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Motivations

Motivations

Solution of very e/Huge ill-conditioned linear systems

@ Such problems can require thousands of CPU-hours and many
Gigabytes of memory
@ Direct solvers:
- Robust and usually do not fail
- Memory and computational costs grow nonlinearly
@ Iterative solvers:

- Reduce memory requirements
- They may fail to converge
- Typically implemented with preconditioning to accelerate convergence

In an effort to reduce these requirements, a parallel mechanism for
combining solvers is needed
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Motivations

Develop a robust scalable parallel hybrid direct/iterative linear solvers

@ Exploit the efficiency and robustness of the sparse direct solvers

@ Take advantage of the natural scalable parallel implementation of
iterative solvers

@ Develop robust parallel preconditioners for iterative solvers

Non-overlapping domain decomposition

@ Natural approach for PDE’s

@ Extend to general sparse matrices

@ Partition the problem into subdomains,
subgraphs

@ Use a direct solver on the subdomains

@ Robust preconditioned iterative solver on
interface St edes
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Description in a PDE’s framework
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Background

Algebraic splitting and block Gaussian elimination: N sub-domains case
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Description of the preconditioner

Algebraic Additive Schwarz preconditioner Variant of Additive Shwarz preconditioner Masg
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e Algebraic Additive Schwarz preconditioner
@ Description of the preconditioner
@ Variant of Additive Shwarz preconditioner Mag
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Description of the preconditioner

Algebraic Additive Schwarz preconditioner Variant of Additive Shwarz preconditioner Masg

Additive Schwarz preconditioner

Preconditionner properties |

#domains

@ Mas = Z RT(SV)'R;
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Assembled local Schur complement
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local Schur complement
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Description of the preconditioner

Algebraic Additive Schwarz preconditioner Variant of Additive Shwarz preconditioner Masg

Parallel implementation for solving Au = f

@ Each subdomain A% is handled by one processor

@ Concurrent partial factorizations are performed on each processor to
form the so called “local Schur complement”

Bl = A(ri,)r‘ - Ari'iAlTl‘lAhri

@ The reduced system Sx = b is solved using a distributed Krylov solver
- One matrix vector product per iteration each processor compute S0 (xM)¢ = (y®)¥
- One local preconditioner apply (S1)~*(z)k = (r@)k
- Local neighbor-neighbor communication per iteration
- Dot products per iteration (reduction)
@ Compute simultaneously the solution for the interior unknowns
Ay Uy = fi — Ayrur
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Description of the preconditioner
Variant of Additive Shwarz preconditioner ~ Mpag

What tricks exist to construct cheaper preconditioners

Mixed arithmetic strategy

@ Idea: Exploit 32 bit operation whenever possible and ressort to double at critical stages
@ Compute and store the preconditioner in single precision arithmetic

.

Sparsification strategy

@ Allow entries whose magnitude exceeds a "drop tolerance”

e _ ) Ske it Ske > (IS | + [Seel)
Ske = { 0 else

A

Two-level preconditioner

@ Domain based coarse space correction

@ M = Mas + ROA;'Ro where Ag = RoSR])
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Numerical scalability
Parallel numerical experiments

Outline

Q Parallel numerical experiments
@ Numerical scalability
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tion in a PDE’s
Schwarz prec er Numerical scalability
Parallel numerical experiments

Computational framework

Target computer |

@ IBM-SP4 @ CERFACS (216 procs)
@ Blue Gene @ CERFACS (2048 procs)
@ System X @ VIRGINIA TECH (2200 procs)

Local direct solver : MUMPS

@ Main features
- Parallel distributed multifrontal solver (F90, MPI)
- Symmetric and Unsymmetric factorizations
- Element entry matrices, distributed matrices
- Efficient Schur complement calculation
- Iterative refinement and backward error analysis

@ Public domain: new version 4.7.3
www.enseeiht.frlapo/MUMPS - mumps@cerfacs.fr

\
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Numerical scalability

Parallel numerical experiments

Backward error convergence history

@ Mixed arithmetic and Sparse preconditioners behavior

3D Poisson problem 3D Heterogenous diffusion |
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@ Convergence history on the Schur complement for a problem with 43 millions dof mapped on
1000 processors
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Numerical scalability

Parallel numerical experiments

Backward error history vs time

@ Mixed arithmetic and Sparse preconditioners behavior

3D Poisson problem 3D Heterogenous diffusion |

== 32-bit calculation 10" == 32-bit calculation
64-bit calculation 4-bit calculation
107 foy - = = mixed arithmetic 107 mixed arithmetic calculation|
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@ Time (setup preconditioner + iterative loop) history on the Schur complement for a problem
with 43 millions dof mapped on 1000 processors
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Numerical scalability

Parallel numerical experiments

Numerical scalability in 3D

3D Poisson problem 3D Heterogenous diffusion |

3D Poisson Problem 3D Heterogenous diffusion Problem

—A— 64-bit calculation

—A— 32-bit calculation
1601 1601
—A— Sparse calculation
140 140
1201 S
1208 55 10F 02105 1510° 22108 31.10° 13.10°
§ 100r53.10°9.2:10°15.10° 22.10° 31.10° 43.10° $ 100
F r
E 8o kKk__"_A/ £ gof
= £
60

=
&

S

2764 125 216 343 512 729 1000
#Procs

2764 125 216 343 512 729 1000
# Procs

V. v
@ The trend is similar for all variants using CG Krylov slover

@ The computing time increases slightly when increasing # sub-domains

@ The solved problem size vary from 1.1 up to 43 Millions of unknowns
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Numerical scalability

Parallel numerical experiments

Numerical scalability in 3D
—div(K.V¢) +Vv.V¢ = f

xy plan view of the Heterogenous

circular velocity field convection diffusion
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@ The trend is similar for all variants using GMRES Krylov slover

@ The computing time increases slightly when increasing # sub-domains
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Numerical scalability

Parallel numerical experiments

Numerical scalability in 3D

—div(K.V$) + V.V = f

xy plan view of the

Anisotropic Heterogenous
4-area velocity field

convection diffusion

4-area velocity flow 3D Anisotropic Heterogenous convection diffusion Problem -2
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@ The trend is similar for all variants using GMRES Krylov slover

@ The computing time increases slightly when increasing # sub-domains
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Perspectives

Perspectives

Structural mechanic problem Parallel Performance and Scalability |

Structural mechanic problem

338000 elements
2001 1.3 10° degree of freedoms
’g 150
100
50
32 “p 64 80
# processors ‘ 32 ‘ 64 ‘ 80 ‘
# iter 108 | 160 | 170
Total time(sec) | 240 | 132 66
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Perspectives

Structural mechanic problem | Parallel Performance and Scalability

Structural mechanic problem

125000 elements

0.7 10° degree of freedoms

200

Time (sec)

#Procs

# processors ‘ 16 ‘ 32

64 | 80 |
' | # iter 40 | 50 [ 69 | 73
: Total time(sec) | 347 | 143 | 76 | 39
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Description in a PDE’s
Algebraic Additive Schwarz pi litioner
Parallel numerical experiment
Perspectives

Perspectives

@ Study the behavior of the preconditioner on more general industrial
problems

@ Control the growth of iterations when increasing the # processors
v

Various possibilities

|
@ Numerical remedy: two-level preconditioner

- Coarse space correction, ie solve a closed problem on a coarse

space
- Various choices for the coarse component (eg one d.o.f. per

sub-domain)
@ Computer Science remedy : several processors per sub-domain

- Two-level of parallelism
- 2D cyclic data storage

v
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Perspectives

Parallel computing alternative

racteristics of the two-level of parallelism

1000 Sub-domains

@ Allocate each subdomain to many processors
@ Benefit from the parallel efficiency of direct solver )

125 Sub-domains
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Perspectives

More detalls

Acknowledgements

@ More details on this work can be found in [1, 2, 3, 4].

@ This research activity was partially developed in the framework of the
ANR-CIS project Solstice (ANR-06-CIS6- 010).

THANKS

24125 Numerical experiments with additive Schwaz preconditioner



Perspectives

Bibliography

@ L. M. Carvalho, L. Giraud, and G. Meurant.

Local preconditioners for two-level non-overlapping domain decomposition methods.
Numerical Linear Algebra with Applications, 8(4):207-227, 2001.

@ L. Giraud, A. Haidar, and L. T. Watson.
Parallel scalability study of three dimensional additive Schwarz preconditioners in
non-overlapping domain decomposition.
Technical Report TR/PA/07/05, CERFACS, Toulouse, France, 2007.
Also appeared as ENSEEIHT-IRIT Technical report RT/APO/07/01.
Under revision for Parallel Computing

@ L. Giraud, A. Haidar, and L. T. Watson.
Mixed-precision preconditioners in parallel domain decomposition solvers.
Technical Report TR/PA/06/84, CERFACS, Toulouse, France, 2006.
Also appeared as ENSEEIHT-IRIT Technical report RT/APO/06/08.
Accepted for publication in the proceedings of DD17.

@ J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra.

Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy.
Technical Report LAPACK Working Note #175 UT-CS-06-574, University of Tennessee
Computer Science, April 2006.

25/25 Numerical experiments with additive Schwaz preconditioner



	Outline
	Motivations
	Description in a PDE's framework
	Algebraic Additive Schwarz preconditioner
	Description of the preconditioner
	Variant of Additive Shwarz preconditioner MAS

	Parallel numerical experiments
	Numerical scalability

	Perspectives

