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Introduction to DA

A dynamical integration model predicts the state of the system given the
state at an earlier time.
— integrating may lead to very large prediction errors

(inexact physics, discretization errors, approximated parameters)
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Introduction to DA

A dynamical integration model predicts the state of the system given the
state at an earlier time.
— integrating may lead to very large prediction errors

(inexact physics, discretization errors, approximated parameters)

Observational data are used to improve accuracy of the forecasts.
— but the data are inaccurate (measurement noise, under-sampling)
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Introduction to DA

Solve a large-scale non-linear weighted least-squares problem:

=

1
min 2 [lx — x|l ZO = ¥illgs

where

x = x(tp) is the control variable
M are model operators: x(tj) = M ;(x(t))
H; are observation operators: yj ~ H;(x(tj))

the obervations y; and the background x, are noisy

B and R; are covariance matrices
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Introduction to DA

Project desciption:

=

1
min 2 [lx — x|l Z; = ¥illgs

where
o Improving B : CERFACS and CNES, using diffusion operator and
ensemble techniques (Talks of L. Berre, A. Weaver)
@ Optimization algorithms : CERFACS, IRIT, CNES dual algorithms
and Ensemble Kalman filters (Talks of Ph. Toint, L. Vicente)

@ Modelling : CNES
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Introduction to DA

Solve a large-scale non-linear weighted least-squares problem:

=

1
min 5lx =iz 2; s

Typically solved using a truncated Gauss-Newton algorithm
(known as 4D-Var in the DA community).
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Introduction to DA

Solve a large-scale non-linear weighted least-squares problem:

=

1
min 5lx =iz 2; s

Typically solved using a truncated Gauss-Newton algorithm
(known as 4D-Var in the DA community).

— linearize H;(M;(x (k) 4 ox(k ))) ~ ?{j(/\/lj(x(k))) + H}k)éx(k)
— solve the linearized subproblem

1 1 2
; 2115k (k) _ (k)12 k) 5y (k) _ (k)
T B0~ s Ol 3 - b

— update x(kt1) = x(k) 4 5x(k)
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@ Introduction to data assimilation
@ Dual iterative solvers

@ Summary and ongoing related work
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Dual Approach

Exploiting the structure: Dual Approach

@ The exact solution can be rewritten from duality theory or using the
Sherman-Morrison-Woodbury formula

xb — xk + BH{ (HeBH] + R) " (dk — Hi(xo — xx))

Lagrange mult. : requires solving a linear system iteratively in R
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@ The exact solution can be rewritten from duality theory or using the
Sherman-Morrison-Woodbury formula

xb — xk + BH{ (HeBH] + R) " (dk — Hi(xo — xx))

Lagrange mult. : requires solving a linear system iteratively in R

@ If m << n, then performing the minimization in R” can reduce memory and
computational cost.
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Dual Approach

Preconditioned CG algorithm

Initialization

() roiA(onfb,Zo:Fro,PO:ZO

Q g =(B1+H R H)p

Q oi=<r,z>/<q,p > Compute the step-length

© Oxi1 = 0xi + aipi Update the iterate

Q riii=ri—aiqi ;  Update the residual

Q rii=riyi—RZriy Re-orthogonalization

Qzii= Fria Update the preconditioned residual

@ Bi =< riy1,zi41 > / < ri,zi > Ensure A-conjugate directions

Q R=[R,r/Bi] Re-orthogonalization
Q Z=1[2Zz/p] Re-orthogonalization
@ piv1 = zi1 + Bipi Update the descent direction
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Dual Approach

Suppose that
@ BHTG = FH™.
Q@ vo=x"

— vectorst;, Ppi, Vi, Z; and q; such that

— Xp.

ri = HT?;,

pi = BH'p;

vi = vo+BH'V,
zZi — BHT/Z\,',

q = H'g;
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Dual Approach

Initialization steps
given vo; ro = (HTR™'H + B !)vg — b, ...

Q@ H'g;—1 = HY(RTHBHT + 1,,)p;_1

Q@ w1 = vz 1/9" 1pi_1

@ BH'V; = BH™(vi_1 + aj_1pi_1)

Q@ H'r; = HT(rii1 + @j—1Gi-1)

@ BH'Z;, = FH™, = BH'Gr;, FHT =BH'G
0 5 = (rfzi/r zi1)

@ BH'p; = BH'(-z; + B8:pi-1)
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Dual Approach

Initialization
Xo =0, 7% =R d— H(x» — x)),

% =GP, P =2, k=1 © A=R'HBH" + In
@ G is the preconditioner.
LOOp on k @ C is the inner-product.
o @ RPCG Algorithm: C = HBH'
Q G =Ap identical CG on original system :
Q o =<T-1,Z-1>c /< qi,Pi >c preserves monotonic decrease of
O \=)1+ap quadratic cost and exploit geometry
Q-7 = @ G should be symmetric w.r.t. to C
A e (FH™ = BHTG)
Q 8i=<Ti_1,Zi-1 >c / <

Ti—2,Zi—2 >c
Q z =Gr
Q@ b =Z-1+Bipi-1

\
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Dual Approach

Initialization

X =0 1= R_l(d— H(x» — x)),
2=Grn, pr=2, k=1

vy

Q G = Ap;

Q o =<T7i-1,Zi-1>c / < Gi,pi >c

Q \N=)\i_i+ap

Q7 =Ti-1— G

Q é’,— =< Tic1,Zic1>c [/ <
ri—2,zi—2 >c

Qz=¢Grn

Q@ b=z 1+8pi1

\

A=RHBHT + I,
G is the preconditioner.
C is the inner-product.

RPCG Algorithm: C = HBHT
identical CG on original system :
preserves monotonic decrease of
quadratic cost and exploit geometry

G should be symmetric w.r.t. to C
(FHT = BHT G)

Best known reference : PSAS
Algorithm for C = R
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Dual Approach

@ Observations: SST (Sea Surface Temperature) and SSH(Sea Surface Height) observations
from satellites. Sub-surface hydrographic observations from floats.

@ Number of observations (m): 10°
@ Number of state variables (n): 10° for strong constraint and 107 for weak constraint.

@ Computation: 64 CPUs

7 — Primal, strong, congrad 7 — Dual, weak, congrad
65 — Dual, strong, congrad | |~ Dual, weak, MINRES
~ Dual, strong, MINRES = Dual, weak, RLanczos
s Dual, strong, RLanczos |
5 =
255 %
g g
5
\
45
20 A[tg ra[iig 80 100 4 20 40 60 80 100
Iteration
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Preconditioning in dual space

@ It is possible to maintain the one-to-one correspondance between primal and dual
iterates, under the assumption that

Fi_1HT = BH] G,

where Fi_1 is a preconditioner for a primal solver and Gx_1 is a preconditioner for
a dual solver (Gratton and Tshimanga 2009).

@ The preconditioner G,_; needs to be symmetric in H,BH,” inner product.

@ Use Preconditioned Conjugate Gradient method (PCG)

— Preconditioning with the quasi-Newton Limited Memory Preconditioner
(Morales and Nocedal 2000) (Gratton, Sartenaer and Tshimanga 2011)

@ For linear case, Gratton, Gurol and Toint (2012) derive the quasi-Newton LMP in
dual space which generates mathematically equivalent iterates to those of primal
approach.
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Preconditioning in dual space

The quasi-Newton LMP in dual space (Linear case)

@ The quasi-Newton LMP: The descent directions p;, i =1, ...,/ generated by a CG
method are used.
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Preconditioning in dual space

The quasi-Newton LMP in dual space (Linear case)

@ The quasi-Newton LMP: The descent directions p;, i =1, ...,/ generated by a CG
method are used.

o o o
F— (,nf pip; A) F (Inf Af,p, ) L PP
- p; Api p; Api

p; i

— F=F,.
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Preconditioning in dual space

The quasi-Newton LMP in dual space (Linear case)

@ The quasi-Newton LMP: The descent directions p;, i =1, ...,/ generated by a CG
method are used.

o o o
F— (,nf pip; A) F (Inf Af,p, ) L PP
- p; Api p; Api

p; i
— F=F,.
@ The corresponding quasi-Newton preconditioner in dual space is given as

~~T A A~ ~T ~~T

B AC Apipl C e
Gi=(ln— PP ) Gy f— ZPPE = ) PP

B/ ACP; B/ ACp: B/ ACP;

where i=1,...,1, C = HBHT, A= I, + R""HBHT and p; is the search direction.
— G = G/.
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Preconditioning in dual space

The quasi-Newton LMP in dual space (Linear case)

@ The quasi-Newton LMP: The descent directions p;, i =1, ...,/ generated by a CG
method are used.

T o o7
Fim (1= BEAY Fi (1, 222 4 BB
p Api p; Api p; Api
— F=F,.

@ The corresponding quasi-Newton preconditioner in dual space is given as

5pl AC ApipT C 5:p7 C
G = (1 PPACY 6, (4, ABBLCY | P
I-TACp, p,-TACp,' ,-TACp,'

where i=1,...,1, C = HBHT, A= I, + R""HBHT and p; is the search direction.
— G = G/.

— This preconditioner satisfies the relation: FH™ = BHT G and it is symmetric in
the C inner product (Gratton, Gurol and Toint 2012).
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Preconditioning in dual space

The quasi-Newton LMP in dual space (Nonlinear case)

@ For nonlinear case, inheriting the previous preconditioner may not be possible!

n=196 m=64
itermax =10 Imem =10

=== PCG with quasi-Newton LMP
30 === RPCG with quasi-Newton LMP | |

Cost function

-

10 ’_,’ 1

.---*-----‘-----.-----‘-----q
. . | | |

a 5 10 1‘5 Zb 2‘5 30 35 40 4‘5 50
Iterations
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Preconditioning in dual space

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:
@ Re-generate the pairs and the preconditioner using the current inner product.
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Preconditioning in dual space

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:
@ Re-generate the pairs and the preconditioner using the current inner product.

5T A 55T
G =1 f,p, AC Gt — Ap,p, c n Ap,/i, CA
pTACP; BIACE )  BIACH

where i=1,...1, C = HBHT, A= I, + R""HBHT and p; is the search direction.
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Preconditioning in dual space

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:
@ Re-generate the pairs and the preconditioner using the current inner product.

S5TA 557 55T
G = (In—PPAC) Gy (1, — APPLCEY , PLC
B/ ACP; B/ ACpi B/ ACP;

where i=1,...1, C = HBHT, A= I, + R""HBHT and p; is the search direction.

— It is costly for large-scale problems.
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Preconditioning in dual space

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:

@ Re-generate the pairs and the preconditioner using the current inner product.

~~T A ’\A‘A'T
G =1 E,p, AC Gt — ﬁ‘pf'f n pip C
plACP prACP ,-TACp,-

where i=1,...1, C = HBHT, A= I, + R""HBHT and p; is the search direction.

— It is costly for large-scale problems.

@ Define a criterion on whether we precondition the system or not by using a
measure on symmetry.

— Sensitive to the threshold value.
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Preconditioning in dual space

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:

@ Re-generate the pairs and the preconditioner using the current inner product.

~~T A ’\A‘A'T
G =1 E,p, AC Gt — ﬁ‘pf'f n pip C
plACP prACP p,-TACp,-

where i=1,...1, C = HBHT, A= I, + R""HBHT and p; is the search direction.

— It is costly for large-scale problems.

@ Define a criterion on whether we precondition the system or not by using a
measure on symmetry.

— Sensitive to the threshold value.

Objective:
@ A robust algorithm that handles this sensitivity
@ A globally convergent algorithm

@ Most cases are not highly nonlinear : — Perturb as little as possible the
preconditioner of the linear case, and check a posteriori
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Globally convergent algorithm in dual space

@ Global convergence can be ensured by inserting the Gauss-Newton strategy in a
trust region framework.

@ Trust-region method simply solves the following problem at iteration k:

: 1 1
min J(dxc) = §||5Xk — xp + Xk || 5-1 + §||Hk5xk — di||%

dxx ER

subject to ||0xx|| -1 < Ak (primal approach)
k

where Ay is the trust region radius.
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Globally convergent algorithm in dual space

Trust-region in dual space

@ The preconditioner Gx_; that is inherited from previous iteration may not be
symmetric in the current inner product and may not be positive-definite in the
full dual space (merely in one direction).
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Trust-region in dual space

@ The preconditioner Gx_; that is inherited from previous iteration may not be
symmetric in the current inner product and may not be positive-definite in the
full dual space (merely in one direction).

@ We need to adapt the strategy in the trust region algorithm.
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Globally convergent algorithm in dual space

Trust-region in dual space

@ The preconditioner Gx_; that is inherited from previous iteration may not be
symmetric in the current inner product and may not be positive-definite in the
full dual space (merely in one direction).

@ We need to adapt the strategy in the trust region algorithm.

TR Step calculation with a flexible (Steihaug-Toint) RPCG

algorithm
@ Check the positive-definiteness along the steepest descent direction.

@ Compute the Cauchy step

© Compute the step beyond the Cauchy step with the RPCG algorithm (ignoring
symmetry problem)

@ Backtrack along the CG path if needed
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Globally convergent algorithm in dual space

Trust-region in dual space

Flexible trust region algorithm

@ |Initialization
@ Compute the step by the flexible (Steihaug Toint) RPCG algorithm

© Accept the step beyond the Cauchy step if
F(ye) < F(x¢)

© Accept the trial point according to the ratio of achieved to predicted reduction

@ Update the trust region

— The global convergence can be proved! (see S. Gurol PhD)
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Globally convergent algorithm in dual space

Trust-region in dual space

Flexible trust region algorithm

@ |Initialization
@ Compute the step by the flexible (Steihaug Toint) RPCG algorithm

© Accept the step beyond the Cauchy step if
F(ye) < F(x¢)

© Accept the trial point according to the ratio of achieved to predicted reduction

@ Update the trust region

— The global convergence can be proved! (see S. Gurol PhD)

— This approach is similar to the approach that computes the magical step proposed by
(Conn, Gould, Toint 2000).
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Numerical Results

Numerical experiment on heat equation (1/3)

The dynamical model is considered to be the nonlinear heat equation defined by

ot du?  Ov?
x[u, v, t] =0 on 62 x (0, c0)

+ f[x] =0in Q x (0, 00)

where the temperature variable x[u, v, t] depend on both time t and position given by
spatial coordinates u and v. The function f[x] is defined by

f[x] = exp[nx]

Serge G. (CERFACS) The ADTAO




Numerical Results

Numerical experiment on heat equation (

flx] = explnx] n =2

n=19% m=64
itermaxx =10 Imem =10
10 : : - - - - r - '

=== =PCG with quasi-Newton LMP
== =RPCG with quasi-Newton LMP

F == =PCG without preconditioner
10 \ E
c
2 n
b 1
Q
1
ERE i
- A
k] \
3
=] S
o Y
g L) 4
10 -‘h\-.
\\ -

"--1—::===FIIII.'-----“

10 L L L L L L L L L
o & 10 158 20 25 30 35 40 45 a0

lterations
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Numerical Results

Numerical experiment on heat equation (3/3)

f[x] = exp[nx] n =4.2

n=19% m=64
itermaxx =10 Imem =10
10 : : - - - - r - '

=== =PCG with quasi-Newton LMP
=== =PCG without preconditioning
= = = RPCG with quasi-Newton LMP

Cost function

lterations
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