set W such that $M(\phi, W)$ satisfies the RIP?

- Orthogonal bases.
- No localized functions.

- ^{||φ_i||_{L[∞]}}/_{||φ_i||_{L²}} should be uniformly bounded (by K).
 W will be a random sample set.
- Afonso Bandeira (EUROPT 2010)

Sparse Hessian construction

Sparse orthonormal bounded expansion recovery

Theorem (Rauhut, 2010)

- If ϕ is orthonormal in a probably measure μ and $\|\phi_i\|_{L^{\infty}} \leq K$.
 - each point of W is drawn independently according to μ .
 - $\frac{k}{\log k} \geq c_1 K^2 s (\log s)^2 \log N.$

Sparse orthonormal bounded expansion recovery

Theorem (Rauhut, 2010)

If • ϕ is orthonormal in a probably measure μ and $\|\phi_i\|_{L^{\infty}} \leq K$.

- each point of W is drawn independently according to μ.
- $\frac{k}{\log k} \geq c_1 K^2 s (\log s)^2 \log N.$

Then, with high probability, for every s-sparse vector α :

Given noisy samples $f = M(\phi, W)\alpha + \epsilon$ with $\|\epsilon\|_2 \leq \eta$, let α^* be the solution of

 $\min \|\alpha\|_1 \quad \text{s.t.} \quad \|M(\phi, W)\alpha - f\|_2 \leq \eta.$

Then,

$$\|\boldsymbol{\alpha} - \boldsymbol{\alpha}^*\|_2 \le \frac{d}{\sqrt{k}}\,\boldsymbol{\eta}.$$

Proposition

The following basis ψ for quadratics in $B_{\infty}(0; \Delta)$ is orthonormal and satisfies $\|\psi_{\iota}\|_{L^{\infty}} \leq 3$.

$$\begin{cases} \psi_0(u) = 1\\ \psi_{1,i}(u) = \frac{\sqrt{3}}{\Delta}u_i\\ \psi_{2,ij}(u) = \frac{3}{\Delta^2}u_iu_j\\ \psi_{2,i}(u) = \frac{3\sqrt{5}}{2}\frac{1}{\Delta^2}u_i^2 - \frac{\sqrt{5}}{2}. \end{cases}$$

Proposition

The following basis ψ for quadratics in $B_{\infty}(0; \Delta)$ is orthonormal and satisfies $\|\psi_{\iota}\|_{L^{\infty}} \leq 3$.

$$\begin{cases} \psi_{0}(u) = 1 \\ \psi_{1,i}(u) = \frac{\sqrt{3}}{\Delta}u_{i} \\ \psi_{2,ij}(u) = \frac{3}{\Delta^{2}}u_{i}u_{j} \\ \psi_{2,i}(u) = \frac{3\sqrt{5}}{2}\frac{1}{\Delta^{2}}u_{i}^{2} - \frac{\sqrt{5}}{2}. \end{cases}$$

- ψ is very similar to the canonical basis:
 - preserves the sparsity of the Hessian (at 0).
 - changes fast to the canonical basis (and vice-versa).

Theorem (Main Theorem)

lf

- The Hessian of f at 0 is s-sparse.
- W is a random sample set chosen with respect to the uniform measure in B_∞(0;∞).
- $\frac{k}{\log k} \ge 9c_1(s+n+1)\log^2(s+n+1)\log N$.

Theorem (Main Theorem)

lf

- The Hessian of f at 0 is s-sparse.
- W is a random sample set chosen with respect to the uniform measure in B_∞(0;∞).

•
$$\frac{k}{\log k} \ge 9c_1(s+n+1)\log^2(s+n+1)\log N.$$

Then, with high probability, the quadratic

$$q^* = \sum \alpha_\iota^* \psi_\iota$$

obtained by solving the noisy ℓ_1 -minimization problem is a fully quadratic model for f (with error constants not depending on Δ).

• We recover both the function and the sparsity structure.

- We recover both the function and the sparsity structure.
- We are able to construct fully quadratic models with $O(n \log^4 n)$ points when the number of non-zeros of the Hessian is s = O(n).

- We recover both the function and the sparsity structure.
- We are able to construct fully quadratic models with $O(n \log^4 n)$ points when the number of non-zeros of the Hessian is s = O(n).
- However, the Theorem only provides motivation because, in a practical approach we:

- We recover both the function and the sparsity structure.
- We are able to construct fully quadratic models with $O(n \log^4 n)$ points when the number of non-zeros of the Hessian is s = O(n).
- However, the Theorem only provides motivation because, in a practical approach we:
 - solve

$$\begin{array}{ll} \min & \|\boldsymbol{\alpha}_{\boldsymbol{Q}}\|_{1} \\ \text{s. t.} & M(\bar{\boldsymbol{\phi}}_{\boldsymbol{L}}, W) \boldsymbol{\alpha}_{L} + M(\bar{\boldsymbol{\phi}}_{\boldsymbol{Q}}, W) \boldsymbol{\alpha}_{\boldsymbol{Q}} = f(W), \end{array}$$

- We recover both the function and the sparsity structure.
- We are able to construct fully quadratic models with $O(n \log^4 n)$ points when the number of non-zeros of the Hessian is s = O(n).
- However, the Theorem only provides motivation because, in a practical approach we:
 - solve

$$\min_{\mathbf{k}, \mathbf{k}, \mathbf{k}} \frac{\|\boldsymbol{\alpha}_{\boldsymbol{Q}}\|_{1}}{\|\boldsymbol{\alpha}_{\boldsymbol{L}}, W | \boldsymbol{\alpha}_{\boldsymbol{L}} + M(\bar{\boldsymbol{\phi}}_{\boldsymbol{Q}}, W) \boldsymbol{\alpha}_{\boldsymbol{Q}} = f(W),$$

• deal with small *n* (from the DFO setting) and the bound we obtain is asymptotical,

- We recover both the function and the sparsity structure.
- We are able to construct fully quadratic models with $O(n \log^4 n)$ points when the number of non-zeros of the Hessian is s = O(n).
- However, the Theorem only provides motivation because, in a practical approach we:
 - solve

$$\min_{\mathbf{k}, \mathbf{k}, \mathbf{k}} \frac{\|\boldsymbol{\alpha}_{\boldsymbol{Q}}\|_{1}}{\|\boldsymbol{\alpha}_{\boldsymbol{L}}, W} \alpha_{L} + M(\bar{\boldsymbol{\phi}}_{\boldsymbol{Q}}, W) \alpha_{\boldsymbol{Q}} = f(W),$$

- deal with small n (from the DFO setting) and the bound we obtain is asymptotical,
- use determinist sampling.

Presentation outline

- 1) Motivation and general concepts
- 2 Sparse reconstruction
- 3 Sparse Hessian construction
- A practical interpolation-based trust-region method for DFO
 - 5 Concluding remarks

Algorithm: Part I

Initialize the sample set Y with 2n + 1 points and evaluate f there. Then, repeat until the stopping criterion (small trust-region radius or model gradient) is achieved:

Algorithm: Part I

Initialize the sample set Y with 2n + 1 points and evaluate f there. Then, repeat until the stopping criterion (small trust-region radius or model gradient) is achieved:

- Model building: find m_k in $B(x_k; \Delta_k)$.
 - If there are enough points use determined quadratic interpolation.
 - Otherwise use ℓ_1 (p = 1) or Frobenius (p = 2) minimum norm quadratic interpolation:

$$\min_{\mathbf{a}, \mathbf{b}} \frac{1}{p} \| \alpha_{\mathbf{Q}} \|_{p}^{p}$$

s.t. $M(\bar{\phi}_{L}, W) \alpha_{L} + M(\bar{\phi}_{\mathbf{Q}}, W) \alpha_{Q} = f(W).$

Algorithm: Part I

Initialize the sample set Y with 2n + 1 points and evaluate f there. Then, repeat until the stopping criterion (small trust-region radius or model gradient) is achieved:

- Model building: find m_k in $B(x_k; \Delta_k)$.
 - If there are enough points use determined quadratic interpolation.
 - Otherwise use ℓ_1 (p = 1) or Frobenius (p = 2) minimum norm quadratic interpolation:

$$\min_{\mathbf{a}, \mathbf{b}} \frac{1}{p} \| \alpha_{\mathbf{Q}} \|_{p}^{p}$$

s.t. $M(\bar{\phi}_{L}, W) \alpha_{L} + M(\bar{\phi}_{\mathbf{Q}}, W) \alpha_{Q} = f(W).$

• Step calculation: Find s_k by solving the trust-region subproblem $\min_{s\in B_2(0;\Delta_k)}m_k(x_k+s).$

• Iterate and trust-region radius update: Compute

$$\rho_k = \frac{f(x_k) - f(x_k + s_k)}{m(x_k) - m(x_k + s_k)}.$$

• Iterate and trust-region radius update: Compute

$$\rho_k = \frac{f(x_k) - f(x_k + s_k)}{m(x_k) - m(x_k + s_k)}$$

- if $\rho_k < \eta_0$, then $x_{k+1} = x_k$ and $\Delta_{k+1} < \Delta_k$ (unsuccessful).
- if $\eta_0 \leq \rho_k < \eta_1$, then $x_{k+1} = x_k + s_k$ and $\Delta_{k+1} < \Delta_k$ (acceptable).
- if $\rho_k \ge \eta_1$, then $x_{k+1} = x_k + s_k$ and $\Delta_{k+1} \ge \Delta_k$ (successful).

• Iterate and trust-region radius update: Compute

$$\rho_k = \frac{f(x_k) - f(x_k + s_k)}{m(x_k) - m(x_k + s_k)}$$

- if $\rho_k < \eta_0$, then $x_{k+1} = x_k$ and $\Delta_{k+1} < \Delta_k$ (unsuccessful).
- if $\eta_0 \leq \rho_k < \eta_1$, then $x_{k+1} = x_k + s_k$ and $\Delta_{k+1} < \Delta_k$ (acceptable).
- if $\rho_k \ge \eta_1$, then $x_{k+1} = x_k + s_k$ and $\Delta_{k+1} \ge \Delta_k$ (successful).

• Sample set update:

- if $|Y_k| \le |Y_{max}|$, set $Y_{k+1} = Y_k \cup \{x_k + s_k\}$.
- otherwise set $y_{out} = \operatorname{argmax} \|y x_{k+1}\|_2$ and $Y_{k+1} = Y_k \cup \{x_k + s_k\} \setminus y_{out}$.

• Iterate and trust-region radius update: Compute

$$\rho_k = \frac{f(x_k) - f(x_k + s_k)}{m(x_k) - m(x_k + s_k)}$$

- if $\rho_k < \eta_0$, then $x_{k+1} = x_k$ and $\Delta_{k+1} < \Delta_k$ (unsuccessful).
- if $\eta_0 \leq \rho_k < \eta_1$, then $x_{k+1} = x_k + s_k$ and $\Delta_{k+1} < \Delta_k$ (acceptable).
- if $\rho_k \ge \eta_1$, then $x_{k+1} = x_k + s_k$ and $\Delta_{k+1} \ge \Delta_k$ (successful).
- Sample set update:
 - if $|Y_k| \le |Y_{max}|$, set $Y_{k+1} = Y_k \cup \{x_k + s_k\}$.
 - otherwise set $y_{out} = \operatorname{argmax} \|y x_{k+1}\|_2$ and $Y_{k+1} = Y_k \cup \{x_k + s_k\} \setminus y_{out}$.
- 'Criticality step': If the trust-radius radius is very small discard points far away from the trust region.

Performance profiles (accuracy of 10^{-4} in function values)

Figure: Performance profiles comparing DFO-TR (ℓ_1 and Frobenius) and NEWUOA (Powell) in a test set from CUTEr.

Afonso Bandeira (EUROPT 2010)

Performance profiles (accuracy of 10^{-6} in function values)

Figure: Performance profiles comparing DFO-TR (ℓ_1 and Frobenius) and NEWUOA (Powell) in a test set from CUTEr.

Afonso Bandeira (EUROPT 2010)

problem	DFO-TR Frob/11	# f eval	f val	model $ abla$ norm
ARWHEAD	Frob	338	3.044e-07	3.627e-03
ARWHEAD	11	218	9.168e-11	7.651e-07
BRYDN3D	Frob	41	0.000e+00	0.000e+00
BRYDN3D	11	41	0.000e+00	0.000e+00
DQDRTIC	Frob	72	8.709e-11	6.300e+05
DQDRTIC	11	45	8.693e-13	1.926e-06
EXTROSNB	Frob	1068	6.465e-02	3.886e+02
EXTROSNB	11	2070	1.003e-02	6.750e-02
SROSENBR	Frob	456	2.157e-03	4.857e-02
SROSENBR	11	297	1.168e-02	3.144e-01
WOODS	Frob	5000	1.902e-01	8.296e-01
WOODS	11	5000	1.165e+01	$1.118e{+}01$

Table: A sample of test problems from CUTEr (Hessian sparse).

Presentation outline

- 1) Motivation and general concepts
- 2 Sparse reconstruction
- 3 Sparse Hessian construction
- 4 A practical interpolation-based trust-region method for DFO
- 6 Concluding remarks

• Compressed Sensing has been tightly connected to Optimization, since Optimization is a fundamental tool in CS. However, this work shows that CS can also be 'applied to' Optimization.

- Compressed Sensing has been tightly connected to Optimization, since Optimization is a fundamental tool in CS. However, this work shows that CS can also be 'applied to' Optimization.
- In a sparse scenario, we were able to construct fully quadratic models with samples of size $\mathcal{O}(n \log^4 n)$ instead of the classical $\mathcal{O}(n^2)$.

- Compressed Sensing has been tightly connected to Optimization, since Optimization is a fundamental tool in CS. However, this work shows that CS can also be 'applied to' Optimization.
- In a sparse scenario, we were able to construct fully quadratic models with samples of size $\mathcal{O}(n \log^4 n)$ instead of the classical $\mathcal{O}(n^2)$.
- We proposed a practical DFO method (using ℓ_1 -minimization) that was able to outperform state-of-the-art methods in several numerical tests (in the already 'tough' DFO scenario where n is small).

• Gain understanding about the advantages of minimizing the ℓ_1 -norm of the Hessian (α_Q) and not of the whole α . Numerical simulations show that such approach is advantageous.

- Gain understanding about the advantages of minimizing the ℓ_1 -norm of the Hessian (α_Q) and not of the whole α . Numerical simulations show that such approach is advantageous.
- Improve the efficiency of the model ℓ_1 -minimization, may be by finding a way to warmstart it.

- Gain understanding about the advantages of minimizing the ℓ_1 -norm of the Hessian (α_Q) and not of the whole α . Numerical simulations show that such approach is advantageous.
- Improve the efficiency of the model ℓ_1 -minimization, may be by finding a way to warmstart it.
- Study the convergence properties of possibly stochastic model-based trust-region methods.

- A. Bandeira, *Computation of Sparse Low Degree Interpolating Polynomials and their Application to Derivative-Free Optimization*, Master Thesis, Dept. Mathematics, Univ. Coimbra, 2010.

A. Bandeira, K. Scheinberg, and L. N. Vicente, *Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization*, in preparation, 2010.