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Why using derivative-free optimization?

Some reasons to apply Derivative-Free Optimization (DFO):

Derivatives are unavailable
Function evaluations are costly and/or noisy - Accurate
approximation of derivatives by finite differences is prohibitive
Source code not available or owned by a company - Automatic
differentiation impossible to apply
Growing sophistication of computer hardware and mathematical
algorithms and software (opens new possibilities for optimization)

Applications:

Tuning of algorithmic parameters
Medical image registration
Engineering design optimization, ...
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Problem formulation

We consider the bound-constrained minimization problem

min
x∈Rn

f (x) s.t. xl(i) ≤ x(i) ≤ xu(i), i = 1, ...,n

where the first derivatives of the objective function are assumed to
exist and be Lipschitz continuous, although explicit evaluation of
these derivatives is assumed to be impossible.

We consider a model-based trust-region algorithm for computing local
solutions of the minimization problem.

The method iteratively uses a local interpolation model of the
objective function f (x) to define a descent step, and adaptively
adjusts the region in which this model is trusted.
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Bibliography on developments in model-based DFO

Numerical optimization using local models:
Powell, ”A direct search optimization method that models the
objective function by quadratic interpolation”, 1994
Conn, Scheinberg, and Toint, ”On the convergence of
derivative-free methods for unconstrained optimization”, 1996
Powell, ”The NEWUOA software for unconstrained optimization
without derivatives”, 2004
Conn, Scheinberg, and Vicente, ”Introduction in Derivative Free
Optimization”, 2008
Fasano, Nocedal, and Morales, ”On the geometry phase in
model-based algorithms for derivative-free optimization”, 2009
Scheinberg and Toint, ”Self-correcting geometry in model-based
algorithms for derivative-free unconstrained optimization”, 2009
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Polynomial interpolation

Consider Pd
n , the space of polynomials of degree ≤ d in Rn.

A polynomial basis φ = {φ1(x), φ2(x), ..., φp(x)} of Pd
n is a set of p

polynomials of degree ≤ d that span Pd
n .

For any basis φ, any polynomial m(x) ∈ Pd
n can be written as

m(x) =

p∑
j=1

αjφj (x),

where αj are real coefficients.
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Polynomial interpolation

Given a sample set Y = {y1, y2, ..., yp} ⊂ Rn and a polynomial m(x)
of degree d in Rn that interpolates f (x) at the points Y , the
coefficients α1, ..., αp can be determined by solving the linear system

M(φ,Y )αφ = f (Y ),

where

M(φ,Y ) =


φ1(y1) φ2(y1) · · · φp(y1)
φ1(y2) φ2(y2) · · · φp(y2)

...
...

...
φ1(yp) φ2(yp) · · · φp(yp)

 , f (Y ) =


f (y1)
f (y2)

...
f (yp)

 .
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Poisedness

If the coefficient matrix M(φ,Y ) of the system is nonsingular, the set
of points Y is called poised for polynomial interpolation in Rn,
otherwise the set Y is called non-poised.

As poisedness alone doesn’t define the distance from singularity,
there exists a measure of well-poisedness.

The most commonly used measure of well-poisedness in the
polynomial interpolation literature is based on Lagrange polynomials
[Powell, 1994].
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Lagrange polynomials

If the sample set Y is poised, the basis of Lagrange polynomials
exists and is uniquely defined (and vice versa).

The unique polynomial m(x) that interpolates f (x) on Y using the
basis of Lagrange polynomials for Y can be expressed as

m(x) =

p∑
i=1

f (y i )`i (x),

where

`j (y i ) =

{
1 if i = j ,
0 if i 6= j .

is the basis of Lagrange polynomials.
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Lagrange polynomials - Illustration

Figure: Six-hump camel back function with sample points
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Lagrange polynomials - Illustration

Figure: First Lagrange polynomial
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Lagrange polynomials - Illustration

Figure: Second Lagrange polynomial
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Lagrange polynomials - Illustration

Figure: Third Lagrange polynomial
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Lagrange polynomials - Illustration

Figure: Fourth Lagrange polynomial
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Lagrange polynomials - Illustration

Figure: Fifth Lagrange polynomial
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Lagrange polynomials - Illustration

Figure: Sixth Lagrange polynomial
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Lagrange polynomials - Illustration

Figure: The resulting interpolation polynomial
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Well poisedness

Very useful feature of Lagrange polynomials:

The upper bound on their absolute value in a region B is a classical
measure of well-poisedness of the interpolation set Y in the ball B.

A poised set Y is said to be Λ-poised in B if one has that

max
1≤i≤p

max
x∈B
|`i (x)| ≤ Λ.

The smaller Λ, the better the quality of the geometry of the
interpolation set.
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Error bounds on model value and model gradient value

Given a ball B(x ,∆), a poised interpolation set Y ∈ B(x ,∆) and its
asscociated basis of Lagrange polynomials `i (x), i = 0, ...,p, there
exists constants κef > 0 and κeg > 0 such that, for any interpolation
polynomial m(x) of degree one or higher and any given point
y ∈ B(x ,∆),

||f (x)−m(x)|| ≤ κef

p∑
i=1

||yi − x ||2|`i (x)|

and
||∇x f (x)−∇xm(x)|| ≤ κegΛ∆,

where Λ = maxi=1,...,pmaxx∈B(x,∆)|`i (x)|.

[Ciarlet and Raviart, 1972]

21 Derivative-Free Optimization



Introduction
Interpolation models and poisedness

Geometry control in DFO trust region methods
Extension to bounds

Numerical experiments
Conclusions and Perspectives

A simple DFO trust-region algorithm
Geometry improving steps
A DFO trust-region algorithm with geometry restoration
Geometry improving steps
The new DFO trust-region algorithm
Self-correcting geometry

Outline

1 Introduction

2 Interpolation models and poisedness

3 Geometry control in DFO trust region methods

4 Extension to bounds

5 Numerical experiments

6 Conclusions and Perspectives

22 Derivative-Free Optimization



Introduction
Interpolation models and poisedness

Geometry control in DFO trust region methods
Extension to bounds

Numerical experiments
Conclusions and Perspectives

A simple DFO trust-region algorithm
Geometry improving steps
A DFO trust-region algorithm with geometry restoration
Geometry improving steps
The new DFO trust-region algorithm
Self-correcting geometry

A simple DFO trust-region algorithm

Compute an initial poised interpolation set Y0

Test for convergence
Build a quadratic model mk (xk + s) of the objective function
around an iterate xk

mk (xk + s) = f (xk ) + g(xk )T s +
1
2

sT Hs

based on well-poised sample sets.
Calculate a new trial point x+

k by solving

min
s∈B(xk ;∆k )

mk (xk + s).

in the trust region B(xk ; ∆k ).
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A simple DFO trust-region algorithm

Evaluate f (x+
k ) and compute the ratio

ρk =
f (xk )− f (xk + sk )

m(xk )−m(xk + sk )
=

achieved reduction
predicted reduction

.

Define the next iterate
• case 1) Successful iteration: set xk+1 = x+

k , increase ∆k and
include point in the set Yk+1

• case 2) Unsuccessful iteration: set xk+1 = xk , decrease ∆k and
include point in the set if its closer to xk than the furthest in Yk

Compute the new interpolation model mk+1 around xk+1 using
interpolation set Yk+1 if Yk+1 6= Yk , increment k
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Geometry improving steps

Fasano, Nocedal, and Morales [2009] observed that an algorithm
which simply ignores the geometry considerations may in fact
perform quite well in practice.
But it may lose the property of provable global convergence to
first-order critical points [Scheinberg and Toint, 2009].
Failure of current iteration might be due to a too large trust region
or a bad quality of the interpolation model (set not well-poised).
Shows that we cannot afford to do without a geometry phase
(need to maintain quality of the geometry of the interpolation set).
Improvement is usually carried out at special ”geometry
improving” steps by computing additional function values at
well-chosen points.
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A DFO trust-region alg. with geometry restoration

Compute an initial poised interpolation set Y0

Test for convergence
Build a quadratic model mk (xk + s) of the objective function
around an iterate xk

mk (xk + s) = f (xk ) + g(xk )T s +
1
2

sT Hs

based on well-poised sample sets.
Calculate a new trial point x+

k by solving

min
s∈B(xk ;∆k )

mk (xk + s).

in the trust region B(xk ; ∆k ).
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A DFO trust-region alg. with geometry restoration

Evaluate f (x+
k ) and compute the ratio

ρk =
f (xk )− f (xk + sk )

m(xk )−m(xk + sk )
.

Define the next iterate
• case 1) Successful iteration: set xk+1 = x+

k , increase ∆k and
include point in the set Yk+1

• case 2) Unsuccessful iteration: set xk+1 = xk , decrease ∆k and
include point in the set if its closer to xk than the furthest in Yk

Improve interpolation set by a geometry improving step
Compute the new interpolation model mk+1 around xk+1 using
interpolation set Yk+1 if Yk+1 6= Yk , increment k

27 Derivative-Free Optimization



Introduction
Interpolation models and poisedness

Geometry control in DFO trust region methods
Extension to bounds

Numerical experiments
Conclusions and Perspectives

A simple DFO trust-region algorithm
Geometry improving steps
A DFO trust-region algorithm with geometry restoration
Geometry improving steps
The new DFO trust-region algorithm
Self-correcting geometry

Geometry improving steps

As those geometry restoration steps are expensive, one may ask
if they are really necessary.

Idea is now to reduce the frequency and cost of the necessary
tests as much as possible, while maintaining a mechanism for
taking geometry into account.

Design and convergence properties of new algorithm depend on
a self-correction mechanism combining trust-region mechanism
with polynomial interpolation setting.
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The new DFO trust-region algorithm

Compute an initial poised interpolation set Y0

Test for convergence and improve geometry if necessary
Build a quadratic model mk (xk + s) of the objective function
around an iterate xk

mk (xk + s) = f (xk ) + g(xk )T s +
1
2

sT Hs

based on the current interpolation set.
Calculate a new trial point x+

k by solving

min
s∈B(xk ;∆k )

mk (xk + s).

in the trust region B(xk ; ∆k ).
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The new DFO trust-region algorithm

Evaluate f (x+
k ) and compute the ratio ρk

Define the next iterate
• case 1) Successful iteration: include point in the set Yk+1,
adjust ∆ and define xk+1 = x+

k

• case 2) Try to replace a far interpolation point: if set Fk is
non-empty, include point in the set Yk+1, set ∆k+1 = ∆k

• case 3) Try to replace a close interpolation point: if set Fk = ∅
and set Ck is non-empty, include point in the set Yk+1, set
∆k+1 = ∆k

• case 4) Reduce trust-region radius and set Yk+1 = Yk .
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Self-correcting geometry

Set of far points:

Fk = {yk,j ∈ Yk such that ||yk,j − xbest || > β∆ and `k,j (x+
k ) 6= 0}

Set of close points:

Ck = {yk,j ∈ Yk such that ||yk,j − xbest || ≤ β∆ and `k,j (x+
k ) > Λ}

Self-correcting property:

If iteration k is unsuccessful, Fk = ∅ and ∆k ≤ κΛ||∇mk ||, then
Ck 6= ∅, and so, every unsuccessful iteration must result in an
improvement of the interpolation set geometry. [Scheinberg and
Toint, 2009]
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Extension to bounds

Situation: algorithm converges
towards a minimum
Problem: iterates get aligned
along the bound
Results in a degenerate set of
points due to the bounds!
Λ-poisedness no suitable
measure anymore, because
maximum of Lagrange
polynomials lies outside of the
bounds
Thus, self correcting property
not working
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Solution: a subspace method

Continue minimization in a smaller dimensional subspace

If encounter an active bound, reduce dimensionality
If converged in the subspace, going back to check convergence
in the full space
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Further features of the algorithm (I)

Degree of initial interpolation model user-defined: linear,
diagonal, quadratic
Adjust the initial trust region and shift the starting point to build
the initial model inside the bounds
Using variable size models: unless model is quadratic, new
iterates augment the size of the interpolation set
Initial degree of subspace-models is linear and is then
augmented with the new iterates computed in the subspace
Recursive technique: call the algorithm itself to solve the problem
in the subspace(s)
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Further features of the algorithm (II)

Attempt to save function evaluations by creating dummy points

New active bound: need to build
a model in the subspace
Consider points lying close to
the active bound(s), create
dummy points
Compute the model values at the
dummy points
Take real points and dummy
points lying in the subspace to
build the model
Dummy points are then replaced
by the new iterates
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Methodology

CUTEr testing environment

50 bound-constrained test cases from CUTEr test environment
Nbr. of variables varies from 1 to 25 dimensions

Competitor: BOBYQA

State of the art software developed by M.J.D. Powell [2006]
Currently one of the best codes for bound-constrained
minimization without derivatives

Stopping criterion

Stopping criteria are different
Using optimal objective function value computed by TRON (using
first and second derivatives) as a reference
We terminate when 6 correct significant figures in f were attained
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Numerical results

Figure: Performance profile in terms of nbr. of function eval.
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A success in solving a 25-dim. problem

Figure: Convergence history of problem BIGGSB1
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Conclusions and Perspectives

Summary

Presented a new model-based trust-region DFO algorithm with a
self-correcting geometry property
Extended the algorithm to handle bounds
Implemented a robust version of the algorithm: BC-DFO
Compared BC-DFO to BOBYQA with quite satisfying results

Perspectives

Consider further enhancements on model Hessian update to
improve performance
Test the algorithm on real-life application (aerodynamic functions
provided by Airbus)
Implement the use of an inexact gradient
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Thank you for your attention!
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