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Use of piecewise linearization for (un)constrained optimization and ODE integration

Smooth stuff I won’t talk about (very much)

Cubic Overestimation with Hessian Updating

Alternative stabilizations of quadratic model
f (x+s)−f (x) ≈ m(s) ≡ g>s+1

2s>Bs with g ≡ ∇f (x), B ≈ ∇2f (x)

Line-search with B � 0
s = argmin{m(s)}

α ≈ argmin{f (x + αs)} and x+ = x + αs

Trust Region with radius ∆ > 0
s = argmin{m(s) : ‖s‖ ≤ ∆}

if f (x + s) � f (x) then x+ = x + s else ∆+ � ∆

Cubic overestimation with Lipschitz constant 2q > 0
s = argmin{m(s) + q‖s‖3/3}

if f (x + s)� f (x) then x+ = x + s else q+ � q
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Smooth stuff I won’t talk about (very much)

Cubic Overestimation with Hessian Updating

Step Computation and Properties
As shown by G. and others global minimum of the cubic model

g(x)>s + 1
2s
>Bs + 1

3q‖s‖3

is attained at all solutions of the appended linear system

(B + λI )s = −g with λ = q‖s‖

for which B(λ) ≡ B + λI is positive semi-definite.

By eliminating s(λ) we obtain a secular equation

ϕ(λ) ≡ ‖s(λ)‖2 ≡ g>(B + λI )−2g = λ2/ q2.

where LHS/RHS are convex and monotonic falling/growing.
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Smooth stuff I won’t talk about (very much)

Cubic Overestimation with Hessian Updating

Need to solve systems:
(B + λI )s = −g for various λ ∈ R

with B subject to shifted BFGS, SR1 or compromise update.
Hessenberg form etc does not work, i.e. generates cost of O(n3).

First way out: Updating the EVD
B = V ΛV> with diagonal Λ and orthogonal V

B± = B ± cc> = V±Λ±V>±

requires O(n2) operations for Λ± via the secular equation and
O((n log n)2) operations for V± using fast polynomial arithmetic.
But method is barely numerically stable even when B is symmetric.

True way out: Nocedal Recurrence ?
Keep B in limited memory product format and apply modified NR!
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Smooth stuff I won’t talk about (very much)

Cubic Overestimation with Hessian Updating

Performance Profile: Iteration count - 69 CUTEr problems
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Smooth stuff I won’t talk about (very much)

Gauss-Transposed-Broyden for Least Squares

Basic Approach (see also Eldon Haber)
Data assimilation and other least squares require solutions of

min
x
ϕ(x) ≡ 1

2‖F (x)‖2 for F : Rn 7→ Rm

quasi-Gauss Newton approach for computing step s at point x

B>B s = −F ′(x)>F (x) = −∇ϕ(x) ∈ Rn

using F ′(x) ≈ B ∈ Rm×n and only derivative vectors

z ≡ F ′(x)>t ∈ Rn and y ≡ F ′(x) s ∈ Rm
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Smooth stuff I won’t talk about (very much)

Gauss-Transposed-Broyden for Least Squares

Two-sided rank one formula

B+(z) = B + r
[
r>
(
F ′(x+)− B

)]/
‖r‖2 with r = y − B s

Satisfies primal secant condition:

B+ s = r + B s = F ′(x+)s = F (x + s)− F (x) + O(‖s‖2)

Satisfies dual secant condition:
B>+ z = F ′(x+)>z for r = z ∈ Rm

General Properties:
Fixed scale least change =⇒ bounded deterioration and
Heredity in affine case yielding optimal rate in square case.
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Smooth stuff I won’t talk about (very much)

Gauss-Transposed-Broyden for Least Squares

Theoretical convergence result:
Assumption: Smoothness and injectivity on level set

F ∈ C 1,1 and inf
‖F (x)‖≤‖F (x0)‖≥‖F (z)‖

{‖F (x)− F (z)‖
‖z − x‖

}
> 0

Wedin line-search =⇒ Square summability∣∣∣∣∣
F>+ (F+ − F )

‖F+ − F‖2 − 1

∣∣∣∣∣ < ε =⇒
∑
‖F+ − F‖ < ∞ =⇒

mean
{

1
‖s‖‖(F ′+ − B) s‖+ 1

‖r‖‖(F ′+ − B)>r‖+ 1
‖y‖‖(F ′+ − B)>y‖

}
= 0

Average Dennis and Moré =⇒ Gauss-Newton Rate
mean

{
[B>B − F ′(x)>F ′(x)] s

}
= 0 =⇒ ‖s − sGN‖

/
‖s‖ → 0
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Generalized Derivatives and Semismoothness

Background and Motivation

Can we turn this into Algebra!?
Directional derivative á la Dini, Hadamard, Clarke .....

F ??(̊x ; ∆x) ≡ lim sup
x→x̊

v→∆x
t↘0

[
F (x + tv)− F (x)

t

]

Normal cone a la Mordukhovich in Rn

N (x ; M) ≡ lim sup
z→x

{
u> ∈ Rm : lim

M3y→z

u>(y − z)

‖y − z‖ = 0
}

Computational complexity?
Perturbations on x and ∆x require exploration of F in full domain!!!
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Generalized Derivatives and Semismoothness

Background and Motivation

Notational Zoo (Subspecies in Lipschitzian Habitat):

Fréchet Derivative: ∂F (x) ≡ ∂F/∂x : D 7→ Rm×n ∪ ∅

Limiting Jacobians: ∂LF (̊x) ≡ limx→x̊∂F (x) : D ⇒ Rm×n

Clarke Jacobians: ∂CF (x) ≡ conv(∂LF (x)) : D ⇒ Rm×n

Bouligand: F ′(x ; ∆x) ≡ limt↘0[F (x + t∆x)− F (x)]/t

: D × Rn 7→ Rm

: D 7→ PLh(Rn,Rm)

Piecewise linearization:

∆F (x ; ∆x) : D × Rn 7→ Rm

: D 7→ PL(Rn,Rm)

Moriarty Effect by Rademacher
(
C0,1 = W 1,∞)

Almost everywhere all concepts reduce to Fréchet, except PL!!
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Generalized Derivatives and Semismoothness

Background and Motivation

Always lurking in the background: Prof. Moriarty
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Generalized Derivatives and Semismoothness

Generalized differentiation rules

Relations holding for ∂L with implications for ∂C ≡ conv(∂L)

I ∂L(αF ) = α∂L(F ) for α ∈ R

I ∂L
(G

F

)
⊆ ∂LF × ∂LG ≡

{(A
B

)
: A ∈ ∂L(F ),B ∈ ∂L(G )

}

I ∂L(G ◦ F ) = ∂LG (F ) · ∂LF if G ∈ C1(Rm)

I ∂L(F ±G ) ⊆ ∂LF ± ∂LG = {A±B : A ∈ ∂LF ,B ∈ ∂LG}

I ∂L(f · g) ⊆ g · ∂Lf + f · ∂Lg

I ∂L|f |





= ∂Lf when f>0
⊆ −∂L ∪ {0} ∪ ∂Lf when f=0
= −∂Lf when f<0
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Use of piecewise linearization for (un)constrained optimization and ODE integration

Generalized Derivatives and Semismoothness

Generalized differentiation rules

Direction of inclusions is:
Bad for evaluating (generalized) Jacobians:
since application may result in gross overestimation. Example:

∂L [|x | − |x |]x=0 = {0} 6= {−2, 0, 2} = {−1,+1}+∂L [|x |]x=0

Good for propagating semi-smoothness:

lim sup
J∈∂LF (x+s)

‖F (x + s)− F (x)− J s‖ = o(‖s‖)

Consequence:
All compositions of smoothies and abs() are semismooth !!!
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Use of piecewise linearization for (un)constrained optimization and ODE integration

Generalized Derivatives and Semismoothness

Semismooth Newton Result

Proposition by Kummer, Qi, Sun,Kunisch et al
Semismoothness ensures that generalized Newton:

xk+1 = xk − J−1F (xk) with J ∈ ∂LF (xk)

converges superlinearly to root x∗ ∈ F−1(0) provided

‖x0 − x∗‖ ≤ ρ and ‖J−1‖ ≤ M <∞ for J ∈ ∂LF (x∗)

Doubts concerning Applicability:

I How small is contraction radius ρ > 0 ?
I How can we calculate some J ∈ ∂LF (x) ?



Use of piecewise linearization for (un)constrained optimization and ODE integration

Generalized Derivatives and Semismoothness

Semismooth Newton Result

Proposition by Kummer, Qi, Sun,Kunisch et al
Semismoothness ensures that generalized Newton:

xk+1 = xk − J−1F (xk) with J ∈ ∂LF (xk)

converges superlinearly to root x∗ ∈ F−1(0) provided

‖x0 − x∗‖ ≤ ρ and ‖J−1‖ ≤ M <∞ for J ∈ ∂LF (x∗)

Doubts concerning Applicability:

I How small is contraction radius ρ > 0 ?
I How can we calculate some J ∈ ∂LF (x) ?



Use of piecewise linearization for (un)constrained optimization and ODE integration

Generalized Derivatives and Semismoothness

Semismooth Newton Result

Proposition by Kummer, Qi, Sun,Kunisch et al
Semismoothness ensures that generalized Newton:
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converges superlinearly to root x∗ ∈ F−1(0) provided

‖x0 − x∗‖ ≤ ρ and ‖J−1‖ ≤ M <∞ for J ∈ ∂LF (x∗)

Doubts concerning Applicability:

I How small is contraction radius ρ > 0 ?
I How can we calculate some J ∈ ∂LF (x) ?



Use of piecewise linearization for (un)constrained optimization and ODE integration

Generalized Derivatives and Semismoothness

Semismooth Newton Result

Contraction radius ≤ distance to next kink
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sin(1/3*x) for x ≤ 0 sin(x) for x > 0

y = ε

A. Griewank, F. Dalkowski, N. Krejic, Z. Luzanin F. Rodrigues, A. Walther SCAN2010
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Piecewise linearization Approach

Tacit but realistic assumption:

y = F (x) : D ⊂ Rn → Rm

defined by long evaluation loop

input : vi−n = xi for i = 1 . . . n

evaluation : vi = ϕi

(
vj
)
j≺i for i = 1 . . . `

output : ym−i = v`−i for i = 0 . . .m−1

where vi ∈ R for i = 1−n . . . ` and

ϕi ∈ {+,−, ∗, /, exp, log , sin, cos, . . . , abs, · · · }

Partial pre-ordering

j ≺ i ⇐⇒ cij ≡
∂

∂vj
ϕi 6≡ 0 .

A. Griewank, F. Dalkowski, N. Krejic, Z. Luzanin F. Rodrigues, A. Walther SCAN2010



Use of piecewise linearization for (un)constrained optimization and ODE integration

Piecewise linearization Approach

abs covers min,max, ‖ · ‖1, ‖ · ‖∞, table look-ups

Provided u and w are both finite one has

max(u,w) = 1
2 [u + w + abs(u − w)]

min(u,w) = 1
2 [u + w − abs(u − w)]

and data (xi , yi) for i = 0 . . . n with slopes s0 and sn+1 on left
and right are piecewise linearly interpolated by the formula

y = 1
2

[
s0(x−x0)+y0+

n∑

i=0

(si+1−si)abs(x−xi)+yn+sn+1(x−xn)

]

where si = (yi+1 − yi)/(xi+1 − xi) represent the inner slopes.



Use of piecewise linearization for (un)constrained optimization and ODE integration

Piecewise linearization Approach

Piecewise Linearization

We wish to determine for base point x and increment ∆x

∆y ≡ ∆F (x ; ∆x) = F (x + ∆x)− F (x) +O(‖∆x‖2)

This can be done by propagating increments according to

Smooth elementals

∆vi = ∆vj ±∆vk for vi = vj ± vk

∆vi = vj ∗∆vk + ∆vj ∗ vk for vi = vj ∗ vk

∆vi = cij ∆vj with cij ≡ ϕ′i (vj) for vi = ϕi (vj) 6≡ abs()

Lipschitz Elementals

∆vi = abs(vj + ∆vj)− abs(vj) when vi = abs(vj) .

and correspondingly for max() und min().

A. Griewank, F. Dalkowski, N. Krejic, Z. Luzanin F. Rodrigues, A. Walther SCAN2010



Use of piecewise linearization for (un)constrained optimization and ODE integration

Piecewise linearization Approach

Figure: Lipschitzian function F

A. Griewank, F. Dalkowski, N. Krejic, Z. Luzanin F. Rodrigues, A. Walther SCAN2010



Use of piecewise linearization for (un)constrained optimization and ODE integration

Piecewise linearization Approach

Figure: Approximation about (1, 1)

A. Griewank, F. Dalkowski, N. Krejic, Z. Luzanin F. Rodrigues, A. Walther SCAN2010



Use of piecewise linearization for (un)constrained optimization and ODE integration

Piecewise linearization Approach

Piecewise linearization rules

Linearity and Product Rule

F ,G : D ⊂ Rn 7→ Rm, α, β ∈ R

=⇒

∆[αF + βG ](x ; ∆x) = α∆F (x ,∆x) + β∆G (x ,∆x)

∆[F>G ](x ; ∆x) = G (x)>∆F (x ,∆x) + F (x)>∆G (x ,∆x)

Chain Rule

F : D ⊂ Rn 7→ Rm and G : E ⊂ Rm 7→ Rp with F (D) ⊂ E

=⇒
∆[G ◦ F ](x ; ∆x) = ∆G (F (x); ∆F (x ,∆x))
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Use of piecewise linearization for (un)constrained optimization and ODE integration

Piecewise linearization Approach

Approximation and Continuity

Proposition (Approximation and Lipschitz Continuity)
Suppose F is composite Lipschitz on some open neighborhood D of
a closed convex domain K ⊂ Rn. Then there exists a constant γ
such that for all pairs x̊ , x ∈ K

‖F (x) − F (̊x)−∆F (̊x ; x − x̊)‖ ≤ γ‖x − x̊‖2

Moreover, for any pair x̃ , x̊ ∈ K, ∆x ∈ Rn, and a constant γ̃

‖∆F (x̃ ; ∆x)−∆F (̊x ; ∆x)‖ /(1 + ‖∆x‖) ≤ γ̃‖x̃ − x̊‖

Finally there is a continuous radius ρ(̊x) such that

∆F (̊x ; ∆x) = F ′(̊x ; ∆x) if ‖∆x‖ < ρ(̊x)

Locally we reduce to the homogeneous piecewise linear F ′(x ; ∆x).
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Piecewise linearization Approach
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Use of piecewise linearization for (un)constrained optimization and ODE integration

Piecewise linearization Approach

Approximation and Continuity

Reduced Representation in abs-normal form

After preaccumulation of smoothies
at fixed x̊ with strictly lower triangular L ∈ Rs×s

[
z
y

]
=

[
z̊ + Z (x − x̊) + L(|z | − |̊z |)
ẙ + J(x − x̊) + Y (|z | − |̊z |)

]

=

[
c
b

]
+

[
Z L
J Y

] [
x
|z |

]
=

[
c
b

]
+ [ C ]

[
x
|z |

]

The signature vector
σ = sign(z) ∈ {−1, 0, 1}s characterizes control flow = selection.

Data c, b and sparse C computable
at cost ≤ (n + s)OPS(F (x)) by modification of e.g. ADOL-C



Use of piecewise linearization for (un)constrained optimization and ODE integration

Piecewise linearization Approach

Computing Generalized Jacobians

Beating the nonsmoothness superposition problem:

Proposition (Khan & Barton and A. G.)

∂KF (x̊) ≡ ∂L
∆x∆F (x̊ ; ∆x)

∣∣
∆x=0 ⊂ ∂LF (x)

∣∣
x=x̊

contains those Jacobians ∂Fσ(x̊) for which the tangent cone

Tσ ≡ Tx̊{x ∈ D : Fσ(x) = F (x)}

has a nonempty interior. (i.e. Fσ and ∂Fσ are conically active)

Remark
We can find several of them at cost n OPS(F) in worst case.
All of them likely a stretch, there could be 2s different ones.
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Use of piecewise linearization for (un)constrained optimization and ODE integration

Applications to fundamental tasks

Nonsmooth equation solving

Nonsmooth equation solving

Hope:
F (x̊) = 0 and ∂??F (x̊) ’invertible’

=⇒
F (x) = y ≈ 0 solvable by x += ∂??F (x̊)−1(y − F (x))

Snag:
(Uniform) Invertibility of F ′(x̊ ; ·) and coherent orientation
of ∆F (x̊ ; ·) is not stable w.r.t small perturbations in x̊ .

Saving grace by Scholtes:
Invertibility of F ′(x̊ ; ·) =⇒ openness of F at x̊ ,
i.e. nonunique solvability of F (x) = y ≈ 0, but how to realize?
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Use of piecewise linearization for (un)constrained optimization and ODE integration

Applications to fundamental tasks

(Un)constrained Optimization

Optimization with quadratic overestimation
Under our assumption there exists for given level set

N0 ≡ {x ∈ Rn : f (x) ≤ f (x0)}
q̂(x , s) ≡ |f (x + s)− f (x)−∆f (x ; s)| /‖s‖2 ≤ q̄(‖s‖)

Consequence:
∆x ≡ argmin

s
(∆f (x ; s) + q‖s‖2)

x += ∆x if f (x + ∆x) < f (x)

q+ = max(q, q̂(x ,∆x))

has stationary cluster point x∗, i.e.
∆f (x∗; s) ≥ 0 for s ∈ Rn



Use of piecewise linearization for (un)constrained optimization and ODE integration

Applications to fundamental tasks

(Un)constrained Optimization

Local = Inner Problem
min
s∈Rn

∆f (x ; s) + q
2‖s‖2

Here we only look at

min
x∈Rn

f (x)

with f continuous and PL.

I At least, global minimization is NP-hard ( ← SAT3)

I Classical steepest descent with exact line search may fail
even when f is convex as demonstrated by Bonnans et al.



Use of piecewise linearization for (un)constrained optimization and ODE integration

Applications to fundamental tasks

(Un)constrained Optimization

Zig-zagging of Steepest Descent
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Applications to fundamental tasks

(Un)constrained Optimization

True steepest descent
Let the search trajectory with starting point x(0) = x0 be defined as

−ẋ = −d(x) ≡ short(∂f (x)) ≡ argmin{‖g‖ : g ∈ ∂f (x)}

which are particular solution of differential inclusion ẋ ∈ −∂f (x).

Solution x(t) satisfies a.e. g(x(t))>ẋ(t) ≤ −‖d(x(t))‖2 =⇒

0 = essinf
t>0

∣∣∣∣
d
dt

f (x(t))

∣∣∣∣ ≥ essinf
t>0
‖d(x(t))‖2

because f ≥ f∗ on the bounded level set N0 = f −1[f∗, f (x0)].
Thus x(t) has stationary cluster point or limit x∗ ∈ N0 .

Problem: Zeno behaviour possible, i.e. a trajectory that includes
an infinite number of direction changes in a finite amount of time.



Use of piecewise linearization for (un)constrained optimization and ODE integration

Applications to fundamental tasks

(Un)constrained Optimization

Implementation if PL Case
Abs-normal form yields for any pair x , d 6= 0

I directionally active gradient g = ∇f (x , d)

I a maximal multiplier tc ∈ [0,∞] s.t.

g ∈ ∂f (x) and f (x) + t g>d = f (x + td) for 0 ≤ t ≤ tc

Use bundle subset G ⊂ ∂Lf (x)
define direction as d = −short(G ) ≡ −argmin{‖g‖ : g ∈ G}
make sure ∇f (x , d) ∈ G before taking serious step
and reduce subsequently G = {g ∈ G : gTd = −‖d‖2}

Proposition (Griewank, Walther)
Finite convergence to minimizer if f ∈ C (Rn) convex and PL.
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Applications to fundamental tasks

(Un)constrained Optimization

Iteration 1
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Applications to fundamental tasks

(Un)constrained Optimization

Iteration 2
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Applications to fundamental tasks

(Un)constrained Optimization

Iteration 3
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Applications to fundamental tasks

(Un)constrained Optimization

Iteration 4: Reached optimal point
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Applications to fundamental tasks

(Un)constrained Optimization
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Use of piecewise linearization for (un)constrained optimization and ODE integration

Applications to fundamental tasks

Integration of Lipschitzian Dynamics

ODE integration with Lipschitzian RHS
Possibly after space discretization of PDE:

ẋ ≡ d
dt

x(t) = F (x(t)) with F ∈ C0,1 = W 1,∞

Generalized midpoint rule
With x̌ current point, x̂ next point, x̊ = (x̌ + x̂)/2 and step h

x̂ − x̌ = h
∫ 1/2

−1/2
[F (x̊) + ∆F (x̊ ; (x̂ − x̌) t)] dt

maintains global second order with automatic event handling,
realizable by Picard if 1 > h Lipschitz(RHS), i.e. nonstiffness.



Use of piecewise linearization for (un)constrained optimization and ODE integration

Applications to fundamental tasks

Integration of Lipschitzian Dynamics

Rolling Stone

ẍ = −V ′(x) with

V (x) =





1
2(1− x)2 if x ≥ 1
1
2(1 + x)2 if x ≤ −1
0 else

−V ′(x) =





1− x if x ≥ 1
−x − 1 if x ≤ −1
0 else

= min(max(−x − 1, 0), 1− x)

= −x − 1
2 |x − 1|+ 1

2 |x + 1|
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Figure: Rolling Stones Right hand side
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Applications to fundamental tasks

Integration of Lipschitzian Dynamics

Exact solution

x(0) = 1, ẋ(0) = 1
x(t) =



1 + sin(t) if t ∈ [0, π)

1− (t − π) if t ∈ [π, π + 2)

−2− sin(2− t) if t ∈ [π + 2, 2π + 2)

t − 3− 2π if t ∈ [2π + 2, 2π + 4)

The total period is 2π + 4.
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Figure: Exact solution
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Applications to fundamental tasks

Integration of Lipschitzian Dynamics
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Use of piecewise linearization for (un)constrained optimization and ODE integration

Applications to fundamental tasks

Integration of Lipschitzian Dynamics

Experiments Chua circuit

Problem Definition

F(x) =




ẋ
ẏ
ż


=




α(y− x− f (x))
x− y + z
−βy




f (x) = m1x +
1
2

(m0−m1)(|x + 1|− |x−1|)

x ,y are the voltages across C1

and C2

z is the intensity of the electrical
current at I

f (x) is the electrical response of
the resistor

constants are α = 15.6,β = 28,m0 =−1.143,m1 =−0.714.

Figure: Chua circuit

taken from

http://www.chuacircuits.com/

Paul Boeck Lipschitzean ODEs March 20, 2013 17 / 22
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Applications to fundamental tasks

Integration of Lipschitzian Dynamics

Experiments Chua circuit

Chua circuit
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Applications to fundamental tasks

Integration of Lipschitzian Dynamics

Experiments Chua circuit

Convergence
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Use of piecewise linearization for (un)constrained optimization and ODE integration

Observations on Generalized Hessians

When are Hessians symmetric ??

I Euler, Clairault, Bernoulli, Cauchy, and others tried to
prove that matrices of second derivatives are symmetric.

I Lindelöf demonstrated in 1857 that all their assertions
and/or proofs were wrong. Beginner’s analysis errors !!

I A. H. Schwarz, student of Weierstrass proved in 1863

g = ∇f ∈ C1(D) =⇒ (g ′)> = g ′ = ∇2f

I Peano provided counter example where in ’some sense’

∇2f (0, 0) =

[
0 1
−1 0

]
for f (x , y) = x y

(x2 − y 2)

(x2 + y 2)
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Look at the Peano Example
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Real Hessians are always symmetric !!

I Peano Hessian is algebraic fluke, not a Fréchet derivative:
g(x + ∆x)− g(x) 6= g ′(x) ∆x + o(‖∆x‖)

I Dieudonné (1960) showed that derivatives of gradients are
symmetric where they exist ⇐⇒ No Perpetuum Mobile !!

I Limiting and Convexification maintain: (∂Cg)> = ∂Cg

I Griewank et al (2013) are showing the converse, i.e.

g ∈ C0,1(D) with (∂Cg)> = ∂Cg =⇒ g = ∇f
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Generalized Hessian of Peano
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Summary and tentative conclusions
I Practical functions are semi-smooth and their linearization

goes further than we thought, but not quite far enough.
I Yes, we can compute generalized Jacobians! They are not

only essential in the sense of Scholtes but conically active.
I But, semi-smooth Newton only yields convergence from

points where combinatorial aspects have been resolved.
I Piecewise linearization facilitates nonsmooth equation

solving, optimization, integration of Lipschitzian ODEs...
I Lipschitzian gradients have symmetric generalized

Hessians that are computable by piecewise linearization
I Next on the agenda: solving algebraic and differential

inclusions as well as bang-bang optimal control problems.
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Smooth

Tight optimality conditions
(super-)linear convergence
via linearization to the roots
of equation systems

Piecewise 
Composite Smooth

Global piecewise linear 
approximation with uniform
second order error

Piecewise Smooth

Local piecewise linear
approximation with very local
second order error

Subanalytic
Function finitely defined has 
Poussilieux expansion

Semi-Smooth
Very local superlinear convergence
under rank conditions, but must
have resolved combinatorical
problems by choice of first iterate

Convex
Beautiful optimality and duality
theory, but generally sublinear
convergence to unconstrained
minima

Thousands of
Books and Papers

Bartel & Khan,
Griewank et al.

Some Papers
Robinson, Scholtes
et al.

Several Papers
Adrian Lewis et al

Lots of Papers,
Kummer, Ulbrich, Qi, 
Hintermüller,...

Thousands of
Books and Papers
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Final greetings from Prof. Moriarty
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