LOW-RANK TENSOR RECOVERY: THEORY AND ALGORITHMS

Donald Goldfarb John Wright

Bo Huang Cun Mu

Zhiwei Qin

Outline

- Tensor Basics, Decomposition and Rank
- Low-rank Tensor Recovery Models
 - Tensor Completion
 - Tensor Robust Principal Component Analysis
- Algorithms
 - Alternating Direction Augmented Lagrangian(ADAL)
 - Accelerated Linearized Bregman (ALB)
- Experiments
- Alternative convex model: Square Deal

Notation:

- True tensor: $\boldsymbol{\mathcal{X}}_0 \in \mathbb{R}^{n_1 \times n_2 \cdots n_K}$
- The ith unfolding: $\mathcal{X}_{(i)} \in \mathcal{R}^{n_i \times \prod_{j=1, j \neq i}^k n_j}$

$$n_{(1)}^{i} := \max(n_{i}, \Pi_{j=1, j\neq i}^{k} n_{j}) \quad n_{(2)}^{i} := \min(n_{i}, \Pi_{j=1, j\neq i}^{k} n_{j})$$

• Let r_i be the rank of the ith unfolding $\mathcal{X}_{(i)}$

• Let $U_i \in \mathbb{R}^{n_i \times r_i}$ and $V_i \in \mathbb{R}^{(\prod_{j=1, j \neq i}^k n_j) \times r_i}$ are left and right singular vectors of $\mathcal{X}_{(i)}$

Tensor Completion

• Strongly Convex Model (S-TC): $\min_{\boldsymbol{\mathcal{X}}} \sum_{i=1}^{K} \lambda_i \|\boldsymbol{\mathcal{X}}_{(i)}\|_* + K\tau \|\boldsymbol{X}\|_F^2 \quad \mathcal{P}_{\Omega}[\boldsymbol{\mathcal{X}}] = \mathcal{P}_{\Omega}[\boldsymbol{\mathcal{X}}_0]$

– Non-smooth convex model if au=0

Strong convexity allows more efficient algorithms

- Exact recovery guaranteed when au is below threshhold

Tensor Completion: recovery guarantees

• Is exact recovery always possible?

No! Conditions need to be posed on the tensor structure.

• Tensor Incoherence Conditions (TICs)

Tensor Completion: TICs

- Tensor Incoherence Conditions (TICs) with respect to μ_{i,0} and μ_{i,1}: (same as matrix case)
- For all i=1,...,K $\max_{j} \|U_{i}^{\top} e_{j}\|^{2} \leq \frac{\mu_{i,0} r_{i}}{n_{i}}, \quad \max_{j} \|V_{i}^{\top} e_{j}\|^{2} \leq \frac{\mu_{i,0} r_{i}}{\prod_{j=1, j \neq i}^{K} n_{j}},$ $\|U_{i} V_{i}^{\top}\|_{\infty} \leq \sqrt{\frac{\mu_{i,1} r_{i}}{\prod_{j=1}^{K} n_{j}}},$

Exact recovery requires:

- 1. Incoherent tensor: Small $\mu_{i,0}$ and $\mu_{i,1}$
- 2. Low rank: small r_i

Tensor Completion: Main Theorem

<u>**Theorem:**</u> Suppose \mathcal{X}_0 obeys the TICs,

 $\mu_i := \max\{\mu_{i,0}, \mu_{i,1}\}, \ |\Omega| = m$, and

 $m \geq 32\beta \max_{i} \{\mu_{i} r_{i} (n_{(1)}^{i} + n_{(2)}^{i}) \log^{2}(8n_{(1)}^{i})\}$ then (S-TC) is exact for

(i) any choice of $\{\lambda_i\}$, when $\tau = 0$;

(ii) $\lambda_i \geq \frac{32}{3\rho} \beta^{1/2} \log(n_{(1)}^i) \| \mathcal{P}_{\Omega} \mathcal{X}_0 \|_F \sqrt{2n_{(1)}^i}, \quad \tau = 1$ with probability

 $1 - 6K \max_{i} \{ \log(n_{(1)}^{i})(n_{(1)}^{i} + n_{(2)}^{i})^{2-2\beta} - (n_{(1)}^{i})^{2-2\beta^{1/2}} \}$

TRPCA: Strongly Convex Formulation

• Similar to tensor completion, we extend TRPCA to allow a strongly convex model:

$$\min_{\boldsymbol{\mathcal{X}},\boldsymbol{\mathcal{E}}} \quad \sum_{i}^{K} \lambda_{i} \|\boldsymbol{\mathcal{X}}_{(i)}\|_{*} + K \|\boldsymbol{\mathcal{E}}\|_{1} + \frac{\tau}{2} \|\boldsymbol{\mathcal{X}}\|_{F}^{2} + \frac{\tau}{2} \|\boldsymbol{\mathcal{E}}\|_{F}^{2}$$
s.t.
$$\boldsymbol{\mathcal{X}} + \boldsymbol{\mathcal{E}} = \boldsymbol{\mathcal{B}},$$

• Only convex TRPCA if $\tau = 0$

TRPCA: Main Theorem

Theorem: Suppose \mathcal{X}_0 obeys the TICs, $\mu_i := \max\{\mu_{i,0}, \mu_{i,1}\}$ and $\lambda_i = \sqrt{n_{(1)}^i}$, then **TRPCA** is exact when $\tau \le \min\{\frac{K}{10||\boldsymbol{\mathcal{B}}||_{\infty}}, \frac{K}{5||\boldsymbol{\mathcal{B}}||_{F}}\}$ and $r_i \le \rho_{r_i} n_{(2)}^i \mu_i^{-1} (\log n_{(1)}^i)^{-2}, \quad m \le \rho_s \prod n_j$ j=1with probability at least $1 - cKn^{-10}$, where ρ_{r_i} and ρ_s are positive constants.

TRPCA: Grossly corrupted data

- Suppose now that some of the data entrees are missing and the others are corrupted;
- Let Ω be the set of locations where there is data;
- Each entry in Ω is corrupted with probability γ independently of the others;
- Is exact recovery possible in this case? Yes!

TRPCA: Grossly corrupted data

 TRPCA with grossly corrupted data can be formulated as (strongly convex model):

TRPCA: Grossly corrupted data

<u>Theorem:</u> Suppose \mathcal{X}_0 obeys the TICs,

 $\mu_i := \max\{\mu_{i,0}, \mu_{i,1}\}$ and let $\lambda_i = \sqrt{\rho n_{(1)}^i}$; then TRPCA with grossly corrupted data can be

solved exactly with probability at least

$$- cKn^{-10}$$

provided that

$$\begin{aligned} \tau &= \min_{i} \{ \frac{K\lambda_{i}(n_{(1)}^{i}n_{(2)}^{i})^{-1}}{(1 + \frac{4}{\rho(1 - \gamma_{s})}) \|\mathcal{P}_{\Omega}\mathcal{B}\|_{F}} \}, \\ r_{i} &\leq \rho_{r_{i}} n_{(2)}^{i} (\log n_{1}^{i})^{-2}, \ \forall i \ and \ \gamma \leq \gamma_{s}, \end{aligned}$$

where ρ_{r_i} and γ_s are positive constants.

Algorithms: Variable splitting

• <u>Tensor Completion:</u>

Algorithms: Alternating Direction Augmented Lagrangian (ADAL)

• Consider augmented Lagrangian function for non-strictly convex TRPCA problem ($\tau = 0$):

$$\begin{split} \mathcal{L}(\boldsymbol{\mathcal{X}},\boldsymbol{\mathcal{E}}) &:= \sum_{i=1}^{K} \lambda_{i} \|\boldsymbol{\mathcal{X}}_{i,(i)}\|_{*} + K \|\boldsymbol{\mathcal{E}}\|_{1} \\ &+ \sum_{i=1}^{K} \left(\frac{1}{2\mu} \|\boldsymbol{\mathcal{X}}_{i} + \boldsymbol{\mathcal{E}} - \boldsymbol{\mathcal{B}}\|_{F}^{2} - \langle \Lambda_{i}, \boldsymbol{\mathcal{X}}_{i} + \boldsymbol{\mathcal{E}} - \boldsymbol{\mathcal{B}} \rangle \right) \end{split}$$

• Hard to solve \mathcal{X} and \mathcal{E} simultaneously!

Algorithms: ADAL

ADAL framework:

$$oldsymbol{\mathcal{X}}_{(i)}^{k+1} := \min_{oldsymbol{\mathcal{X}}} L(oldsymbol{\mathcal{X}}, oldsymbol{\mathcal{E}}^k)$$

 $oldsymbol{\mathcal{E}}^{k+1} := \min L(oldsymbol{\mathcal{X}}^{k+1}, oldsymbol{\mathcal{E}})$

$$\mathcal{E}$$
 $\Lambda_i^{k+1} := \Lambda_i^k - \frac{1}{\mu} (\mathcal{X}_i^{k+1} + \mathcal{E}^{k+1} - \mathcal{B})$

 Each sub-problem is a simple shrinkage operation!

Algorithms: ADAL

Step 1: X-subproblem:

$$egin{aligned} oldsymbol{\mathcal{X}}_{(i)}^{k+1} &:= & \min_{oldsymbol{\mathcal{X}}} L(oldsymbol{\mathcal{X}}, oldsymbol{\mathcal{E}}^k) \ &= & oldsymbol{\mathcal{T}}_{\lambda_i \mu}^m \left(oldsymbol{\mathcal{E}}_{(i)}^k - oldsymbol{\mathcal{B}}_{(i)}^k - \mu \Lambda_{i,(i)}^k
ight) \end{aligned}$$

– Singular-value Soft-threshold:

 $\boldsymbol{\mathcal{T}}_{\mu}^{m}(X) := U \operatorname{diag}\left(\bar{\sigma}\right) V^{\top}, \qquad X = U \operatorname{diag}\left(\sigma\right) V^{\top} \\ \bar{\sigma} := \max(\sigma - \mu, 0)$

Algorithms: Linearized Bregman Method

• Solve the linearly constraint problems:

$$\min_{x} J(x) \quad \text{s.t.} \quad Ax = b$$

• Bregman distance:

$$D_J^p(u,v) := J(u) - J(v) - \langle p, u - v \rangle,$$

$$p \in \partial J(v)$$

Algorithms: Linearized Bregman Method

• Bregman Algorithm:

Algorithm 1 Original Bregman Iterative Method

1: Input:
$$x^{0} = p^{0} = 0$$
.
2: for $k = 0, 1, \cdots$ do
3: $x^{k+1} = \arg \min_{x} D_{J}^{p^{k}}(x, x^{k}) + \frac{1}{2} ||Ax - b||^{2}$;
4: $p^{k+1} = p^{k} - A^{\top} (Ax^{k+1} - b)$;
5: end for

• Linearized Bregman Algorithm:

Algorithm 2 Linearized Bregman Method

1: Input:
$$x^0 = p^0 = 0, \mu > 0$$
 and $\tau > 0$.
2: for $k = 0, 1, \cdots$ do
3: $x^{k+1} = \arg \min_x D_J^{p^k}(x, x^k) + \tau \langle A^\top (Ax^k - b), x \rangle + \frac{1}{2\mu} ||x - x^k||^2$
4: $p^{k+1} = p^k - \tau A^\top (Ax^k - b) - \frac{1}{\mu} (x^{k+1} - x^k);$
5: end for

Linearized Bregman Method: Dual Formulation

 The Linearized Bregman method is equivalent to the Dual Gradient Descent method on:

$$\min_{x} J(x) + \frac{1}{2\mu} ||x||_{2}^{2} \quad \text{s.t.} \quad Ax = b$$

• Dual Formulation:

Algorithm 3 Linearized Bregman Method (Equivalent Form)

1: Input: $\mu > 0, \tau > 0$ and $y^0 = \tau b$.

2: for
$$k = 0, 1, \cdots$$
 do

3:
$$w^{k+1} := \arg\min_{w} \{ J(w) + \frac{1}{2\mu} \|w\|^2 - \langle y^k, Aw - b \rangle \}$$

4:
$$y^{k+1} := y^k - \tau (Aw^{k+1} - b).;$$

5: end for

Accelerated Linearized Bregman (ALB)

Nesterov's accelerating technique:

Algorithm 4 Accelerated Linearized Bregman Method 1: Input: $x^0 = \tilde{x}^0 = \tilde{p}^0 = p^0 = 0, \mu > 0, \tau > 0.$ 2: for $k = 0, 1, \cdots$ do 3: $x^{k+1} = \arg \min_x D_J^{\tilde{p}^k}(x, \tilde{x}^k) + \tau \langle A^\top (A \tilde{x}^k - b), x \rangle + \frac{1}{2\mu} ||x - \tilde{x}^k||^2;$ 4: $p^{k+1} = \tilde{p}^k - \tau A^\top (A \tilde{x}^k - b) - \frac{1}{\mu} (x^{k+1} - \tilde{x}^k);$ 5: $\tilde{x}^{k+1} = \alpha_k x^{k+1} + (1 - \alpha_k) x^k;$ 6: $\tilde{p}^{k+1} = \alpha_k p^{k+1} + (1 - \alpha_k) p^k.$ 7: end for

• Convergence: Optimal $O(1/k^2)$ rate w.r.t. the Lagrangian function.

ALB method on TRPCA

At iteration k, we solve the following subproblem:

$$\begin{aligned} (\{\boldsymbol{\mathcal{X}}_{i}^{k+1}\}, \boldsymbol{\mathcal{E}}^{k+1}) &= \arg\min_{\{\boldsymbol{\mathcal{X}}_{i}\}, \boldsymbol{\mathcal{E}}} \sum_{i} \left(\lambda \|\boldsymbol{\mathcal{X}}_{i,(i)}\|_{*} + \frac{\tau}{K+1} \|\boldsymbol{\mathcal{X}}\|_{F}^{2} - \langle \Lambda_{i}^{k}, \boldsymbol{\mathcal{X}}_{i} \rangle \right) \\ &+ \sum \left(\|\boldsymbol{\mathcal{E}}\|_{1} + \tau \|\boldsymbol{\mathcal{E}}\|_{F}^{2} - \langle \Lambda_{i}^{k}, \boldsymbol{\mathcal{E}} \rangle \right) \end{aligned}$$

- Decomposable into two subproblems;
- *X-subproblem*: SVD Soft-threshold;
- *E-subproblem*: Lasso shrinkage

Empirical Recoverability

- Random tensors (50, 50, 20), rank-(5,5,5)
- Full observation, varying % corruption...

Face Shadow Reduction

• YaleB face ensemble subset: 5 people, 40 illuminations.

• Each image: 64×56 grey-scale and vectorized.

- Resulting Data: A 3584×40×5 tensor
- 10% pixels corrupted by uniform distributed noise.

Face Shadow Reduction

Low-rank static background reconstruction

- Game data:
 - 27 colored frames
 - Each has a resolution 86×130
 - Form the tensor data: 86×130×3×27

2 out of 27 frames

Low-rank static background

reconstruction

Reconstructed from 20% data

Background from T-RPCA

Background from M-RPCA

SQUARE DEAL – AN IMPROVED CONVEX MODEL FOR HIGH-ORDER TENSORS (K>3)

Square Deal: Gaussian measurement

 Consider low-rank tensor recovery under the Gaussian measurements.

• Vector (non-convex) model: Pareto Opt. minimize_{(W.r.t. \mathbb{R}_{+}^{K}) rank_{tc}(\mathcal{X}) subject to $\mathcal{G}[\mathcal{X}] = \mathcal{G}[\mathcal{X}_{0}]$}

• The Sum of Nuclear Norms (SNN) relaxation minimize $\sum_{i=1}^{K} \lambda_i \| \mathcal{X}_{(i)} \|_* \text{ subject to } \mathcal{G}[\mathcal{X}] = \mathcal{G}[\mathcal{X}_0]$

Square Deal: Complexity

- For simplicity, consider the K-way tensor of length n and Tucker rank r.
- For exact recovery, the number of Gaussian measurement needed for Non-convex vector optimization and SNN models are
 - Non-convex: O(r^K + nrK)
 - SNN: O(rn^{K-1})
- Big gap when n is large!

Square Deal: new convex objective

- <u>Square Deal</u>: An improved convex surrogate for the Tucker rank.
- When K=4, instead of unfolding X₀ into a flat matrix, i.e., X_(i) ∈ ℝ^{n×n³}, reshape it into a square matrix X_□ ∈ ℝ^{n²×n²}, i.e.,

$$(\boldsymbol{\mathcal{X}}_{\Box})_{a+(b-1)n,c+(d-1)n} = (\boldsymbol{\mathcal{X}}_{0})_{a,b,c,d}$$

 Same idea applies when K>4: make X_□ as "square" as possible.

Square Deal: Main results

Theorem:

(1) If \mathcal{X}_0 has CP rank r, using Square Deal, $m \ge Crn^{\lceil \frac{K}{2} \rceil}$ Gaussian measurements are sufficient to recover \mathcal{X}_0 ;

(2) If \mathcal{X}_0 has Tucker rank r, using Square Deal, $m \ge Cr^{\lfloor \frac{K}{2} \rfloor}n^{\lceil \frac{K}{2} \rceil}$ Gaussian measurements are sufficient to recover \mathcal{X}_0

Square Deal: Simulation

• Consider the Tensor-Completion problem for a 4-way tensor $\mathcal{X}_0 \in \mathbb{R}^{n \times n \times n \times n}$ with the core tensor

 $C_0 \in \mathbb{R}^{1 \times 1 \times 2 \times 2}$, each entree is i.i.d. std. Gaussian, and each element in $\Omega \sim Ber(\rho)$ is chosen randomly.

Applications

• Chemometrics – fluorescence excitation-emission

Hand-written digits recognition (Savas & Eldén, 2005)

Applications

• Personalized Web Search (Sun, et. al., 2005)

Future works

- Better tensor incoherence conditions;
- Theoretical evidence on the advantage of TRPCA over the regular RPCA;
- More efficient algorithm suitable for strongly convex programming;
- Extend the square deal to the case k<4;</p>
- More interesting applications for low-rank tensor recovery problems.