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Q@ Motivations
Q A parallel algebraic domain decompostion solver

© Parallel and numerical scalability on 3D academic
problems

© Parallel and numerical scalability on 3D Solstice
problems

© Prospectives
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The “spectrum” of linear algebra solvers

Direct lterative
@ Robust/accurate for general @ Problem dependent efficiency/controlled
problems accuracy
@ BLAS-3 based implementations @ Only mat-vect required, fine grain computation

@ Memory/CPU prohibitive for large 3D @ Less memory computation, possible trade-off
problems with CPU

@ Limited parallel scalability @ Attractive “build-in” parallel features




Overlapping Domain Decomposition

Classical Additive Schwarz preconditioners

Goal: solve linear system Ax = b
Use iterative method
Apply the preconditioner at each step

The convergence rate deteriorates as the
number of subdomains increases
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Non-overlapping Domain Decomposition

Schur complement reduced system

@ Goal: solve linear system Ax = b
@ Apply partially Gaussian elimination
@ Solve the reduced system Sxr = f
@ Then solve Ajx; = bj — A rxr
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Solve Ax = b = solve the reduced system Sxr = f = then solve A;x; = b; — A; rXr
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Nonoverlapping Domain Decomposition

Schur complement reduced system
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Non-overlapping Domain Decomposition

Algebraic Additive Schwarz preconditioner
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Parallel preconditioning features

SO = AV — A AL A,

#domains o
Mas= > RI(SY)'R;

i=1

Swm Smg Smk  Sme SO Smg Sk Sme
S0 — Sgm  Sgg Sgk S st — Som Sgg Sgk Sge
Sim  Skg Sk Ske Skm  Skg S,((Q Ske
Sem  Seg Sek  Sw Sim  Sig S SY
Assembled local Schur complement local Schur complement
Smm = Z Sr(#n
Jjeadj(m)

<

HiePACS team 8/30 Algebraic parallel domain decomposition solver



Parallel implementation

@ Each subdomain A" is handled by one processor

(i — I, T
AT= <AIiri A(rlg )

@ Concurrent partial factorizations are performed on each processor to
form the so called “local Schur complement”

S — Af.’g — AriI,AEf;,AIIFf

@ The reduced system Sxr = f is solved using a distributed Krylov solver

- One matrix vector product per iteration each processor computes S0 (x)k = (y()k
- One local preconditioner apply (M) (z()k = (r(D)k

- Local neighbor-neighbor communication per iteration

- Global reduction (dot products)

@ Compute simultaneously the solution for the interior unknowns

AzzXz; = br, — Aziro X,
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Algebraic Additive Schwarz preconditioner

Main characteristics in 2D

@ The ratio interface/interior is small
@ Does not require large amount of memory to store the preconditioner
@ Computation/application of the preconditioner are fast

@ They consist in a call to LAPACK/BLAS-2 kernels
V.

Main characteristics in 3D

@ The ratio interface/interior is large

@ The storage of the preconditioner might not be affordable

@ The construction of the preconditioner can be computationally expensive
@ Need cheaper Algebraic Additive Schwarz form of the preconditioner
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How to alleviate the preconditioner con

Sparsification strategy through dropping

o ) ke it Ske > &(ISkk| + [Seel)
Ske = { 0 else

Approximation through ILU -

. Ai A, i 0\ (U [
ILU (A7) = piL = 3 b ,~_,r>
pILU (A) = pILU (Al'ii A|(—Ij)r,'> (Al'iU-_1 ,> <O 30

Mixed arithmetic strategy

@ Compute and store the preconditioner in 32-bit precision arithmetic

@ Remarks: the backward stability result of GMRES indicates that it is hopeless to expect
convergence at a backward error level smaller than the 32-bit accuracy [C.Paige,
M.Rozloznik, Z.Strakos - 06]

@ Idea: To overcome this limitation we use FGMRES [Y.Saad - 93; Arioli, Duff - 09]

Exploit two levels of parallelism

Use a parallel sparse direct solver on each sub-domains/sub-graphs
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Academic model proble

Problem patterns

r flow velocity Problem -1~

I
o
o —
5
D
Q

—ediv(K.Vu) + v.Vu
u
@ Heterogeneous problems
@ Anisotropic-heterogeneous problems
@ Convection dominated term
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Numerical behaviour of sparse preconditioners

Convergence history of PCG

3D heterogeneous diffusion problem 3D heterogeneous diffusion problem

Dense calculation °
- - - Sparse with £&=10"°|

Dense calculation
- - - Sparse with §=10"°
Sparse with £=10"
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- - - Sparse with £=10"?|
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3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors

Time history of PCG

For (¢ <K)the convergence is marginally affected while the memory saving is significant 15%

For (¢ >>) a lot of resources are saved but the convergence becomes very poor 1%

Even though they require more iterations, the sparsified variants converge faster as the time
per iteration is smaller and the setup of the preconditioner is cheaper
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Numerical behaviour of mixed preconditioners

Convergence history of PCG

3D heterogeneous diffusion problem

—— 64-bit calculation

32-bit calculation

Time history of PCG

3D heterogeneous diffusion problem

- = = mixed arithmetic calculation|
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—— 64-bit calculation

- = = mixed arithmetic calculation|

32-bit calculation
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@ 3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors

precision

@ The number of iterations slightly increases

64-bit and mixed computation both attained an accuracy at the level of 64-bit machine

The mixed approach is the fastest, down to an accuracy that is problem dependent
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Scaled scalability on massively parallel platfo

3D heterogeneous diffusion problem 3D heterogeneous diffusion problem
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@ The solved problem size varies from 2.7 up to 74 Mdof

@ Control the grow in the # of iterations by introducing a coarse space correction

@ The computing time increases slightly when increasing # sub-domains

@ Although the preconditioners do not scale perfectly, the parallel time scalability is acceptable

@ The trend is similar for all variants of the preconditioners using CG Krylov solver
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Approximate Schur aproach: motivations

Exact vs. approximate Schur: memory saving (MB)

sub-domain mesh size
kept entries 253 30° 353 408 453 50° 55°
in factor 15 Kdof | 27 Kdof | 43 Kdof | 64 Kdof | 91 Kdof | 125 Kdof | 166 Kdof
Exact: 100% in U 254 551 1058 1861 3091 4760 7108
Appro: 21% in U 55 114 216 383 654 998 1506

<

Exact vs. approximate Schur: computing time (sec)

sub-domain grid size
kept entries 25° 30° 35° 40° 45° 50° 55°
in factor 15 Kdof | 27 Kdof | 43 Kdof | 64 Kdof | 91 Kdof | 125 Kdof | 166 Kdof
Exact: 100% in U 41 12.1 35.4 67.6 137 245 581
Appro: 21%in U 6.1 15.1 31.2 60.8 128 208 351
Appro: 10%in U 2.9 7.5 16.5 29.8 64 100 169
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Numerical behaviour of approximate preconditioners
Convergence history of GMRES

3D Heterogeneous convection-diffusion problem 3D Heterogeneous convection—diffusion problem
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@ 3D heterogeneous convection-diffusion problem of 74 Mdof mapped on 1728 processors

@ the convergence is marginally affected while the memory saving is significant

@ Even though they require more iterations, the approximate variant converge faster as the
time per iteration is smaller and the setup of the preconditioner is cheaper
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Weak scalabi

ity sively parallel platforms

Numerical scalability Parallel performance

3D Heterogeneous convection-diffusion problem 3D Heterogeneous convection-diffusion problem
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@ The solved problem size varies from 2.7 up to 74 Mdof
@ The computing time increases slightly when increasing # sub-domains

@ Even if the number of iterations to converge increases as the number of subdomains
increases, the parallel scalability of the preconditioners remains acceptable
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Summary on the model problems

Sparse preconditioner

@ For reasonable choice of the dropping parameter & the convergence is marginally affected
@ The sparse preconditioner outperforms the dense one in time and memory

Mixed preconditioner

@ Mixed arithmetic and 64-bit both attained an accuracy at the level of 64-bit machine precision
@ Mixed preconditioner does not delay too much the convergence

Approximate preconditioner

| \

@ The convergence is marginally affected while the memory saving is significant

@ The approximate variant converge faster as the time per iteration is smaller and the setup of
the preconditioner is cheaper

@ This preconditioner require some tuning for very hard problem (structural mechanics...)

On the weak scalability

@ Although these preconditioners are local, possibly not numerically scalable, they exhibit a
fairly good parallel time scalability (possible fix for elliptic problems)

@ The trends that have been observed on this choice of model problem have been observed on
many other problems

= I SRS I




The Solstice framework

From meshes to adjacency graphs

@ Extend the ideas from meshes to graph of matrices including
unsymmetric matrices
@ Experiments on end-users test problems

@ Indefinite linear systems from EDF: structural mechanics
@ Symmetric non-Hermitian linear system from CEA-CESTA:
electromagnetism

@ Towards a parallel package
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Black-box algebraic domain decomposition solver:
problem characteristics

ande (Almond) problem

@ Electromagnetism problem /“7

@ 6,994,683 dof
@ 58,477,383 nnz

o

v

Haltere problem “10 Millions”

@ Electromagnetism problem @ Electromagnetism problem
@ 1,288,825 dof @ 10,423,737 dof
@ 10,476,775 nnz @ 89,072,871 nnz
v w

Perf001a

@ Structural engineering
(*] 504,012 dof
@ 17,262,024 nnz

v
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MAPHYS: Almond problem

AMANDE-32procs AMANDE-32procs
—— Direct calculation
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@ Almond problem of 6.99 Mdof mapped on 32 processors
@ In term of computing time, the sparse algorithm is about twice faster
@ The global sparse preconditioner perform very well on this number of processors

@ The attainable accuracy of the hybrid solver is comparable to the one computed with the
direct solver
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MAPH Almond proble

AMANDE-128procs AMANDE-128procs
—— Direct calculation
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@ Amende problem of 6.99 Mdof mapped on 128 processors
@ The local sparse algorithm perform as well as the dense

@ The local Schur complement are of small size thus the dense preconditioner perform well
@ The global sparse preconditioner perform well numerically but slower in computing time
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Convergence s

HALTERE-32procs HALTERE-32procs

— Direct calculation
MaPHyS local densepcond °
= = = MaPHysS local sparsepcond 3%

- = = MaPHysS global 3%)

Direct calculation
MaPHyS local densepcond

= = = MaPHys local sparsepcond 3%
- = = MaPHys global sparsepcond 3%

30 2 30
#iter Time(sec)
v v
@ Haltere problem of 1.3 Mdof mapped on 32 processors

@ The local sparse algorithm perform as well as the dense
@ The global sparse preconditioner perform very well on this number of processors

@ The attainable accuracy of the hybrid solver is comparable to the one computed with the
direct solver
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MAPHYS: “

Convergence histo

lir, IAIbI

CEA 10millions

MaPHyS local densepcond
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°
8

#iter

v

Million” problem
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- aPHyS local sparsepcond 5%

Ir, /11|

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Time(sec)

@ “10 Millions” problem mapped on 64 processors

@ The local sparse algorithm perform as well as the dense
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MAPHYS: PerfOO1a

Convergence history Time history

PERF001a-8procs PERF001a-8procs
10° Direct calculation 10° Direct calculation
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@ Perf001a mapped on 8 processors
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MAPHYS: PerfOO1a

Convergence history

o Direct calculation
MaPHyS local densepcond
L = = = MaPHys local sparsepcond 50%
10 - = = MaPHyS global sparsepcond 50%|
- = = MaPHysS global 37%|
10

PERF00la-16procs

Time history

PERF001a-16procs

Direct calculation

MaPHyS local densepcond
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= MaPHyS global sparsepcond 50%
- MaPHyS global 379%|
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Time(sec)

@ Perf001a mapped on 16 processors
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Ongoing and future activities

@ Integration of other direct solvers (multithreaded PaSTiX,
SuperLU) and partitioners (Scotch/PT-Scotch) - ADT INRIA
funding

@ Improve the solver capability for symmetric indefinite et fully
unsymmetric

@ Complete the complexity analysis to study the computational
scalability

http://www.inria.fr/recherche/equipes/hiepacs.fr.html
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