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TENSOR DECOMPOSITION

AND RANK



Tensor Basics

• Modes and Fibers

• Unfolding (flattening)

														� �

(Kolda & Bader, 2009)



Tensor Decomposition and Rank

• CANDECOMP/PARAFAC (CP)
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• rank��� ≝ smallest � s.t. approximation 

holds with equality

(Kolda & Bader, 2009)



Tensor Decomposition and Rank

• Tucker Decomposition (Higher-order SVD)
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• Tucker (multilinear) Rank: set of column ranks 
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(Kolda & Bader, 2009)



Notation:

• True tensor:

• The ith unfolding:

• Let ri be the rank of the ith unfolding

• Let                     and                                 are left 

and right singular vectors of 



TENSOR

COMPLETION



Tensor Completion 

• Non-convex Model: (Vector optimization)

• Convex Model:



Tensor Completion

• Strongly Convex Model (S-TC):

– Non-smooth convex model if                

– Strong convexity allows more efficient algorithms

– Exact recovery guaranteed when      is below threshhold



Tensor Completion: recovery guarantees

• Is exact recovery always possible?

• No! Conditions need to be posed on the 

tensor structure.

• Tensor Incoherence Conditions (TICs)



Tensor Completion: TICs

• Tensor Incoherence Conditions (TICs) with 

respect to μi,0 and μi,1 : (same as matrix case)

• For all i=1,…,K

Exact recovery requires:

1. Incoherent tensor: Small μi,0 and μi,1

2. Low rank: small ri



Tensor Completion: Main Theorem

Theorem: Suppose       obeys the TICs,

,             , , and 

then (S-TC) is exact for 

(i) any choice of        , when           ;

(ii) if 

with probability



TENSOR ROBUST

PRINCIPAL COMPONENT

ANALYSIS (TRPCA)



TRPCA: Tensor Robust Principal 

Component Analysis
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TRPCA: Strongly Convex Formulation

• Similar to tensor completion, we extend 

TRPCA to allow a strongly convex model:

• Only convex TRPCA if    



TRPCA: Main Theorem

Theorem: Suppose       obeys the TICs,

and                    ,  then 

TRPCA is exact when 

and

with probability at least                    , where      

and      are positive constants.



TRPCA: Grossly corrupted data

• Suppose now that some of the data entrees 
are missing and the others are corrupted;

• Let     be the set of locations where there is 
data; 

• Each entry in     is corrupted with probability                
independently of the others; 

• Is exact recovery possible in this case? Yes!



TRPCA: Grossly corrupted data

• TRPCA with grossly corrupted data can be 

formulated as (strongly convex model):



TRPCA: Grossly corrupted data

Theorem: Suppose       obeys the TICs,

and let ; then 

TRPCA with grossly corrupted data can be 

solved exactly with probability at least                                                                                

provided that

where      and      are positive constants.  



OPTIMIZATION

ALGORITHMS



Algorithms: Variable splitting
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Algorithms: Variable splitting

• Tensor Completion:



Algorithms: Variable splitting

• TRPCA with all data observed:



Algorithms: Variable splitting

• TRPCA with grossly corrupted data 



Algorithms: Alternating Direction 

Augmented Lagrangian (ADAL)

• Consider augmented Lagrangian function for 

non-strictly convex TRPCA problem (           ):

• Hard to solve       and      simultaneously!



Algorithms: ADAL

• ADAL framework:

• Each sub-problem is a simple shrinkage 

operation!



Algorithms: ADAL

Step 1:  X-subproblem: 

– Singular-value Soft-threshold:



Algorithms: ADAL

Step 2:  E-subproblem: 

– Lasso shrinkage operation, simple!



Algorithms: Linearized Bregman Method

• Solve the linearly constraint problems:

• Bregman distance:



Algorithms: Linearized Bregman Method

• Bregman Algorithm:

• Linearized Bregman Algorithm:



Linearized Bregman Method: Dual Formulation

• The Linearized Bregman method is equivalent 

to the Dual Gradient Descent method on:

• Dual Formulation:



Accelerated Linearized Bregman (ALB)

• Nesterov’s accelerating technique:

• Convergence: Optimal                 rate w.r.t. the 

Lagrangian function.



ALB method on TRPCA

• At iteration k, we solve the following 

subproblem:

• Decomposable into two subproblems;

• X-subproblem: SVD Soft-threshold;

• E-subproblem: Lasso shrinkage 



EXPERIMENTS



Empirical Recoverability
• Random tensors (50, 50, 20), rank-(5,5,5)

• 10% data corrupted, varying % observations…



Empirical Recoverability
• Random tensors (50, 50, 20), rank-(5,5,5)

• Full observation, varying % corruption…



Face Shadow Reduction

• YaleB face ensemble subset: 5 people, 40 

illuminations.

• Each image: 64×56 grey-scale and vectorized.

• Resulting Data: A 3584×40×5 tensor

• 10% pixels corrupted by uniform distributed 

noise.



Face Shadow Reduction

Original face T-RPCA M-RPCA (mode 2)



Low-rank static background reconstruction

• Game data:

– 27 colored frames

– Each has a resolution 86×130

– Form the tensor data: 86×130×3×27

2 out of 27 frames



Low-rank static background 

reconstruction

Reconstructed from 20% data

Background from T-RPCA Background from M-RPCA



SQUARE DEAL – AN IMPROVED

CONVEX MODEL FOR HIGH-ORDER

TENSORS (K>3)



Square Deal: Gaussian measurement

• Consider low-rank tensor recovery under the 

Gaussian measurements. 

• Vector (non-convex) model: Pareto Opt.

• The Sum of Nuclear Norms (SNN) relaxation



Square Deal: Complexity 

• For simplicity, consider the K-way tensor of 
length n and Tucker rank r. 

• For exact recovery, the number of Gaussian 
measurement needed for Non-convex vector 
optimization and SNN models are

– Non-convex: O(rK + nrK)

– SNN: O(rnK-1)

• Big gap when n is large!



Square Deal: new convex objective

• Square Deal: An improved convex surrogate 

for the Tucker rank.

• When K=4, instead of unfolding        into a flat 

matrix, i.e.,                   , reshape it into a 

square matrix                     , i.e.,

• Same idea applies when K>4: make        as 

“square” as possible.



Square Deal: Main results

Theorem:

(1) If       has CP rank r, using Square Deal, 

Gaussian measurements are 

sufficient to recover       ;   

(2) If       has Tucker rank r, using Square Deal, 

Gaussian measurements are 

sufficient to recover      .  



Square Deal: Simulation

• Consider the Tensor-Completion problem for a 4-

way tensor                            with the core tensor 

, each entree is i.i.d. std. Gaussian, and     

each element in                     is chosen randomly.



Questions?



Applications
• Chemometrics – fluorescence excitation-emission

• Hand-written digits recognition (Savas & Eldeeeén, 2005)



Applications
• Personalized Web Search (Sun, et. al., 2005)



Future works

� Better tensor incoherence conditions;

� Theoretical evidence on the advantage of 

TRPCA over the regular RPCA;

� More efficient algorithm suitable for strongly 

convex programming;

� Extend the square deal to the case k<4;

� More interesting applications for low-rank 

tensor recovery problems.


