Use of piecewise linearization for (un)constrained optimization and ODE integration

Use of piecewise linearization for (un)constrained optimization and ODE integration

Andreas Griewank

with thanks to

HUB: Torsten Bosse, Tom Streubel, Nikolai Strogies, Uni Paderborn: Andrea Walther, Sabrina Fiege MIT: Paul Barton, Kamil Khan

Recent Advances in Optimization, July 2013

(ロ) (型) (E) (E) (E) (O)

Smooth stuff I won't talk about (very much)

Cubic Overestimation with Hessian Updating Gauss-Transposed-Broyden for Least Squares

Generalized Derivatives and Semismoothness

Background and Motivation Generalized differentiation rules Semismooth Newton Result

Piecewise linearization Approach

Piecewise linearization rules Approximation and Continuity Computing Generalized Jacobians

Applications to fundamental tasks

Nonsmooth equation solving (Un)constrained Optimization Integration of Lipschitzian Dynamics

Observations on Generalized Hessians

Use of piecewise linearization for (un)constrained optimization and ODE integration

Smooth stuff I won't talk about (very much)

Cubic Overestimation with Hessian Updating

Alternative stabilizations of quadratic model $f(x+s)-f(x) \approx m(s) \equiv g^{\top}s + \frac{1}{2}s^{\top}Bs$ with $g \equiv \nabla f(x), B \approx \nabla^2 f(x)$ if $f(x+s) \ll f(x)$ then $x_+ = x + s$, else $q_+ \gg q_+$, $s \rightarrow \infty$ Use of piecewise linearization for (un)constrained optimization $% \left({{\left({{{{\bf{n}}}} \right)}_{i}}_{i}} \right)$ and ODE integration

Smooth stuff I won't talk about (very much)

Cubic Overestimation with Hessian Updating

Alternative stabilizations of quadratic model $f(x+s)-f(x) \approx m(s) \equiv g^{\top}s + \frac{1}{2}s^{\top}Bs$ with $g \equiv \nabla f(x), B \approx \nabla^2 f(x)$ Line-search with $B \succ 0$ $s = \operatorname{argmin}\{m(s)\}$ $\alpha \approx \operatorname{argmin} \{f(x + \alpha s)\}$ and $x_{+} = x + \alpha s$ if $f(x+s) \ll f(x)$ then $x_+ = x + s$, else $q_{\pm} \gg q$, $z = s_0 \propto c_0$ Use of piecewise linearization for (un)constrained optimization $% \left({{\left({{{{\bf{n}}}} \right)}_{i}}_{i}} \right)$ and ODE integration

Smooth stuff I won't talk about (very much)

Cubic Overestimation with Hessian Updating

Alternative stabilizations of quadratic model $f(x+s)-f(x) \approx m(s) \equiv g^{\top}s + \frac{1}{2}s^{\top}Bs$ with $g \equiv \nabla f(x), B \approx \nabla^2 f(x)$ Line-search with $B \succ 0$ $s = \operatorname{argmin}\{m(s)\}$ $\alpha \approx \operatorname{argmin} \{f(x + \alpha s)\}$ and $x_{+} = x + \alpha s$ Trust Region with radius $\Delta > 0$ $s = \operatorname{argmin} \{ m(s) : \|s\| \leq \Delta \}$ if $f(x+s) \ll f(x)$ then $x_+ = x + s$ else $\Delta_+ \ll \Delta$ if $f(x+s) \ll f(x)$ then $x_+ = x + s$, else $q_{\pm} \gg q$, $z = s_0 \propto c_0$ Use of piecewise linearization for (un)constrained optimization $% \left({{\left({{{{\bf{n}}}} \right)}_{i}}_{i}} \right)$ and ODE integration

Smooth stuff I won't talk about (very much)

Cubic Overestimation with Hessian Updating

Alternative stabilizations of quadratic model $f(x+s)-f(x) \approx m(s) \equiv g^{\top}s + \frac{1}{2}s^{\top}Bs$ with $g \equiv \nabla f(x), B \approx \nabla^2 f(x)$ Line-search with $B \succ 0$ $s = \operatorname{argmin}\{m(s)\}$ $\alpha \approx \operatorname{argmin} \{f(x + \alpha s)\}$ and $x_{+} = x + \alpha s$ Trust Region with radius $\Delta > 0$ $s = \operatorname{argmin}\{m(s) : \|s\| < \Delta\}$ if $f(x+s) \ll f(x)$ then $x_+ = x + s$ else $\Delta_+ \ll \Delta$ Cubic overestimation with Lipschitz constant 2q > 0 $s = \operatorname{argmin}\{m(s) + q \|s\|^3/3\}$ if $f(x+s) \ll f(x)$ then $x_+ = x + s$, else $q_+ \gg q$, Use of piecewise linearization for (un)constrained optimization and ODE integration $_$ Smooth stuff I won't talk about (very much)

Cubic Overestimation with Hessian Updating

Step Computation and Properties

As shown by G. and others global minimum of the cubic model

$$g(x)^{\top}s + \frac{1}{2}s^{\top}Bs + \frac{1}{3}q\|s\|^3$$

is attained at all solutions of the appended linear system

$$(B + \lambda I)s = -g$$
 with $\lambda = q \|s\|$

for which $B(\lambda) \equiv B + \lambda I$ is positive semi-definite.

By eliminating $s(\lambda)$ we obtain a secular equation

$$\varphi(\lambda) \equiv \|s(\lambda)\|^2 \equiv g^{\top}(B+\lambda I)^{-2}g = \lambda^2/q^2.$$

where LHS/RHS are convex and monotonic falling/growing.

Use of piecewise linearization for (un)constrained optimization and ODE integration — Smooth stuff I won't talk about (very much)

Cubic Overestimation with Hessian Updating

Need to solve systems:

$$(B + \lambda I)s = -g$$
 for various $\lambda \in \mathbb{R}$

with *B* subject to shifted BFGS, SR1 or compromise update. Hessenberg form etc does not work, i.e. generates cost of $\mathcal{O}(n^3)$.

First way out: Updating the EVD

$$egin{array}{rcl} B &=& V \Lambda V^ op & ext{with diagonal } \Lambda ext{ and orthogonal } V \ B_\pm &=& B \pm cc^ op &=& V_\pm \Lambda_\pm V_\pm^ op \end{array}$$

requires $\mathcal{O}(n^2)$ operations for Λ_{\pm} via the secular equation and $\mathcal{O}((n \log n)^2)$ operations for V_{\pm} using fast polynomial arithmetic. But method is barely numerically stable even when *B* is symmetric.

True way out: Nocedal Recurrence ?

Keep B in limited memory product format and apply modified NR!

Sac

Use of piecewise linearization for (un)constrained optimization and ODE integration

Smooth stuff I won't talk about (very much)

- Cubic Overestimation with Hessian Updating

Performance Profile: Iteration count - 69 CUTEr problems

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - 釣んの

Use of piecewise linearization for (un)constrained optimization and ODE integration Smooth stuff I won't talk about (very much) Gauss-Transposed-Broyden for Least Squares

Basic Approach (see also Eldon Haber)

Data assimilation and other least squares require solutions of

$$\min_{x} \varphi(x) \equiv \frac{1}{2} \|F(x)\|^2 \quad \text{for} \quad F : \mathbb{R}^n \mapsto \mathbb{R}^n$$

quasi-Gauss Newton approach for computing step s at point x

$$B^{\top}Bs = -F'(x)^{\top}F(x) = -\nabla \varphi(x) \in \mathbb{R}^n$$

using $F'(x) pprox \ B \in \mathbb{R}^{m imes n}$ and only derivative vectors

 $z \equiv F'(x)^{\top}t \in \mathbb{R}^n$ and $y \equiv F'(x)s \in \mathbb{R}^m$

ション ふゆ く は マ く ほ マ く し マ

Use of piecewise linearization for (un)constrained optimization and ODE integration $_$ Smooth stuff I won't talk about (very much)

Gauss-Transposed-Broyden for Least Squares

Two-sided rank one formula

$$B_{+}(z) = B + r \left[r^{\top} \left(F'(x_{+}) - B \right) \right] / ||r||^{2} \text{ with } r = y - B s$$

Satisfies primal secant condition:

$$B_+ s = r + B s = F'(x_+)s = F(x+s) - F(x) + O(||s||^2)$$

Satisfies dual secant condition:

$$B_+^ op z = F'(x_+)^ op z$$
 for $r = z \in \mathbb{R}^m$

General Properties:

Fixed scale least change \implies bounded deterioration and Heredity in affine case yielding optimal rate in square case. Use of piecewise linearization for (un)constrained optimization and ODE integration

Smooth stuff I won't talk about (very much)

Gauss-Transposed-Broyden for Least Squares

Use of piecewise linearization for (un)constrained optimization $% \left({\left({n \right) } \right)_{n \in \mathbb{N}}} \right)$ and ODE integration

Smooth stuff I won't talk about (very much)

Gauss-Transposed-Broyden for Least Squares

Theoretical convergence result: Assumption: Smoothness and injectivity on level set

$$F \in C^{1,1}$$
 and $\inf_{\|F(x)\| \le \|F(x_0)\| \ge \|F(z)\|} \left\{ rac{\|F(x) - F(z)\|}{\|z - x\|}
ight\} > 0$

Wedin line-search
$$\implies$$
 Square summability
 $\left|\frac{F_{+}^{\top}(F_{+}-F)}{\|F_{+}-F\|^{2}} - 1\right| < \varepsilon \implies \sum \|F_{+}-F\| < \infty \implies$

 $\operatorname{mean} \left\{ \frac{1}{\|s\|} \| (F'_{+} - B) s \| + \frac{1}{\|r\|} \| (F'_{+} - B)^{\top} r \| + \frac{1}{\|y\|} \| (F'_{+} - B)^{\top} y \| \right\} = 0$ $\operatorname{Average Dennis and Moré} \implies \operatorname{Gauss-Newton Rate}$ $\operatorname{mean} \left\{ [B^{\top} B - F'(x)^{\top} F'(x)] s \right\} = 0 \implies \| s - s^{GN} \| / \| s \| \to 0$

Background and Motivation

Can we turn this into Algebra!? Directional derivative á la Dini, Hadamard, Clarke

$$F^{??}(\mathring{x}; \Delta x) \equiv \limsup_{\substack{x \to \mathring{x} \\ v \to \Delta x \\ t \searrow 0}} \left[\frac{F(x + tv) - F(x)}{t} \right]$$

Normal cone a la Mordukhovich in \mathbb{R}^n

$$\mathcal{N}(x; M) \equiv \limsup_{z \to x} \left\{ u^{\top} \in \mathbb{R}^m : \lim_{M \ni y \to z} \frac{u^{\top}(y - z)}{\|y - z\|} = 0 \right\}$$

Computational complexity?

Perturbations on x and Δx require exploration of F in full domain!!

Background and Motivation

Can we turn this into Algebra!? Directional derivative á la Dini, Hadamard, Clarke

$$F^{??}(\mathring{x}; \Delta x) \equiv \limsup_{\substack{x \to \mathring{x} \\ v \to \Delta x \\ t \searrow 0}} \left[\frac{F(x + tv) - F(x)}{t} \right]$$

Normal cone a la Mordukhovich in \mathbb{R}^n

$$\mathcal{N}(x; M) \equiv \limsup_{z \to x} \left\{ u^{\top} \in \mathbb{R}^m : \lim_{M \ni y \to z} \frac{u^{\top}(y-z)}{\|y-z\|} = 0 \right\}$$

Computational complexity?

Perturbations on x and Δx require exploration of F in full domain!!!

Background and Motivation

Can we turn this into Algebra!? Directional derivative á la Dini, Hadamard, Clarke

$$F^{??}(\mathring{x}; \Delta x) \equiv \limsup_{\substack{x \to \mathring{x} \\ v \to \Delta x \\ t \searrow 0}} \left[\frac{F(x + tv) - F(x)}{t} \right]$$

Normal cone a la Mordukhovich in \mathbb{R}^n

$$\mathcal{N}(x; M) \equiv \limsup_{z \to x} \left\{ u^{\top} \in \mathbb{R}^m : \lim_{M \ni y \to z} \frac{u^{\top}(y-z)}{\|y-z\|} = 0 \right\}$$

Computational complexity?

Perturbations on x and Δx require exploration of F in full domain!!!

Background and Motivation

Notational Zoo (Subspecies in Lipschitzian Habitat): Fréchet Derivative: $\partial F(x) \equiv \partial F/\partial x : \mathcal{D} \mapsto \mathbb{R}^{m \times n} \cup \emptyset$

Almost everywhere all concepts reduce to Fréchet, except PL!!

Background and Motivation

Notational Zoo (Subspecies in Lipschitzian Habitat): Fréchet Derivative: $\partial F(x) \equiv \partial F/\partial x : \mathcal{D} \mapsto \mathbb{R}^{m \times n} \cup \emptyset$ Limiting Jacobians: $\partial^L F(\dot{x}) \equiv \overline{\lim}_{x \to \dot{x}} \partial F(x) : \mathcal{D} \rightrightarrows \mathbb{R}^{m \times n}$

: $\mathcal{D} \mapsto \mathsf{PL}(\mathbb{R}^n, \mathbb{R}^m)$ Moriarty Effect by Rademacher $(\mathcal{C}^{0,1} = W^{1,\infty})$ Almost everywhere all concepts reduce to Fréchet, except PL!!

Background and Motivation

Notational Zoo (Subspecies in Lipschitzian Habitat): Fréchet Derivative: $\partial F(x) \equiv \partial F/\partial x : \mathcal{D} \mapsto \mathbb{R}^{m \times n} \cup \emptyset$ Limiting Jacobians: $\partial^L F(\dot{x}) \equiv \overline{\lim}_{x \to \dot{x}} \partial F(x) : \mathcal{D} \rightrightarrows \mathbb{R}^{m \times n}$ Clarke Jacobians: $\partial^{C} F(x) \equiv \operatorname{conv}(\partial^{L} F(x)) : \mathcal{D} \rightrightarrows \mathbb{R}^{m \times n}$

 $\mathcal{D} \mapsto \mathsf{PL}(\mathbb{R}^n, \mathbb{R}^m)$ Moriarty Effect by Rademacher $(\mathcal{C}^{0,1} = W^{1,\infty})$ Almost everywhere all concepts reduce to Fréchet, except PL!!

Background and Motivation

Notational Zoo (Subspecies in Lipschitzian Habitat): Fréchet Derivative: $\partial F(x) \equiv \partial F/\partial x : \mathcal{D} \mapsto \mathbb{R}^{m \times n} \cup \emptyset$ Limiting Jacobians: $\partial^L F(\dot{x}) \equiv \overline{\lim}_{x \to \dot{x}} \partial F(x) : \mathcal{D} \rightrightarrows \mathbb{R}^{m \times n}$ Clarke Jacobians: $\partial^C F(x) \equiv \operatorname{conv}(\partial^L F(x)) : \mathcal{D} \rightrightarrows \mathbb{R}^{m \times n}$ Bouligand: $F'(x; \Delta x) \equiv \lim_{t \searrow 0} [F(x + t\Delta x) - F(x)]/t$ $: \mathcal{D} \times \mathbb{R}^n \mapsto \mathbb{R}^m$ $: \mathcal{D} \mapsto \mathsf{PL}_h(\mathbb{R}^n, \mathbb{R}^m)$

Piecewise linearization:

 $\begin{array}{rcl} \Delta F(x;\Delta x) & : & \mathcal{D}\times\mathbb{R}^n\mapsto\mathbb{R}^m\\ & : & \mathcal{D}\mapsto\mathsf{PL}(\mathbb{R}^n,\mathbb{R}^m)\\ \end{array}$ Moriarty Effect by Rademacher $\left(\mathcal{C}^{0,1}=W^{1,\infty}\right)$ Almost everywhere all concepts reduce to Fréchet, except PL!!

Background and Motivation

Notational Zoo (Subspecies in Lipschitzian Habitat): Fréchet Derivative: $\partial F(x) \equiv \partial F/\partial x : \mathcal{D} \mapsto \mathbb{R}^{m \times n} \cup \emptyset$ Limiting Jacobians: $\partial^L F(\dot{x}) \equiv \overline{\lim}_{x \to \dot{x}} \partial F(x) : \mathcal{D} \rightrightarrows \mathbb{R}^{m \times n}$ Clarke Jacobians: $\partial^C F(x) \equiv \operatorname{conv}(\partial^L F(x)) : \mathcal{D} \rightrightarrows \mathbb{R}^{m \times n}$ Bouligand: $F'(x; \Delta x) \equiv \lim_{t \to 0} [F(x + t\Delta x) - F(x)]/t$ $: \mathcal{D} \times \mathbb{R}^n \mapsto \mathbb{R}^m$ $: \mathcal{D} \mapsto \mathsf{PL}_h(\mathbb{R}^n, \mathbb{R}^m)$

Piecewise linearization:

$$\Delta F(x;\Delta x)$$
 : $\mathcal{D} \times \mathbb{R}^n \mapsto \mathbb{R}^m$

: $\mathcal{D} \mapsto \mathsf{PL}(\mathbb{R}^n, \mathbb{R}^m)$

Moriarty Effect by Rademacher $(\mathcal{C}^{0,1} = W^{1,\infty})$ Almost everywhere all concepts reduce to Fréchet, except PL!!

Background and Motivation

Notational Zoo (Subspecies in Lipschitzian Habitat): Fréchet Derivative: $\partial F(x) \equiv \partial F/\partial x : \mathcal{D} \mapsto \mathbb{R}^{m \times n} \cup \emptyset$ Limiting Jacobians: $\partial^L F(\dot{x}) \equiv \overline{\lim}_{x \to \dot{x}} \partial F(x) : \mathcal{D} \rightrightarrows \mathbb{R}^{m \times n}$ Clarke Jacobians: $\partial^C F(x) \equiv \operatorname{conv}(\partial^L F(x)) : \mathcal{D} \rightrightarrows \mathbb{R}^{m \times n}$ Bouligand: $F'(x; \Delta x) \equiv \lim_{t \to 0} [F(x + t\Delta x) - F(x)]/t$ $: \mathcal{D} \times \mathbb{R}^n \mapsto \mathbb{R}^m$ $: \mathcal{D} \mapsto \mathsf{PL}_h(\mathbb{R}^n, \mathbb{R}^m)$

Piecewise linearization:

 $\begin{array}{rcl} \Delta F(x;\Delta x) & : & \mathcal{D} \times \mathbb{R}^n \mapsto \mathbb{R}^m \\ & : & \mathcal{D} \mapsto \mathsf{PL}(\mathbb{R}^n,\mathbb{R}^m) \end{array}$ Moriarty Effect by Rademacher $\left(\mathcal{C}^{0,1} = W^{1,\infty}\right)$ Almost everywhere all concepts reduce to Fréchet, except PL!! Use of piecewise linearization for (un)constrained optimization and ODE integration

Generalized Derivatives and Semismoothness

Background and Motivation

Always lurking in the background: Prof. Moriarty

Relations holding for ∂^L with implications for $\partial^C \equiv conv(\partial^L)$

•
$$\partial^{L}(\alpha F) = \alpha \partial^{L}(F)$$
 for $\alpha \in \mathbb{R}$

$$\blacktriangleright \ \partial^{L} {G \choose F} \subseteq \partial^{L} F \times \partial^{L} G \equiv \left\{ {A \choose B} : A \in \partial^{L} (F), B \in \partial^{L} (G) \right\}$$

$$\triangleright \ \partial^{L}(F \pm G) \subseteq \partial^{L}F \pm \partial^{L}G = \{A \pm B : A \in \partial^{L}F, B \in \partial^{L}G\}$$

$$\triangleright \ \partial^{L}(f \cdot g) \subseteq g \cdot \partial^{L}f + f \cdot \partial^{L}g$$

$$\triangleright \ \partial^{L}|f| \quad \begin{cases} = \partial^{L}f & \text{when } f > 0 \\ \subseteq -\partial^{L} \cup \{0\} \cup \partial^{L}f & \text{when } f = 0 \\ = -\partial^{L}f & \text{when } f < 0 \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Relations holding for ∂^L with implications for $\partial^C \equiv conv(\partial^L)$

•
$$\partial^{L}(\alpha F) = \alpha \partial^{L}(F)$$
 for $\alpha \in \mathbb{R}$

$$\bullet \ \partial^{L} {G \choose F} \subseteq \partial^{L} F \times \partial^{L} G \equiv \left\{ {A \choose B} : A \in \partial^{L} (F), B \in \partial^{L} (G) \right\}$$

$$\triangleright \ \partial^{L}(G \circ F) = \partial^{L}G(F) \cdot \partial^{L}F \quad \text{if} \quad G \in \mathcal{C}^{1}(\mathbb{R}^{m})$$

$$\triangleright \ \partial^{L}(F \pm G) \subseteq \partial^{L}F \pm \partial^{L}G = \{A \pm B : A \in \partial^{L}F, B \in \partial^{L}G\}$$

$$\triangleright \ \partial^{L}(f \cdot g) \subseteq g \cdot \partial^{L}f + f \cdot \partial^{L}g$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Relations holding for ∂^L with implications for $\partial^C \equiv conv(\partial^L)$

•
$$\partial^{L}(\alpha F) = \alpha \partial^{L}(F)$$
 for $\alpha \in \mathbb{R}$

$$\blacktriangleright \ \partial^{L} \binom{G}{F} \subseteq \partial^{L} F \times \partial^{L} G \equiv \left\{ \binom{A}{B} : A \in \partial^{L} (F), B \in \partial^{L} (G) \right\}$$

►
$$\partial^{L}(G \circ F) = \partial^{L}G(F) \cdot \partial^{L}F$$
 if $G \in C^{1}(\mathbb{R}^{m})$

 $\triangleright \ \partial^{L}(F \pm G) \subseteq \partial^{L}F \pm \partial^{L}G = \{A \pm B : A \in \partial^{L}F, B \in \partial^{L}G\}$

$$\triangleright \ \partial^{L}(f \cdot g) \subseteq g \cdot \partial^{L}f + f \cdot \partial^{L}g$$

Generalized differentiation rules

Relations holding for ∂^L with implications for $\partial^C \equiv conv(\partial^L)$

•
$$\partial^{L}(\alpha F) = \alpha \partial^{L}(F)$$
 for $\alpha \in \mathbb{R}$

$$\blacktriangleright \ \partial^{L} {G \choose F} \subseteq \partial^{L} F \times \partial^{L} G \equiv \left\{ {A \choose B} : A \in \partial^{L} (F), B \in \partial^{L} (G) \right\}$$

►
$$\partial^{L}(G \circ F) = \partial^{L}G(F) \cdot \partial^{L}F$$
 if $G \in C^{1}(R^{m})$

►
$$\partial^{L}(F \pm G) \subseteq \partial^{L}F \pm \partial^{L}G = \{A \pm B : A \in \partial^{L}F, B \in \partial^{L}G\}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

$$\triangleright \ \partial^{L}(f \cdot g) \subseteq g \cdot \partial^{L}f + f \cdot \partial^{L}g$$

Use of piecewise linearization for (un)constrained optimization and ODE integration Generalized Derivatives and Semismoothness Generalized differentiation rules

Relations holding for ∂^L with implications for $\partial^C \equiv conv(\partial^L)$

•
$$\partial^{L}(\alpha F) = \alpha \partial^{L}(F)$$
 for $\alpha \in \mathbb{R}$

$$\blacktriangleright \ \partial^{L} {G \choose F} \subseteq \partial^{L} F \times \partial^{L} G \equiv \left\{ {A \choose B} : A \in \partial^{L} (F), B \in \partial^{L} (G) \right\}$$

►
$$\partial^{L}(G \circ F) = \partial^{L}G(F) \cdot \partial^{L}F$$
 if $G \in C^{1}(R^{m})$

$$\flat \ \partial^{L}(F \pm G) \subseteq \partial^{L}F \pm \partial^{L}G = \{A \pm B : A \in \partial^{L}F, B \in \partial^{L}G\}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$$\triangleright \ \partial^{L}(f \cdot g) \subseteq g \cdot \partial^{L}f + f \cdot \partial^{L}g$$

Use of piecewise linearization for (un)constrained optimization and ODE integration Generalized Derivatives and Semismoothness Generalized differentiation rules

Relations holding for ∂^L with implications for $\partial^C \equiv conv(\partial^L)$

•
$$\partial^{L}(\alpha F) = \alpha \partial^{L}(F)$$
 for $\alpha \in \mathbb{R}$

$$\blacktriangleright \ \partial^{L} \binom{G}{F} \subseteq \partial^{L} F \times \partial^{L} G \equiv \left\{ \binom{A}{B} : A \in \partial^{L} (F), B \in \partial^{L} (G) \right\}$$

►
$$\partial^{L}(G \circ F) = \partial^{L}G(F) \cdot \partial^{L}F$$
 if $G \in C^{1}(R^{m})$

$$\flat \ \partial^{L}(F \pm G) \subseteq \partial^{L}F \pm \partial^{L}G = \{A \pm B : A \in \partial^{L}F, B \in \partial^{L}G\}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

$$\triangleright \ \partial^{L}(f \cdot g) \subseteq g \cdot \partial^{L}f + f \cdot \partial^{L}g$$

Use of piecewise linearization for (un)constrained optimization $% \left({{\left({{{{\bf{n}}}} \right)}_{n}}} \right)$ and ODE integration

-Generalized Derivatives and Semismoothness

Generalized differentiation rules

Direction of inclusions is:

Bad for evaluating (generalized) Jacobians: since application may result in gross overestimation. Example:

$$\partial^{L}[|x| - |x|]_{x=0} = \{0\} \neq \{-2, 0, 2\} = \{-1, +1\} + \partial^{L}[|x|]_{x=0}$$

Good for propagating semi-smoothness:

$$\limsup_{J \in \partial^{L} F(x+s)} \|F(x+s) - F(x) - Js\| = o(\|s\|)$$

Consequence:

All compositions of smoothies and **abs**() are semismooth !!!

Use of piecewise linearization for (un)constrained optimization $% \left({{{\rm{DDE}}}} \right)$ and ODE integration

-Generalized Derivatives and Semismoothness

Generalized differentiation rules

Direction of inclusions is:

Bad for evaluating (generalized) Jacobians: since application may result in gross overestimation. Example:

$$\partial^{L}[|x| - |x|]_{x=0} = \{0\} \neq \{-2, 0, 2\} = \{-1, +1\} + \partial^{L}[|x|]_{x=0}$$

Good for propagating semi-smoothness:

$$\limsup_{J\in\partial^{L}F(x+s)} \|F(x+s)-F(x)-Js\| = o(\|s\|)$$

Consequence:

All compositions of smoothies and **abs**() are semismooth !!!

・ロト ・雪 ・ ミート ・ ヨー うらつ

Use of piecewise linearization for (un)constrained optimization and ODE integration - Generalized Derivatives and Semismoothness - Semismooth Newton Result

Proposition by Kummer, Qi, Sun,Kunisch et al Semismoothness ensures that generalized Newton:

$$x_{k+1} = x_k - J^{-1}F(x_k)$$
 with $J \in \partial^L F(x_k)$

converges superlinearly to root $x_* \in F^{-1}(0)$ provided

$$\|x_0-x_*\|\leq
ho$$
 and $\|J^{-1}\|\leq M<\infty$ for $J\in\partial^L F(x_*)$

ション ふゆ く は マ く ほ マ く し マ

Doubts concerning Applicability:

- How small is contraction radius $\rho > 0$?
- How can we calculate some $J \in \partial^L F(x)$?

Use of piecewise linearization for (un)constrained optimization and ODE integration - Generalized Derivatives and Semismoothness - Semismooth Newton Result

Proposition by Kummer, Qi, Sun,Kunisch et al Semismoothness ensures that generalized Newton:

$$x_{k+1} = x_k - J^{-1}F(x_k)$$
 with $J \in \partial^L F(x_k)$

converges superlinearly to root $x_* \in F^{-1}(0)$ provided

$$\|x_0-x_*\|\leq
ho$$
 and $\|J^{-1}\|\leq M<\infty$ for $J\in\partial^L F(x_*)$

ション ふゆ く は マ く ほ マ く し マ

Doubts concerning Applicability:

- How small is contraction radius $\rho > 0$?
- How can we calculate some $J \in \partial^L F(x)$?

Use of piecewise linearization for (un)constrained optimization and ODE integration - Generalized Derivatives and Semismoothness - Semismooth Newton Result

Proposition by Kummer, Qi, Sun,Kunisch et al Semismoothness ensures that generalized Newton:

$$x_{k+1} = x_k - J^{-1}F(x_k)$$
 with $J \in \partial^L F(x_k)$

converges superlinearly to root $x_* \in F^{-1}(0)$ provided

$$\|x_0-x_*\|\leq
ho$$
 and $\|J^{-1}\|\leq M<\infty$ for $J\in\partial^{\sf L}{\sf F}(x_*)$

ション ふゆ く は マ く ほ マ く し マ

Doubts concerning Applicability:

- How small is contraction radius $\rho > 0$?
- How can we calculate some $J \in \partial^L F(x)$?

└-Semismooth Newton Result

Contraction radius \leq distance to next kink

●▶ ■ のへの

Use of piecewise linearization for (un)constrained optimization and ODE integration — Piecewise linearization Approach

Tacit but realistic assumption:

$$y = F(x) : \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}^m$$

defined by long evaluation loop

input :	$v_{i-n} = x_i$	for $i = 1 \dots n$
evaluation :	$\mathbf{v}_i = \varphi_i (\mathbf{v}_j)_{j\prec i}$	for $i=1\dots \ell$
output :	$y_{m-i} = v_{\ell-i}$	for $i = 0 m - 1$

where $v_i \in \mathbb{R}$ for $i = 1 - n \dots \ell$ and

$$\varphi_i \in \{+, -, *, /, \exp, \log, \sin, \cos, \dots, abs, \dots\}$$

Partial pre-ordering

$$j \prec i \iff c_{ij} \equiv \frac{\partial}{\partial \mathsf{v}_j} \varphi_i \not\equiv 0$$
.
Use of piecewise linearization for (un)constrained optimization and ODE integration \sqsubseteq Piecewise linearization Approach

abs covers min, max, $\|\cdot\|_1, \|\cdot\|_\infty$, table look-ups

Provided u and w are both finite one has

$$\max(u, w) = \frac{1}{2} [u + w + \operatorname{abs}(u - w)]$$

$$\min(u, w) = \frac{1}{2} [u + w - \operatorname{abs}(u - w)]$$

and data (x_i, y_i) for $i = 0 \dots n$ with slopes s_0 and s_{n+1} on left and right are piecewise linearly interpolated by the formula

$$y = \frac{1}{2} \left[s_0(x - x_0) + y_0 + \sum_{i=0}^n (s_{i+1} - s_i) abs(x - x_i) + y_n + s_{n+1}(x - x_n) \right]$$

ション ふゆ く は マ く ほ マ く し マ

where $s_i = (y_{i+1} - y_i)/(x_{i+1} - x_i)$ represent the inner slopes.

Use of piecewise linearization for (un)constrained optimization and ODE integration — Piecewise linearization Approach

Piecewise Linearization

We wish to determine for base point x and increment Δx

$$\Delta y \equiv \Delta F(x; \Delta x) = F(x + \Delta x) - F(x) + \mathcal{O}(||\Delta x||^2)$$

This can be done by propagating increments according to

Smooth elementals

Lipschitz Elementals

$$\Delta v_i = \mathbf{abs}(v_j + \Delta v_j) - \mathbf{abs}(v_j)$$
 when $v_i = \mathbf{abs}(v_j)$.

Use of piecewise linearization for (un)constrained optimization and ODE integration \square Piecewise linearization Approach

Use of piecewise linearization for (un)constrained optimization and ODE integration \square Piecewise linearization Approach

Use of piecewise linearization for (un)constrained optimization $% \left({{\left({{{{\bf{n}}}} \right)}_{i}}_{i}} \right)$ and ODE integration

Piecewise linearization Approach

Piecewise linearization rules

Linearity and Product Rule $F, G: \mathcal{D} \subset \mathbb{R}^n \mapsto \mathbb{R}^m, \ \alpha, \beta \in \mathbb{R}$ $\Delta[\alpha F + \beta G](x; \Delta x) = \alpha \Delta F(x, \Delta x) + \beta \Delta G(x, \Delta x)$ $\Delta[F^{\top}G](x;\Delta x) = G(x)^{\top}\Delta F(x,\Delta x) + F(x)^{\top}\Delta G(x,\Delta x)$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Use of piecewise linearization for (un)constrained optimization $% \left({{\left({{{{\bf{n}}}} \right)}_{i}}_{i}} \right)$ and ODE integration

Piecewise linearization Approach

Piecewise linearization rules

Linearity and Product Rule $F, G: \mathcal{D} \subset \mathbb{R}^n \mapsto \mathbb{R}^m, \ \alpha, \beta \in \mathbb{R}$ $\Delta[\alpha F + \beta G](x; \Delta x) = \alpha \Delta F(x, \Delta x) + \beta \Delta G(x, \Delta x)$ $\Delta[F^{\top}G](x;\Delta x) = G(x)^{\top}\Delta F(x,\Delta x) + F(x)^{\top}\Delta G(x,\Delta x)$ Chain Rule $F: \mathcal{D} \subset \mathbb{R}^n \mapsto \mathbb{R}^m$ and $G: E \subset \mathbb{R}^m \mapsto \mathbb{R}^p$ with $F(\mathcal{D}) \subset E$ $\Delta[G \circ F](x; \Delta x) = \Delta G(F(x); \Delta F(x, \Delta x))$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Use of piecewise linearization for (un)constrained optimization $% (M_{\rm e})$ and ODE integration - Piecewise linearization Approach

Approximation and Continuity

Proposition (Approximation and Lipschitz Continuity) Suppose F is composite Lipschitz on some open neighborhood \mathcal{D} of a closed convex domain $\mathcal{K} \subset \mathbb{R}^n$. Then there exists a constant γ such that for all pairs $\mathring{x}, x \in \mathcal{K}$

$$\|F(x) - F(\dot{x}) - \Delta F(\dot{x}; x - \dot{x})\| \le \gamma \|x - \dot{x}\|^2$$

Moreover, for any pair $\tilde{x}, \dot{x} \in \mathcal{K}, \Delta x \in \mathbb{R}^n$, and a constant $\tilde{\gamma}$ $\|\Delta F(\tilde{x}; \Delta x) - \Delta F(\dot{x}; \Delta x)\| / (1 + \|\Delta x\|) \leq \tilde{\gamma} \|\tilde{x} - \dot{x}\|$

Finally there is a continuous radius $\rho(\dot{x})$ such that

 $\Delta F(\dot{x}; \Delta x) = F'(\dot{x}; \Delta x) \quad if \quad ||\Delta x|| < \rho(\dot{x})$

Locally we reduce to the homogeneous piecewise linear $F'(x; \Delta x)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Use of piecewise linearization for (un)constrained optimization $% (M_{\rm e})$ and ODE integration - Piecewise linearization Approach

Approximation and Continuity

Proposition (Approximation and Lipschitz Continuity) Suppose F is composite Lipschitz on some open neighborhood \mathcal{D} of a closed convex domain $\mathcal{K} \subset \mathbb{R}^n$. Then there exists a constant γ such that for all pairs $\mathring{x}, x \in \mathcal{K}$

$$\|F(x) - F(\dot{x}) - \Delta F(\dot{x}; x - \dot{x})\| \leq \gamma \|x - \dot{x}\|^2$$

Moreover, for any pair $\tilde{x}, \dot{x} \in \mathcal{K}$, $\Delta x \in \mathbb{R}^n$, and a constant $\tilde{\gamma}$ $\|\Delta F(\tilde{x}; \Delta x) - \Delta F(\dot{x}; \Delta x)\| / (1 + \|\Delta x\|) \leq \tilde{\gamma} \|\tilde{x} - \dot{x}\|$

Finally there is a continuous radius $\rho(\dot{x})$ such that

 $\Delta F(\dot{x}; \Delta x) = F'(\dot{x}; \Delta x) \quad if \quad \|\Delta x\| < \rho(\dot{x})$

Locally we reduce to the homogeneous piecewise linear $F'(x; \Delta x)$.

・

Use of piecewise linearization for (un)constrained optimization $% (M_{\rm e})$ and ODE integration $-{\rm Piecewise}$ linearization Approach

Approximation and Continuity

Proposition (Approximation and Lipschitz Continuity) Suppose F is composite Lipschitz on some open neighborhood \mathcal{D} of a closed convex domain $\mathcal{K} \subset \mathbb{R}^n$. Then there exists a constant γ such that for all pairs $\dot{x}, x \in \mathcal{K}$

$$\|F(x) - F(\dot{x}) - \Delta F(\dot{x}; x - \dot{x})\| \leq \gamma \|x - \dot{x}\|^2$$

Moreover, for any pair $\tilde{x}, \dot{x} \in \mathcal{K}$, $\Delta x \in \mathbb{R}^n$, and a constant $\tilde{\gamma}$ $\|\Delta F(\tilde{x}; \Delta x) - \Delta F(\dot{x}; \Delta x)\| / (1 + \|\Delta x\|) \le \tilde{\gamma} \|\tilde{x} - \dot{x}\|$

Finally there is a continuous radius $\rho(\mathbf{x})$ such that

$$\Delta F(\dot{x}; \Delta x) = F'(\dot{x}; \Delta x) \quad if \quad ||\Delta x|| < \rho(\dot{x})$$

Locally we reduce to the homogeneous piecewise linear $F'(x; \Delta x)$.

Use of piecewise linearization for (un)constrained optimization and ODE integration Piecewise linearization Approach

Approximation and Continuity

Reduced Representation in abs-normal form

After preaccumulation of smoothies at fixed \mathring{x} with strictly lower triangular $L \in \mathbb{R}^{s \times s}$

$$\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} \mathring{z} + Z(x - \mathring{x}) + L(|z| - |\mathring{z}|) \\ \mathring{y} + J(x - \mathring{x}) + Y(|z| - |\mathring{z}|) \end{bmatrix}$$

$$= \begin{bmatrix} c \\ b \end{bmatrix} + \begin{bmatrix} Z & L \\ J & Y \end{bmatrix} \begin{bmatrix} x \\ |z| \end{bmatrix} = \begin{bmatrix} c \\ b \end{bmatrix} + \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} x \\ |z| \end{bmatrix}$$

The signature vector

 $\sigma = \operatorname{sign}(z) \in \{-1, 0, 1\}^s$ characterizes control flow = selection.

Data c, b and sparse C computable at cost $\leq (n + s)OPS(F(x))$ by modification of e.g. ADOL-C

Piecewise linearization Approach

Computing Generalized Jacobians

Beating the nonsmoothness superposition problem:

Proposition (Khan & Barton and A. G.)

$$\partial^{\kappa} F(\dot{x}) \equiv \partial^{L}_{\Delta x} \Delta F(\dot{x}; \Delta x) \big|_{\Delta x=0} \subset \partial^{L} F(x) \big|_{x=\dot{x}}$$

contains those Jacobians $\partial F_{\sigma}(\hat{x})$ for which the tangent cone

$$T_{\sigma} \equiv T_{\hat{x}} \{ x \in \mathcal{D} : F_{\sigma}(x) = F(x) \}$$

has a nonempty interior. (i.e. F_{σ} and ∂F_{σ} are conically active)

Remark

We can find several of them at cost n OPS(F) in worst case. All of them likely a stretch, there could be 2^{s} different ones.

-Piecewise linearization Approach

Computing Generalized Jacobians

Beating the nonsmoothness superposition problem:

Proposition (Khan & Barton and A. G.)

$$\partial^{\kappa} F(\dot{x}) \equiv \partial^{L}_{\Delta x} \Delta F(\dot{x}; \Delta x) \big|_{\Delta x=0} \subset \partial^{L} F(x) \big|_{x=\dot{x}}$$

contains those Jacobians $\partial F_{\sigma}(\mathbf{\dot{x}})$ for which the tangent cone

$$T_{\sigma} \equiv T_{\dot{x}}\{x \in \mathcal{D} : F_{\sigma}(x) = F(x)\}$$

has a nonempty interior. (i.e. F_{σ} and ∂F_{σ} are conically active)

Remark

We can find several of them at cost n OPS(F) in worst case. All of them likely a stretch, there could be 2^{s} different ones.

-Nonsmooth equation solving

Nonsmooth equation solving

Hope: $F(\mathring{x}) = 0$ and $\partial^{??}F(\mathring{x})$ 'invertible' \implies $F(x) = y \approx 0$ solvable by $x += \partial^{??}F(\mathring{x})^{-1}(y - F(x))$

Snag:

(Uniform) Invertibility of $F'(\dot{x}; \cdot)$ and coherent orientation of $\Delta F(\dot{x}; \cdot)$ is not stable w.r.t small perturbations in \dot{x} .

Saving grace by Scholtes:

Invertibility of $F'(\mathring{x}; \cdot) \implies$ openness of F at \mathring{x} , i.e. nonunique solvability of $F(x) = y \approx 0$, but how to realize?

Nonsmooth equation solving

Nonsmooth equation solving

Hope: $F(\dot{x}) = 0$ and $\partial^{??}F(\dot{x})$ 'invertible' \implies $F(x) = y \approx 0$ solvable by $x += \partial^{??}F(\dot{x})^{-1}(y - F(x))$

Snag:

(Uniform) Invertibility of $F'(\dot{x}; \cdot)$ and coherent orientation of $\Delta F(\dot{x}; \cdot)$ is not stable w.r.t small perturbations in \dot{x} .

Saving grace by Scholtes:

Invertibility of $F'(\mathring{x}; \cdot) \implies$ openness of F at \mathring{x} , i.e. nonunique solvability of $F(x) = y \approx 0$, but how to realize?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

└─Nonsmooth equation solving

Nonsmooth equation solving

Hope: $F(\dot{x}) = 0$ and $\partial^{??}F(\dot{x})$ 'invertible' \implies $F(x) = y \approx 0$ solvable by $x += \partial^{??}F(\dot{x})^{-1}(y - F(x))$

Snag:

(Uniform) Invertibility of $F'(\dot{x}; \cdot)$ and coherent orientation of $\Delta F(\dot{x}; \cdot)$ is not stable w.r.t small perturbations in \dot{x} .

Saving grace by Scholtes:

Invertibility of $F'(\dot{x}; \cdot) \implies$ openness of F at \dot{x} , i.e. nonunique solvability of $F(x) = y \approx 0$, but how to realize?

Optimization with quadratic overestimation Under our assumption there exists for given level set

$$\mathcal{N}_0 \equiv \{x \in \mathbb{R}^n : f(x) \le f(x_0)\}$$
$$\hat{q}(x,s) \equiv |f(x+s) - f(x) - \Delta f(x;s)| / ||s||^2 \le \bar{q}(||s||)$$

Consequence:

$$\Delta x \equiv \operatorname*{argmin}_{s} (\Delta f(x;s) + q \|s\|^2)$$

 $x += \Delta x \quad if \quad f(x + \Delta x) < f(x)$
 $q_+ = \max(q, \hat{q}(x, \Delta x))$

has stationary cluster point x_* , i.e.

$$\Delta f(x_*;s) \geq 0$$
 for $s \in \mathbb{R}^n$

ション ふゆ く は マ く ほ マ く し マ

Local = Inner Problem

 $\min_{s\in\mathbb{R}^n}\Delta f(x;s)+\tfrac{q}{2}\|s\|^2$

Here we only look at

 $\min_{x\in\mathbb{R}^n}f(x)$

with f continuous and PL.

・ロット 御マ とほう とほう

-

- At least, global minimization is NP-hard (\leftarrow SAT3)
- Classical steepest descent with exact line search may fail even when f is convex as demonstrated by Bonnans et al.

(Un)constrained Optimization

Zig-zagging of Steepest Descent

True steepest descent

Let the search trajectory with starting point $x(0) = x_0$ be defined as

$$-\dot{x} = -d(x) \equiv \operatorname{short}(\partial f(x)) \equiv \operatorname{argmin}\{\|g\|: g \in \partial f(x)\}$$

which are particular solution of differential inclusion $\dot{x} \in -\partial f(x)$. Solution x(t) satisfies a.e. $g(x(t))^{\top} \dot{x}(t) \leq -\|d(x(t))\|^2 \implies$

$$0 = \operatorname{essinf}_{t>0} \left| \frac{d}{dt} f(x(t)) \right| \geq \operatorname{essinf}_{t>0} ||d(x(t))||^2$$

because $f \ge f_*$ on the bounded level set $\mathcal{N}_0 = f^{-1}[f_*, f(x_0)]$. Thus x(t) has stationary cluster point or limit $x_* \in \mathcal{N}_0$.

Problem: Zeno behaviour possible, i.e. a trajectory that includes an infinite number of direction changes in a finite amount of time.

(Un)constrained Optimization

Implementation if PL Case

Abs-normal form yields for any pair $x, d \neq 0$

- directionally active gradient $g = \nabla f(x, d)$
- a maximal multiplier $t_c \in [0, \infty]$ s.t.
- $g \in \partial f(x)$ and $f(x) + t g^{ op} d = f(x + td)$ for $0 \le t \le t_c$

Use bundle subset $G \subset \partial^L f(x)$

define direction as $d = -\text{short}(G) \equiv -\text{argmin}\{||g|| : g \in G\}$ make sure $\nabla f(x, d) \in G$ before taking serious step and reduce subsequently $G = \{g \in G : g^T d = -||d||^2\}$

Proposition (Griewank, Walther)

Finite convergence to minimizer if $f \in C(\mathbb{R}^n)$ convex and PL.

(Un)constrained Optimization

Implementation if PL Case

Abs-normal form yields for any pair $x, d \neq 0$

- directionally active gradient $g = \nabla f(x, d)$
- a maximal multiplier $t_c \in [0, \infty]$ s.t.

 $g \in \partial f(x)$ and $f(x) + t g^{ op} d = f(x + td)$ for $0 \le t \le t_c$

Use bundle subset $G \subset \partial^L f(x)$

define direction as $d = -\text{short}(G) \equiv -\text{argmin}\{||g|| : g \in G\}$ make sure $\nabla f(x, d) \in G$ before taking serious step and reduce subsequently $G = \{g \in G : g^T d = -||d||^2\}$

Proposition (Griewank, Walther)

Finite convergence to minimizer if $f \in C(\mathbb{R}^n)$ convex and PL.

(Un)constrained Optimization

Implementation if PL Case

Abs-normal form yields for any pair $x, d \neq 0$

- directionally active gradient $g = \nabla f(x, d)$
- a maximal multiplier $t_c \in [0, \infty]$ s.t.

 $g \in \partial f(x)$ and $f(x) + t g^{ op} d = f(x + td)$ for $0 \le t \le t_c$

Use bundle subset $G \subset \partial^L f(x)$

define direction as $d = -\text{short}(G) \equiv -\text{argmin}\{||g|| : g \in G\}$ make sure $\nabla f(x, d) \in G$ before taking serious step and reduce subsequently $G = \{g \in G : g^T d = -||d||^2\}$

Proposition (Griewank, Walther)

Finite convergence to minimizer if $f \in C(\mathbb{R}^n)$ convex and PL.

Iteration 1

Iteration 2

Iteration 3

(Un)constrained Optimization

Iteration 4: Reached optimal point

(Un)constrained Optimization

Proximal Bundle Method 50 40 $f_2(x)$ 30 20 10 f₁(x) $f_0(x)$ × 0 $x_0 = (9, -3)$ f_1(x) -10 x_{*}=(-157,24,-19.62) -20 $f_{-2}(x)$ -30 -40 -50 -200 -150 -100 -50 50 100 0 X₁

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへで

Integration of Lipschitzian Dynamics

ODE integration with Lipschitzian RHS Possibly after space discretization of PDE:

$$\dot{x} \equiv rac{d}{dt} x(t) = F(x(t))$$
 with $F \in \mathcal{C}^{0,1} = W^{1,\infty}$

Generalized midpoint rule

With \check{x} current point, \hat{x} next point, $\mathring{x} = (\check{x} + \hat{x})/2$ and step h

$$\hat{x} - \check{x} = h \int_{-1/2}^{1/2} [F(\check{x}) + \Delta F(\check{x}; (\hat{x} - \check{x}) t)] dt$$

maintains global second order with automatic event handling, realizable by Picard if 1 > h Lipschitz(RHS), i.e. nonstiffness.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Integration of Lipschitzian Dynamics

Rolling Stone

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Applications to fundamental tasks

Integration of Lipschitzian Dynamics

Exact solution

$$\begin{aligned} x(0) &= 1, \quad \dot{x}(0) = 1 \\ x(t) &= \\ \begin{cases} 1 + \sin(t) & \text{if } t \in [0, \pi) \\ 1 - (t - \pi) & \text{if } t \in [\pi, \pi + 2) \\ -2 - \sin(2 - t) & \text{if } t \in [\pi + 2, 2\pi + 2) \\ t - 3 - 2\pi & \text{if } t \in [2\pi + 2, 2\pi + 4) \end{cases} \end{aligned}$$

The total period is $2\pi + 4$.

Figure: Exact solution

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Applications to fundamental tasks
 - Integration of Lipschitzian Dynamics

3

ъ

э

-Applications to fundamental tasks

Integration of Lipschitzian Dynamics

Experiments Chua circuit

Problem Definition

$$F(x) = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} \alpha(y - x - f(x)) \\ x - y + z \\ -\beta y \end{pmatrix}$$
$$f(x) = m_1 x + \frac{1}{2}(m_0 - m_1)(|x + 1| - |x - 1|)$$

- x, y are the voltages across C₁ and C₂
- z is the intensity of the electrical current at I
- f(x) is the electrical response of the resistor

Figure: Chua circuit

taken from

http://www.chuacircuits.com/

900

- Applications to fundamental tasks
 - Integration of Lipschitzian Dynamics

	Experiments	Chua circuit
Chua circuit		

- Applications to fundamental tasks
 - Integration of Lipschitzian Dynamics

Experiments	Chua circuit
Convergence	

When are Hessians symmetric ??

- Euler, Clairault, Bernoulli, Cauchy, and others tried to prove that matrices of second derivatives are symmetric.
- Lindelöf demonstrated in 1857 that all their assertions and/or proofs were wrong. Beginner's analysis errors !!
- ► A. H. Schwarz, student of Weierstrass proved in 1863

$$g =
abla f \in \mathcal{C}^1(D) \implies (g')^\top = g' =
abla^2 f$$

▶ Peano provided counter example where in 'some sense' $\nabla^2 f(0,0) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \text{ for } f(x,y) = x y \frac{(x^2 - y^2)}{(x^2 + y^2)}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

When are Hessians symmetric ??

- Euler, Clairault, Bernoulli, Cauchy, and others tried to prove that matrices of second derivatives are symmetric.
- Lindelöf demonstrated in 1857 that all their assertions and/or proofs were wrong. Beginner's analysis errors !!
- ► A. H. Schwarz, student of Weierstrass proved in 1863

$$g =
abla f \in \mathcal{C}^1(D) \implies (g')^\top = g' =
abla^2 f$$

▶ Peano provided counter example where in 'some sense' $\nabla^2 f(0,0) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \text{ for } f(x,y) = x y \frac{(x^2 - y^2)}{(x^2 + y^2)}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへで
- Euler, Clairault, Bernoulli, Cauchy, and others tried to prove that matrices of second derivatives are symmetric.
- Lindelöf demonstrated in 1857 that all their assertions and/or proofs were wrong. Beginner's analysis errors !!
- A. H. Schwarz, student of Weierstrass proved in 1863 $g = \nabla f \in C^1(D) \implies (g')^\top = g' = \nabla^2 f$
- ▶ Peano provided counter example where in 'some sense' $\nabla^2 f(0,0) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \text{ for } f(x,y) = x y \frac{(x^2 - y^2)}{(x^2 + y^2)}$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 二目 - 釣�?

- Euler, Clairault, Bernoulli, Cauchy, and others tried to prove that matrices of second derivatives are symmetric.
- Lindelöf demonstrated in 1857 that all their assertions and/or proofs were wrong. Beginner's analysis errors !!
- A. H. Schwarz, student of Weierstrass proved in 1863

$$g =
abla f \in \mathcal{C}^1(D) \implies (g')^ op = g' =
abla^2 f$$

▶ Peano provided counter example where in 'some sense' $\nabla^2 f(0,0) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \text{ for } f(x,y) = x y \frac{(x^2 - y^2)}{(x^2 + y^2)}$

- Euler, Clairault, Bernoulli, Cauchy, and others tried to prove that matrices of second derivatives are symmetric.
- Lindelöf demonstrated in 1857 that all their assertions and/or proofs were wrong. Beginner's analysis errors !!
- A. H. Schwarz, student of Weierstrass proved in 1863

$$g =
abla f \in \mathcal{C}^1(D) \implies (g')^ op = g' =
abla^2 f$$

▶ Peano provided counter example where in 'some sense' $\begin{bmatrix} 0 & 1 \end{bmatrix}$

$$abla^2 f(0,0) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad ext{for} \quad f(x,y) = x \, y \, \frac{(x^2 - y^2)}{(x^2 + y^2)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Euler, Clairault, Bernoulli, Cauchy, and others tried to prove that matrices of second derivatives are symmetric.
- Lindelöf demonstrated in 1857 that all their assertions and/or proofs were wrong. Beginner's analysis errors !!
- A. H. Schwarz, student of Weierstrass proved in 1863

$$g =
abla f \in \mathcal{C}^1(D) \implies (g')^ op = g' =
abla^2 f$$

▶ Peano provided counter example where in 'some sense' $\begin{bmatrix} 0 & 1 \end{bmatrix}$

$$abla^2 f(0,0) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad ext{for} \quad f(x,y) = x \, y \, \frac{(x^2 - y^2)}{(x^2 + y^2)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Use of piecewise linearization for (un)constrained optimization and ODE integration \square Observations on Generalized Hessians

Look at the Peano Example

Figure: Peano function and its contour plot

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

- ► Peano Hessian is algebraic fluke, not a Fréchet derivative: $g(x + \Delta x) - g(x) \neq g'(x) \Delta x + o(||\Delta x||)$
- Limiting and Convexification maintain: $(\partial^{C}g)^{\top} = \partial^{C}g$
- Griewank et al (2013) are showing the converse, i.e. $\sigma \in C^{0,1}(D)$ with $(\partial^C \sigma)^\top = \partial^C \sigma \implies \sigma = \nabla f$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 二目 - 釣�?

- ► Peano Hessian is algebraic fluke, not a Fréchet derivative: $g(x + \Delta x) - g(x) \neq g'(x) \Delta x + o(||\Delta x||)$
- Limiting and Convexification maintain: $(\partial^{C}g)^{\top} = \partial^{C}g$
- Griewank et al (2013) are showing the converse, i.e. $\sigma \in C^{0,1}(D)$ with $(\partial^{C}\sigma)^{\top} - \partial^{C}\sigma \longrightarrow \sigma - \nabla f$

- ► Peano Hessian is algebraic fluke, not a Fréchet derivative: $g(x + \Delta x) - g(x) \neq g'(x) \Delta x + o(||\Delta x||)$
- Limiting and Convexification maintain: $(\partial^{C}g)^{\top} = \partial^{C}g$
- ► Griewank et al (2013) are showing the converse, i.e.

 $g \in \mathcal{C}^{0,1}(D)$ with $(\partial^C g)^{\top} = \partial^C g \implies g = \nabla f$

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへで

- ► Peano Hessian is algebraic fluke, not a Fréchet derivative: $g(x + \Delta x) - g(x) \neq g'(x) \Delta x + o(||\Delta x||)$
- Limiting and Convexification maintain: $(\partial^{C}g)^{\top} = \partial^{C}g$
- Griewank et al (2013) are showing the converse, i.e. $g \in C^{0,1}(D)$ with $(\partial^C g)^\top = \partial^C g \implies g = \nabla f$

- ► Peano Hessian is algebraic fluke, not a Fréchet derivative: $g(x + \Delta x) - g(x) \neq g'(x) \Delta x + o(||\Delta x||)$
- Limiting and Convexification maintain: $(\partial^{C}g)^{\top} = \partial^{C}g$
- Griewank et al (2013) are showing the converse, i.e.

$$g \in \mathcal{C}^{0,1}(D)$$
 with $(\partial^{\mathsf{C}}g)^{ op} = \partial^{\mathsf{C}}g \implies g =
abla f$

- ► Peano Hessian is algebraic fluke, not a Fréchet derivative: $g(x + \Delta x) - g(x) \neq g'(x) \Delta x + o(||\Delta x||)$
- Limiting and Convexification maintain: $(\partial^{C}g)^{\top} = \partial^{C}g$
- Griewank et al (2013) are showing the converse, i.e.

$$g \in \mathcal{C}^{0,1}(D)$$
 with $(\partial^{\mathsf{C}}g)^{ op} = \partial^{\mathsf{C}}g \implies g =
abla f$

Use of piecewise linearization for (un)constrained optimization and ODE integration \square Observations on Generalized Hessians

Generalized Hessian of Peano

Figure: Hessians circling definite cone with four extremal cusps

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

- Practical functions are semi-smooth and their linearization goes further than we thought, but not quite far enough.
- Yes, we can compute generalized Jacobians! They are not only essential in the sense of Scholtes but conically active.
- But, semi-smooth Newton only yields convergence from points where combinatorial aspects have been resolved.
- Piecewise linearization facilitates nonsmooth equation solving, optimization, integration of Lipschitzian ODEs...
- Lipschitzian gradients have symmetric generalized
 Hessians that are computable by piecewise linearization
- Next on the agenda: solving algebraic and differential inclusions as well as bang-bang optimal control problems.

- Practical functions are semi-smooth and their linearization goes further than we thought, but not quite far enough.
- Yes, we can compute generalized Jacobians! They are not only essential in the sense of Scholtes but conically active.
- But, semi-smooth Newton only yields convergence from points where combinatorial aspects have been resolved.
- Piecewise linearization facilitates nonsmooth equation solving, optimization, integration of Lipschitzian ODEs...
- Lipschitzian gradients have symmetric generalized
 Hessians that are computable by piecewise linearization
- Next on the agenda: solving algebraic and differential inclusions as well as bang-bang optimal control problems.

- Practical functions are semi-smooth and their linearization goes further than we thought, but not quite far enough.
- Yes, we can compute generalized Jacobians! They are not only essential in the sense of Scholtes but conically active.
- But, semi-smooth Newton only yields convergence from points where combinatorial aspects have been resolved.
- Piecewise linearization facilitates nonsmooth equation solving, optimization, integration of Lipschitzian ODEs...
- Lipschitzian gradients have symmetric generalized
 Hessians that are computable by piecewise linearization
- Next on the agenda: solving algebraic and differential inclusions as well as bang-bang optimal control problems.

- Practical functions are semi-smooth and their linearization goes further than we thought, but not quite far enough.
- Yes, we can compute generalized Jacobians! They are not only essential in the sense of Scholtes but conically active.
- But, semi-smooth Newton only yields convergence from points where combinatorial aspects have been resolved.
- Piecewise linearization facilitates nonsmooth equation solving, optimization, integration of Lipschitzian ODEs...
- Lipschitzian gradients have symmetric generalized
 Hessians that are computable by piecewise linearization
- Next on the agenda: solving algebraic and differential inclusions as well as bang-bang optimal control problems.

- Practical functions are semi-smooth and their linearization goes further than we thought, but not quite far enough.
- Yes, we can compute generalized Jacobians! They are not only essential in the sense of Scholtes but conically active.
- But, semi-smooth Newton only yields convergence from points where combinatorial aspects have been resolved.
- Piecewise linearization facilitates nonsmooth equation solving, optimization, integration of Lipschitzian ODEs...
- Lipschitzian gradients have symmetric generalized
 Hessians that are computable by piecewise linearization
- Next on the agenda: solving algebraic and differential inclusions as well as bang-bang optimal control problems.

- Practical functions are semi-smooth and their linearization goes further than we thought, but not quite far enough.
- Yes, we can compute generalized Jacobians! They are not only essential in the sense of Scholtes but conically active.
- But, semi-smooth Newton only yields convergence from points where combinatorial aspects have been resolved.
- Piecewise linearization facilitates nonsmooth equation solving, optimization, integration of Lipschitzian ODEs...
- Lipschitzian gradients have symmetric generalized Hessians that are computable by piecewise linearization
- Next on the agenda: solving algebraic and differential inclusions as well as bang-bang optimal control problems.

Use of piecewise linearization for (un)constrained optimization and ODE integration Observations on Generalized Hessians

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Use of piecewise linearization for (un)constrained optimization and ODE integration \square Observations on Generalized Hessians

Final greetings from Prof. Moriarty

