Variationnal Data assimilation, Earth, Atmosphere, Ocean

Serge Gratton
University of Toulouse
CERFACS-IRIT, Toulouse, France

Joint work with S. Gurol, P. Jiranek, D. Titley-Peloquin, Ph.L. Toint, J. Tshimanga (CERFACS-IRIT)
O. Titaud, I. Mirouze, A. Weaver (CERFACS)
L. Berre, G. Desroziers, H. Varella (Météo-France)
R. Biancale, L. Seoane, W. Zerhouni (CNES)

ADTAO seminar, Toulouse 2013

The ADTAO project

- Is funded by RTRA-STAE
- Is a 4 year project
- Involves international experts: I.S. Duff, J.Mandel, A. Moore, Ph.L. Toint, L.N. Vicente,
- Recruited 6 postdocs : J. Tshimanga, L. Seoane, W. Zerhouni, H. Varella, P. Jiranek, D. Titley-Peloquin
- Is a collaboration between 5 entities: CERFACS, CNES, IRIT, Mteo-France, Obervatoire Midi-Pyrnes
- Produced 25 journal papers, 2 international conferences, operational softwares for NEMOVAR, GINS, ROMS, Arpège-IFS
- Introduction to data assimilation
- Dual iterative solvers
- Summary and ongoing related work
- Introduction to data assimilation
- Dual iterative solvers
- Summary and ongoing related work

A dynamical integration model predicts the state of the system given the state at an earlier time.
\longrightarrow integrating may lead to very large prediction errors (inexact physics, discretization errors, approximated parameters)

A dynamical integration model predicts the state of the system given the state at an earlier time.
\longrightarrow integrating may lead to very large prediction errors (inexact physics, discretization errors, approximated parameters)

Observational data are used to improve accuracy of the forecasts.
\longrightarrow but the data are inaccurate (measurement noise, under-sampling)

Solve a large-scale non-linear weighted least-squares problem:

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\left\|x-x_{b}\right\|_{B^{-1}}^{2}+\frac{1}{2} \sum_{j=0}^{N}\left\|\mathcal{H}_{j}\left(\mathcal{M}_{j}(x)\right)-y_{j}\right\|_{R_{j}^{-1}}^{2}
$$

where

- $x \equiv x\left(t_{0}\right)$ is the control variable
- \mathcal{M}_{j} are model operators: $x\left(t_{j}\right)=\mathcal{M}_{j}\left(x\left(t_{0}\right)\right)$
- \mathcal{H}_{j} are observation operators: $y_{j} \approx \mathcal{H}_{j}\left(x\left(t_{j}\right)\right)$
- the obervations y_{j} and the background x_{b} are noisy
- B and R_{j} are covariance matrices

Project desciption:

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\left\|x-x_{b}\right\|_{B^{-1}}^{2}+\frac{1}{2} \sum_{j=0}^{N}\left\|\mathcal{H}_{j}\left(\mathcal{M}_{j}(x)\right)-y_{j}\right\|_{R_{j}^{-1}}^{2}
$$

where

- Improving B : CERFACS and CNES, using diffusion operator and ensemble techniques (Talks of L. Berre, A. Weaver)
- Optimization algorithms: CERFACS, IRIT, CNES dual algorithms and Ensemble Kalman filters (Talks of Ph. Toint, L. Vicente)
- Modelling : CNES

Solve a large-scale non-linear weighted least-squares problem:

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\left\|x-x_{b}\right\|_{B^{-1}}^{2}+\frac{1}{2} \sum_{j=0}^{N}\left\|\mathcal{H}_{j}\left(\mathcal{M}_{j}(x)\right)-y_{j}\right\|_{R_{j}^{-1}}^{2}
$$

Typically solved using a truncated Gauss-Newton algorithm (known as 4D-Var in the DA community).

Solve a large-scale non-linear weighted least-squares problem:

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\left\|x-x_{b}\right\|_{B^{-1}}^{2}+\frac{1}{2} \sum_{j=0}^{N}\left\|\mathcal{H}_{j}\left(\mathcal{M}_{j}(x)\right)-y_{j}\right\|_{R_{j}^{-1}}^{2}
$$

Typically solved using a truncated Gauss-Newton algorithm (known as 4D-Var in the DA community).
\longrightarrow linearize $\mathcal{H}_{j}\left(\mathcal{M}_{j}\left(x^{(k)}+\delta x^{(k)}\right)\right) \approx \mathcal{H}_{j}\left(\mathcal{M}_{j}\left(x^{(k)}\right)\right)+H_{j}^{(k)} \delta x^{(k)}$
\longrightarrow solve the linearized subproblem

$$
\min _{\delta x^{(k)} \in \mathbb{R}^{n}} \frac{1}{2}\left\|\delta x^{(k)}-\left(x_{b}-x^{(k)}\right)\right\|_{B^{-1}}^{2}+\frac{1}{2}\left\|H^{(k)} \delta x^{(k)}-d^{(k)}\right\|_{R^{-1}}^{2}
$$

\longrightarrow update $x^{(k+1)}=x^{(k)}+\delta x^{(k)}$

- Introduction to data assimilation
- Dual iterative solvers
- Summary and ongoing related work

Exploiting the structure: Dual Approach

- The exact solution can be rewritten from duality theory or using the Sherman-Morrison-Woodbury formula

$$
x_{b}-x_{k}+B H_{k}^{T} \underbrace{\left(H_{k} B H_{k}^{T}+R\right)^{-1}\left(d_{k}-H_{k}\left(x_{b}-x_{k}\right)\right)}_{\text {Lagrange mult. : requires solving a linear system iteratively in } \mathbb{R}^{m}}
$$

Exploiting the structure: Dual Approach

- The exact solution can be rewritten from duality theory or using the Sherman-Morrison-Woodbury formula

$$
x_{b}-x_{k}+B H_{k}^{T} \underbrace{\left(H_{k} B H_{k}^{T}+R\right)^{-1}\left(d_{k}-H_{k}\left(x_{b}-x_{k}\right)\right)}_{\text {Lagrange mult. : requires solving a linear system iteratively in } \mathbb{R}^{m}}
$$

- If $m \ll n$, then performing the minimization in \mathbb{R}^{m} can reduce memory and computational cost.

Exploiting the structure: Dual Approach

- The exact solution can be rewritten from duality theory or using the Sherman-Morrison-Woodbury formula

$$
x_{b}-x_{k}+B H_{k}^{T} \underbrace{\left(H_{k} B H_{k}^{T}+R\right)^{-1}\left(d_{k}-H_{k}\left(x_{b}-x_{k}\right)\right)}_{\text {Lagrange mult. : requires solving a linear system iteratively in } \mathbb{R}^{m}}
$$

- If $m \ll n$, then performing the minimization in \mathbb{R}^{m} can reduce memory and computational cost.

Preconditioned CG algorithm

Initialization

- $r_{0}=A \delta x_{0}-b, z_{0}=F r_{0}, p_{0}=z_{0}$

For $i=0,1, \ldots$

(1) $q_{i}=\left(B^{-1}+H^{\top} R^{-1} H\right) p_{i}$
(2) $\alpha_{i}=<r_{i}, z_{i}>/<q_{i}, p_{i}>$
(3) $\delta x_{i+1}=\delta x_{i}+\alpha_{i} p_{i}$
(3) $r_{i+1}=r_{i}-\alpha_{i} q_{i}$
(5) $r_{i+1}=r_{i+1}-R Z^{\top} r_{i+1}$
(0) $z_{i+1}=F r_{i+1}$
(1) $\left.\beta_{i}=<r_{i+1}, z_{i+1}\right\rangle /\left\langle r_{i}, z_{i}\right\rangle$
(8) $R=\left[R, r / \beta_{i}\right]$
(9) $Z=\left[Z, z / \beta_{i}\right]$
(10) $p_{i+1}=z_{i+1}+\beta_{i} p_{i}$

Compute the step-length
Update the iterate
Update the residual
Re-orthogonalization
Update the preconditioned residual
Ensure A-conjugate directions
Re-orthogonalization
Re-orthogonalization
Update the descent direction

Theorem

Suppose that
(1) $\mathbf{B H}^{\mathrm{T}} \mathbf{G}=\mathbf{F H}^{\mathrm{T}}$.
(2) $\mathbf{v}_{0}=\mathbf{x}^{b}-\mathrm{x}_{0}$.
\rightarrow vectors $\widehat{\mathbf{r}}_{i}, \quad \widehat{\mathbf{p}}_{i}, \widehat{\mathbf{v}}_{i}, \widehat{\mathbf{z}}_{i}$ and $\widehat{\mathbf{q}}_{i}$ such that

$$
\begin{aligned}
\mathbf{r}_{i} & =\mathbf{H}^{\mathrm{T}} \widehat{\mathbf{r}}_{i}, \\
\mathbf{p}_{i} & =\mathbf{B H}^{\mathrm{T}} \widehat{\mathbf{p}}_{i}, \\
\mathbf{v}_{i} & =\mathbf{v}_{0}+\mathbf{B} \mathbf{H}^{\mathrm{T}} \widehat{\mathbf{v}}_{i}, \\
\mathbf{z}_{i} & =\mathbf{B} \mathbf{H}^{\mathrm{T}} \widehat{\mathbf{z}}_{i}, \\
\mathbf{q}_{i} & =\mathbf{H}^{\mathrm{T}} \widehat{\mathbf{q}}_{i}
\end{aligned}
$$

Initialization steps

given $\mathbf{v}_{0} ; \mathbf{r}_{0}=\left(\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}+\mathbf{B}^{-1}\right) \mathbf{v}_{0}-\mathbf{b}, \ldots$
Loop: WHILE
(1) $\mathbf{H}^{\mathrm{T}} \widehat{\mathbf{q}}_{i-1}=\mathbf{H}^{\mathrm{T}}\left(\mathbf{R}^{-1} \mathbf{H} \mathbf{B}^{-1} \mathbf{H}^{\mathrm{T}}+\mathbf{I}_{m}\right) \widehat{\mathbf{p}}_{i-1}$
(2) $\alpha_{i-1}=\mathbf{r}_{i-1}^{\mathrm{T}} \mathbf{z}_{i-1} / \widehat{\mathbf{q}}_{i-1}^{\mathrm{T}} \widehat{\mathbf{p}}_{i-1}$
(3) $\mathbf{B H}^{\mathrm{T}} \widehat{\mathbf{v}}_{i}=\mathbf{B H}^{\mathrm{T}}\left(\mathbf{v}_{i-1}+\alpha_{i-1} \widehat{\mathbf{p}}_{i-1}\right)$
(9) $\mathbf{H}^{\mathrm{T}} \widehat{\mathbf{r}}_{i}=\mathbf{H}^{\mathrm{T}}\left(\mathbf{r}_{i-1}+\alpha_{i-1} \widehat{\mathbf{q}}_{i-1}\right)$
(5) $\mathbf{B H ^ { T }} \widehat{\mathbf{z}}_{i}=\mathbf{F} \mathbf{H}^{\mathrm{T}} \widehat{\mathbf{r}}_{i}=\mathbf{B} \mathbf{H}^{\mathrm{T}} \mathbf{G} \widehat{\mathbf{r}}_{i} \quad F H^{T}=B H^{T} G$
(6) $\beta_{i}=\left(\mathbf{r}_{i}^{\mathrm{T}} \mathbf{z}_{i} / \mathbf{r}_{i-1}^{\mathrm{T}} \mathbf{z}_{i-1}\right)$
(1) $\mathbf{B} \mathbf{H}^{\mathrm{T}} \widehat{\mathbf{p}}_{i}=\mathbf{B} \mathbf{H}^{\mathrm{T}}\left(-\widehat{\mathbf{z}}_{i}+\beta_{i} \widehat{\mathbf{p}}_{i-1}\right)$

Initialization

$\lambda_{0}=0, \widehat{r}_{0}=R^{-1}\left(d-H\left(x_{b}-x\right)\right)$,
$\widehat{z}_{0}=G \widehat{r}_{0}, \widehat{p}_{1}=\widehat{z}_{0}, k=1$

Loop on k

(1) $\widehat{q}_{i}=\widehat{A} \widehat{p}_{i}$
(2) $\alpha_{i}=<\widehat{r}_{i-1}, \widehat{z}_{i-1}>_{c} /<\widehat{q}_{i}, \widehat{p}_{i}>_{c}$
(3) $\lambda_{i}=\lambda_{i-1}+\alpha_{i} \widehat{p}_{i}$
(4) $\widehat{r}_{i}=\widehat{r}_{i-1}-\alpha_{i} \widehat{q}_{i}$
(5) $\beta_{i}=<\widehat{r}_{i-1}, \widehat{z}_{i-1}>_{c} /<$ $\widehat{r}_{i-2}, \widehat{z}_{i-2}>c$
(6) $\widehat{z}_{i}=G \widehat{r}_{i}$
(7) $\hat{p}_{i}=\widehat{z}_{i-1}+\beta_{i} \widehat{p}_{i-1}$

- $\widehat{A}=R^{-1} H B H^{T}+I_{m}$
- G is the preconditioner.
- C is the inner-product.
- RPCG Algorithm: $\mathrm{C}=\mathrm{HBH}^{\top}$ identical CG on original system : preserves monotonic decrease of quadratic cost and exploit geometry
- G should be symmetric w.r.t. to C $\left(F H^{T}=B H^{T} G\right)$

Initialization

$\lambda_{0}=0, \widehat{r}_{0}=R^{-1}\left(d-H\left(x_{b}-x\right)\right)$,
$\widehat{z}_{0}=G \widehat{r}_{0}, \widehat{p}_{1}=\widehat{z}_{0}, k=1$

Loop on k

(1) $\widehat{q}_{i}=\widehat{A} \widehat{p}_{i}$
(2) $\alpha_{i}=<\widehat{r}_{i-1}, \widehat{z}_{i-1}>_{c} /<\widehat{q}_{i}, \widehat{p}_{i}>_{c}$
(3) $\lambda_{i}=\lambda_{i-1}+\alpha_{i} \widehat{p}_{i}$
(4) $\widehat{r}_{i}=\widehat{r}_{i-1}-\alpha_{i} \widehat{q}_{i}$
(5) $\beta_{i}=<\widehat{r}_{i-1}, \widehat{z}_{i-1}>_{c} /<$ $\widehat{r}_{i-2}, \widehat{z}_{i-2}>c$
(6) $\widehat{z}_{i}=G \widehat{r}_{i}$
(7) $\hat{p}_{i}=\widehat{z}_{i-1}+\beta_{i} \hat{p}_{i-1}$

- $\widehat{A}=R^{-1} H B H^{T}+I_{m}$
- G is the preconditioner.
- C is the inner-product.
- RPCG Algorithm: $C=H B H^{T}$ identical CG on original system : preserves monotonic decrease of quadratic cost and exploit geometry
- G should be symmetric w.r.t. to C $\left(F H^{T}=B H^{\top} G\right)$
- Best known reference: PSAS Algorithm for $C=R$
- Observations: SST (Sea Surface Temperature) and SSH(Sea Surface Height) observations from satellites. Sub-surface hydrographic observations from floats.
- Number of observations (m): 10^{5}
- Number of state variables $(\mathrm{n}): 10^{6}$ for strong constraint and 10^{7} for weak constraint.
- Computation: 64 CPUs

- It is possible to maintain the one-to-one correspondance between primal and dual iterates, under the assumption that

$$
F_{k-1} H_{k}^{T}=B H_{k}^{T} G_{k-1}
$$

where F_{k-1} is a preconditioner for a primal solver and G_{k-1} is a preconditioner for a dual solver (Gratton and Tshimanga 2009).

- The preconditioner G_{k-1} needs to be symmetric in $H_{k} B H_{k}^{T}$ inner product.
- Use Preconditioned Conjugate Gradient method (PCG)
\rightarrow Preconditioning with the quasi-Newton Limited Memory Preconditioner (Morales and Nocedal 2000) (Gratton, Sartenaer and Tshimanga 2011)
- For linear case, Gratton, Gurol and Toint (2012) derive the quasi-Newton LMP in dual space which generates mathematically equivalent iterates to those of primal approach.

The quasi-Newton LMP in dual space (Linear case)

- The quasi-Newton LMP: The descent directions $p_{i}, i=1, \ldots, /$ generated by a CG method are used.

The quasi-Newton LMP in dual space (Linear case)

- The quasi-Newton LMP: The descent directions $p_{i}, i=1, \ldots, /$ generated by a CG method are used.

$$
F_{i}=\left(I_{n}-\frac{p_{i} p_{i}^{T} A}{p_{i}^{T} A p_{i}}\right) F_{i-1}\left(I_{n}-\frac{A p_{i} p_{i}^{T}}{p_{i}^{T} A p_{i}}\right)+\frac{p_{i} p_{i}^{T}}{p_{i}^{T} A p_{i}}
$$

$\rightarrow F=F_{l}$.

The quasi-Newton LMP in dual space (Linear case)

- The quasi-Newton LMP: The descent directions $p_{i}, i=1, \ldots, I$ generated by a CG method are used.

$$
F_{i}=\left(I_{n}-\frac{p_{i} p_{i}^{T} A}{p_{i}^{T} A p_{i}}\right) F_{i-1}\left(I_{n}-\frac{A p_{i} p_{i}^{T}}{p_{i}^{T} A p_{i}}\right)+\frac{p_{i} p_{i}^{T}}{p_{i}^{T} A p_{i}}
$$

$\rightarrow F=F_{l}$.

- The corresponding quasi-Newton preconditioner in dual space is given as

$$
G_{i}=\left(I_{m}-\frac{\widehat{p}_{i} \widehat{p}_{i}^{T} \widehat{A} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}\right) G_{i-1}\left(I_{m}-\frac{\widehat{A} \widehat{p}_{i} \hat{p}_{i}^{T} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}\right)+\frac{\widehat{p}_{i} \widehat{p}_{i}^{T} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}
$$

where $i=1, \ldots, l, C=H B H^{\top}, \widehat{A}=I_{m}+R^{-1} H B H^{T}$ and \widehat{p}_{i} is the search direction. $\rightarrow G=G_{l}$.

The quasi-Newton LMP in dual space (Linear case)

- The quasi-Newton LMP: The descent directions $p_{i}, i=1, \ldots, I$ generated by a CG method are used.

$$
F_{i}=\left(I_{n}-\frac{p_{i} p_{i}^{T} A}{p_{i}^{T} A p_{i}}\right) F_{i-1}\left(I_{n}-\frac{A p_{i} p_{i}^{T}}{p_{i}^{T} A p_{i}}\right)+\frac{p_{i} p_{i}^{T}}{p_{i}^{T} A p_{i}}
$$

$\rightarrow F=F_{l}$.

- The corresponding quasi-Newton preconditioner in dual space is given as

$$
G_{i}=\left(I_{m}-\frac{\widehat{p}_{i} \hat{p}_{i}^{T} \hat{A} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}\right) G_{i-1}\left(I_{m}-\frac{\widehat{A} \widehat{p}_{i} \hat{p}_{i}^{T} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}\right)+\frac{\widehat{p}_{i} \hat{p}_{i}^{T} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}
$$

where $i=1, \ldots, l, C=H B H^{\top}, \widehat{A}=I_{m}+R^{-1} H B H^{T}$ and \widehat{p}_{i} is the search direction. $\rightarrow G=G_{l}$.
\rightarrow This preconditioner satisfies the relation: $F H^{T}=B H^{T} G$ and it is symmetric in the C inner product (Gratton, Gurol and Toint 2012).

The quasi-Newton LMP in dual space (Nonlinear case)

- For nonlinear case, inheriting the previous preconditioner may not be possible!

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:

- Re-generate the pairs and the preconditioner using the current inner product.

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:

- Re-generate the pairs and the preconditioner using the current inner product.

$$
G_{i}=\left(I_{m}-\frac{\widehat{p}_{i} \hat{p}_{i}^{T} \hat{A} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}\right) G_{i-1}\left(I_{m}-\frac{\widehat{A} \widehat{p}_{i} \widehat{p}_{i}^{T} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}\right)+\frac{\widehat{p}_{i} \hat{p}_{i}^{T} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}
$$

where $i=1, \ldots, I, C=H B H^{T}, \widehat{A}=I_{m}+R^{-1} H B H^{T}$ and \widehat{p}_{i} is the search direction.

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:

- Re-generate the pairs and the preconditioner using the current inner product.

$$
G_{i}=\left(I_{m}-\frac{\widehat{p}_{i} \hat{p}_{i}^{T} \widehat{A} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}\right) G_{i-1}\left(I_{m}-\frac{\widehat{A} \widehat{p}_{i} \widehat{p}_{i}^{T} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}\right)+\frac{\widehat{p}_{i} \hat{p}_{i}^{T} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}
$$

where $i=1, \ldots, I, C=H B H^{T}, \widehat{A}=I_{m}+R^{-1} H B H^{T}$ and \widehat{p}_{i} is the search direction.
\rightarrow It is costly for large-scale problems.

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:

- Re-generate the pairs and the preconditioner using the current inner product.

$$
G_{i}=\left(I_{m}-\frac{\widehat{p}_{i} \hat{p}_{i}^{T} \widehat{A} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}\right) G_{i-1}\left(I_{m}-\frac{\widehat{A} \widehat{p}_{i} \widehat{p}_{i}^{T} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}\right)+\frac{\widehat{p}_{i} \hat{p}_{i}^{T} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}
$$

where $i=1, \ldots, I, C=H B H^{T}, \widehat{A}=I_{m}+R^{-1} H B H^{T}$ and \widehat{p}_{i} is the search direction.
\rightarrow It is costly for large-scale problems.

- Define a criterion on whether we precondition the system or not by using a measure on symmetry.
\rightarrow Sensitive to the threshold value.

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:

- Re-generate the pairs and the preconditioner using the current inner product.

$$
G_{i}=\left(I_{m}-\frac{\widehat{p}_{i} \widehat{p}_{i}^{T} \widehat{A} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}\right) G_{i-1}\left(I_{m}-\frac{\widehat{A} \widehat{p}_{i} \hat{p}_{i}^{T} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}\right)+\frac{\widehat{p}_{i} \widehat{p}_{i}^{T} C}{\widehat{p}_{i}^{T} \widehat{A} C \widehat{p}_{i}}
$$

where $i=1, \ldots, l, C=H B H^{T}, \widehat{A}=I_{m}+R^{-1} H B H^{T}$ and \widehat{p}_{i} is the search direction.
\rightarrow It is costly for large-scale problems.

- Define a criterion on whether we precondition the system or not by using a measure on symmetry.
\rightarrow Sensitive to the threshold value.

Objective:

- A robust algorithm that handles this sensitivity
- A globally convergent algorithm
- Most cases are not highly nonlinear : \rightarrow Perturb as little as possible the preconditioner of the linear case, and check a posteriori
- Global convergence can be ensured by inserting the Gauss-Newton strategy in a trust region framework.
- Trust-region method simply solves the following problem at iteration k :

$$
\begin{gathered}
\min _{\delta x_{k} \in \mathbb{R}^{n}} J\left(\delta x_{k}\right)=\frac{1}{2}\left\|\delta x_{k}-x_{b}+x_{k}\right\|_{B^{-1}}^{2}+\frac{1}{2}\left\|H_{k} \delta x_{k}-d_{k}\right\|_{R^{-1}}^{2} \\
\text { subject to }\left\|\delta x_{k}\right\|_{F_{k}^{-1}} \leq \Delta_{k}(\text { primal approach })
\end{gathered}
$$

where Δ_{k} is the trust region radius.

Trust-region in dual space

- The preconditioner G_{k-1} that is inherited from previous iteration may not be symmetric in the current inner product and may not be positive-definite in the full dual space (merely in one direction).

Trust-region in dual space

- The preconditioner G_{k-1} that is inherited from previous iteration may not be symmetric in the current inner product and may not be positive-definite in the full dual space (merely in one direction).
- We need to adapt the strategy in the trust region algorithm.

Trust-region in dual space

- The preconditioner G_{k-1} that is inherited from previous iteration may not be symmetric in the current inner product and may not be positive-definite in the full dual space (merely in one direction).
- We need to adapt the strategy in the trust region algorithm.

TR Step calculation with a flexible (Steihaug-Toint) RPCG algorithm

(1) Check the positive-definiteness along the steepest descent direction.
(2) Compute the Cauchy step
(3) Compute the step beyond the Cauchy step with the RPCG algorithm (ignoring symmetry problem)
(4) Backtrack along the CG path if needed

Trust-region in dual space

- The preconditioner G_{k-1} that is inherited from previous iteration may not be symmetric in the current inner product and may not be positive-definite in the full dual space (merely in one direction).
- We need to adapt the strategy in the trust region algorithm.

TR Step calculation with a flexible (Steihaug-Toint) RPCG algorithm

(1) Check the positive-definiteness along the steepest descent direction.
(2) Compute the Cauchy step
(3) Compute the step beyond the Cauchy step with the RPCG algorithm (ignoring symmetry problem)
(4) Backtrack along the CG path if needed

Trust-region in dual space

Flexible trust region algorithm

(1) Initialization
(2) Compute the step by the flexible (Steihaug Toint) RPCG algorithm
(3) Accept the step beyond the Cauchy step if

$$
f\left(y_{k}\right)<f\left(x_{k}^{c}\right)
$$

(4) Accept the trial point according to the ratio of achieved to predicted reduction
(5) Update the trust region
\rightarrow The global convergence can be proved! (see S. Gurol PhD)

Trust-region in dual space

Flexible trust region algorithm

(1) Initialization
(2) Compute the step by the flexible (Steihaug Toint) RPCG algorithm
(3) Accept the step beyond the Cauchy step if

$$
f\left(y_{k}\right)<f\left(x_{k}^{c}\right)
$$

(4) Accept the trial point according to the ratio of achieved to predicted reduction
(5) Update the trust region
\rightarrow The global convergence can be proved! (see S. Gurol PhD)
\rightarrow This approach is similar to the approach that computes the magical step proposed by (Conn, Gould, Toint 2000).

Numerical experiment on heat equation $(1 / 3)$

The dynamical model is considered to be the nonlinear heat equation defined by

$$
\begin{aligned}
\frac{\delta x}{\delta t}-\frac{\delta^{2} x}{\delta u^{2}}-\frac{\delta^{2} x}{\delta v^{2}}+f[x] & =0 \text { in } \Omega \times(0, \infty) \\
x[u, v, t] & =0 \text { on } \delta \Omega \times(0, \infty)
\end{aligned}
$$

where the temperature variable $x[u, v, t]$ depend on both time t and position given by spatial coordinates u and v. The function $f[x]$ is defined by

$$
f[x]=\exp [\eta x]
$$

Numerical experiment on heat equation $(2 / 3)$

Numerical experiment on heat equation $(3 / 3)$

Conclusion

- We developed and implemented a fast and robust preconditioned non-linear solver for large-scale problems
- The solver is implemented in operational systems in Meteorology and Oceanography
- Other techniques are used based on variant of Kalman filters : model reduction, ensemble algorithms
- S. Gratton, P. Toint and J. Tshimanga.

Inexact range-space Krylov solvers for linear systems arising from inverse problems.
SIAM Journal on Matrix Analysis and Applications, 32(3):969-986, 2011

- S. Gratton, P. Laloyaux, A. Sartenaer, and J. Tshimanga.

A reduced and limited-memory preconditioned approach for the 4d-var data-assimilation problem. Q. J. Roy. Meteor. Soc., 137:452-466, 2011.

- S. Gratton and J. Tshimanga.

An observation-space formulation of variational assimilation using a restricted preconditioned conjugate gradient algorithm. Q. J. Roy. Meterol. Soc., 135:1573-1585, 2009.

- J. Tshimanga, S. Gratton, A.T. Weaver, and A. Sartenaer.

Limited-memory preconditioners with application to incremental four-dimensional variational data assimilation. Q. J. Roy. Meterol. Soc., 134:753-771, 2008.

- S. Gratton, S. Gurol, Ph.Toint. Preconditioning and Globalizing Conjugate Gradients in Dual Space for Quadratically Penalized Nonlinear-Least Squares Problems. Computational Optimization and Applications, 54(1), pp. 1-25, 2013.
- S. Gratton, J. Tshimanga and Ph. L. Toint. Conjugate-gradients versus multigrid solvers for diffusion-based correlation models in data assimilation. Quarterly Journal of the Royal Meteorological Society, to appear, 2013.
- S. Gratton and L. N. Vicente. A surrogate management framework using rigorous trust-region steps. Optimization Methods and Software to appear, 2013.

