HIPS: a parallel hybrid direct/iterative solver based on a Schur complement approach. Sparse days at CERFACS

J. Gaidamour, P. Hénon

LaBRI and INRIA Bordeaux - Sud-Ouest (ScAlApplix team), France ANR Project Solstice (ANR-06-CIS)

June 23-24, 2008

Outlines

- Introduction
- 2 Incomplete factorization based on a HID
- 3 Hybrid Solver
 - Experimental results
- Parallelization
 - Experimental results
- **5** Conclusion

Outlines

- Introduction
- 2 Incomplete factorization based on a HID
- 3 Hybrid Solver
 - Experimental results
- Parallelization
 - Experimental results
- Conclusion

Introduction

HIPS: Hierarchical Iterative Parallel Solver

Goals:

- Solve A.x = b
- Build algebraic preconditioners for a Krylov method: no information about the mathematical problem (black box).
- Parallelism of domain decomposition like methods (e.g. add. Schwarz methods) is appealing but
 - ► convergence can decrease quickly with the number of domains.
- Build a global Schur complement preconditioner (ILU) from the local domain matrices only.

Introduction

We want the smallest Schur complement vs nb domains :

use decomposition of the adj.
 graph of the matrix with an overlap of one-vertex wide.

Outlines

- 1 Introduction
- 2 Incomplete factorization based on a HID
- 3 Hybrid Solver
 - Experimental results
- Parallelization
 - Experimental results
- Conclusion

Incomplete factorization based on a HID [Hénon, Saad, 06]

We want an incomplete factorization of the matrix without creating edge (fill-in) outside the local domain matrices (keep the parallelism).

Problem: in a domain, we need an ordering of the interface compatible with neighboring domains.

- ▶ Use a hierarchical interface decomposition :
 - partition the interface nodes according to the domains they belong to.
 - respect some properties to ensure good parallelism and numerical behavior.

Simple case : a 2D grid

In this case the HID

Grid 8×8 .

The reordered matrix.

We use the quotient graph induced by this partition to define block incomplete factorizations

A HID respects two rules:

- Connectors of a same level are not connected
- ② A connector of the level k is a separator for at least two connectors of the level k-1.

A HID respects two rules:

- Connectors of a same level are not connected
- ② A connector of the level k is a separator for at least two connectors of the level k-1.

• Unmatched elimination path are at least of length 4.

A HID respects two rules:

- Connectors of a same level are not connected
- ② A connector of the level k is a separator for at least two connectors of the level k-1.
- ► The HID heuristics (NP problems) :
 - minimize the number of nodes in the higher connector levels.
 - minimize the number of connector levels.

Fill-in block pattern (viewed from a local matrix)

Global domain partitioned into 6 subdomains

Local blocked-matrix for subdomain 2

Empty sparse matrix in intial matrix (fill-in occurs during factorization)

Fill-in in these blocks is allowed in the locally consistent strategy

Fill-in block pattern (viewed from the global matrix)

L_S , U_S : strictly consistent rule

No fill-in is allowed outside the initial block pattern of A (keep the block diag. struct.)

Fill-in block pattern (viewed from the global matrix)

L_S , U_S : locally consistent rule

Fill-in is allowed in any place of the local domain matrices.

Elimination order (matters in locally consistent case):

The connectors are ordered locally according to a global ordering. We use a MIS algorithm to eliminate at a time a maximum number of connectors.

Block fill-in pattern in a real case (bcsstk14)

- ▶ the strictly pattern is really "cheaper" than the locally pattern.
- ▶ we can use a ILUT (numerical threshold) to control the fill inside the block pattern.

Locally consistent rules

Strictly consistent rules

- 3 Hybrid Solver
 - Experimental results
- - Experimental results

Hybrid direct/iterative : Schur complement approach

The linear system A.x = b can be written as :

$$\begin{pmatrix} A_B & A_{BC} \\ A_{CB} & A_C \end{pmatrix} \cdot \begin{pmatrix} x_B \\ x_C \end{pmatrix} = \begin{pmatrix} y_B \\ y_C \end{pmatrix}$$
 (1)

The system A.x = B can be solved in three steps :

$$\begin{cases} A_B.z_B = y_B \\ S.x_C = y_C - A_{CB}.z_B \\ A_B.x_B = y_B - A_{BC}.x_C \end{cases}$$
 (2)

with
$$S = A_C - A_{CB}.\mathbf{A_B^{-1}}.A_{BC} = A_C - A_{CB}.\mathbf{U_B^{-1}}.\mathbf{L_B^{-1}}.A_{BC}$$

Hybrid direct/iterative : Schur complement approach

Schur Complement utilization:

- $A_B = L_B U_B$: exact factorization \Rightarrow direct resolution of subsystems (1) and (3) Each interior of subdomains can be computed independently
- $S \approx \tilde{\mathcal{L}}_S . \tilde{\mathcal{U}}_S$: incomplete factorization \Rightarrow (2) is solved by a preconditioned Krylov subspace method Solve the Schur complement by a preconditioned Krylov method (GMRES).

$$\begin{cases} A_B.z_B = r_B & (1) \\ S.x_C = r_C - A_{CB}.z_B & (2) \\ A_B.x_B = r_B - A_{BC}.x_C & (3) \end{cases}$$

Iterative resolution: Iterate on S is numerically equivalent to iterate on the whole system A.

▶ Non-zero pattern of the global factors obtained on a small matrix : (Fill-in allowed only in local Schur complement)

$$\left(\begin{array}{cc}L_B\\A_{CB}U_B^{-1}&S\end{array}\right)$$

- ▶ How to avoid memory cost of $A_{CB}U_B^{-1}$ and S in 3D problems [Gaidamour, Hénon, 08] :
 - We do not need to store S, instead of S.x we use $(A_{C} - A_{CB}, U_{P}^{-1}, L_{P}^{-1}, A_{BC}).x$
 - ILUT : $A_{CB}U_B^{-1}$ (resp. $L_B^{-1}A_{BC}$) is numerically sparsified along its computations (blockwise ILUC(t)= left looking) : $\tilde{L_S}.\tilde{U_S} \approx \tilde{S} = (A_{CB}.\tilde{U_D}^{-1}).(L_D^{-1}.\tilde{A_{BC}}) \approx S$

Test cases

Test cases from grid-TLSE collection (http://gridtlse.enseeiht.fr:8080/websolve/)

MHD1:

- Unsymmetric real matrix
- 3D magneto-hydrodynamic flow problem

AUDI:

- Symmetric real matrix
- 3D structural mechanic problem

Haltere, Amande:

- Symmetric complex matrix
- 3D electromagnetism problems (Maxwell)

Test cases

Fill-in and OPC are given for a direct method.

Matrix	unknowns	non-zeros	fill-in	OPC
MHD1	485, 597	24, 233, 141	52.4	$9.0 \cdot 10^{12}$
AUDI	943, 695	39, 297, 771	41.2	$5.4 \cdot 10^{12}$
Haltere	1, 288, 825	10, 476, 775	38.7	$7.5 \cdot 10^{12}$
Amande	6, 994, 683	58, 477, 383	53.9	$1.5 \cdot 10^{13}$

Results

Experimental conditions:

10 nodes of 2.6 Ghz quadri dual-core Opteron (Myrinet)

Partitionner: Scotch

 $||b - A.x||/||b|| < 10^{-7}$, no restart in GMRES

Thresholds: MHD1, Audi, Amande = 0.001, Haltere = 0.01

The Amande test case does not converge with the strictly pattern and better results were obtained with using no threshold in coupling (L_s, L_s^t) are computed from the exact Schur complement).

Iterations/number of domains

MHD1 (485, 597): nb domains from 33 to 132

HALTERE (1, 288, 825) : nb domains from 119 to 1894

AUDI (943, 695) : nb domains from 53 to 326

AMANDE (6, 994, 683): nb domains from 801 to 3004

Seq. Times (prec+solve)/number of domains

MHD1 (485, 597) : nb domains from 33 to 132

HALTERE (1, 288, 825): nb domains from 119 to 1894

AUDI (943, 695): nb domains from 53 to 326

AMANDE (6, 994, 683): nb domains from 801 to 3004

Fill ratio/number of domains (Amande : Peak = +3.5)

HALTERE (1, 288, 825) : nb domains from 119 to 1894

AUDI (943, 695) : nb domains from 53 to 326

AMANDE (6, 994, 683) : nb domains from 801 to 3004

Outlines

- - Experimental results
- Parallelization
 - Experimental results

Unknown elimination in parallel

We build a decomposition of the adjacency graph of the system into a set of **small subdomains** ($\simeq 1000$ to 5000 nodes).

We can recover communications between processors by elimination of local subdomains

- ▶ Subdomains distribution on the processors :
 - Obtained by partitioning the weighted "domain graph" (SCOTCH or Metis)
 - Balance of S.x computation (solving step) by using the symbolic factorization to compute the number of NNZ of the interiors of subdomains.

▶ Finer level of balance : election of the processor responsible for the computation of a piece of interface (connectors).

Parallel time (prec+solve) (logarithmic scale)

Outlines

- Introduction
- 2 Incomplete factorization based on a HID
- 3 Hybrid Solver
 - Experimental results
- Parallelization
 - Experimental results
- Conclusion

Conclusion

Conclusion:

- Generic algebraic approach, tight coupling between state of the art direct method (supernodal) and ILU(t) implementation,
- Trade-off performance/memory : easy tuning (choose thresholds, domain size)

Prospects:

- Provide automatically a domain size parameter (based on memory).
- Partitioning is an open question...numerical weight, connectivity
- Coarse grid based on the HID (for elliptic problems)

Download HIPS

http://hips.gforge.inria.fr

- Features: symmetric, unsymmetric (Cholesky/LU, ICC(t)/ILU(t)), real or complex systems.
- Method: Hybrid, multistage ICC(t), ILU(t).
- Compatible with the graph partitioners SCOTCH and METIS.
- Cecill-C license (LGPL-like licence)

Construction of the domain partition

The domain partition is constructed from the reordering based on Nested-Dissection like algorithms (eg : METIS, SCOTCH)

⇒ Minimize overlap between subdomains, quality of the interface

Construction of the domain partition

We choose a level of the elimination tree of direct method :

- Subtrees rooted in this level are the interior of subdomains
- The upper part of the elimination tree corresponds to the interfaces

Possibility to choose the ratio of direct/iterative according to the problem difficulty or the accuracy needed.

Test case: Haltere (sequential study)

► Convergence/time for several parameters with two different domain size parameters :

Domain size set to 1000 (1021 domains):

Domain size set to 10000 (119 domains):

(preconditioning time = curve offset)

Test case : Haltere (parallel study)

▶ HIPS : ILUT $(\tau = 0.01, 10^{-7})$

• 1021 domains of \simeq 1481 nodes

• fill ratio in precond : 5.70 (peak)

• dim(S) = 14.26% of dim(A)

Strictly consistent:

21 iterations

fill ratio in solve : 5.52

# proc	Precond.	Solve	Total
	(sec.)	(sec.)	(sec.)
1	45.09	36.74	81.84
2	24.48	20.76	45.24
4	12.08	15.65	27.74
8	6.15	8.71	14.86
16	3.06	3.31	6.37
32	1.58	1.92	3.50
64	0.89	1.07	1.96

Locally consistent:

13 iterations

fill ratio in solve: 5.69

# proc	proc Precond.		Total	
	(sec.)	(sec.)	(sec.)	
1	54.55	24.90	79.45	
2	29.17	13.50	42.68	
4	14.28	8.69	22.96	
8	7.31	5.19	12.50	
16	3.82	2.76	6.58	
32	1.97	1.31	3.29	
64	1.89	0.86	2.75	

Test case: Amande

TAB.: Direct factorization using MUMPS

				Â	
Haltere : Â					
# proc	Facto.	Solve	Total	nnz _{max}	
	(sec.)	(sec.)	(sec.)	$\times 10^6$	
16	29	0.44	29.44	52.8	
32	16	0.26	16.26	22.6	
				Â	
Amande: Â					
# proc	Facto.	Solve	Total	nnz _{max}	
16	512	4.5	516.5	407.7	
32	299	2.4	301.4	179.5	

Test case: Amande

▶ HIPS : ILUT (locally consistent, $\tau = 0.001$, 10^{-7}) Time decomposition for one iteration of GMRES :

#	proc	Total 1 Iter. (sec.)	Triangular Solve (sec.)	5.x (sec.)	Other (sec.)
	2	11.29	3.94	6.91	0.44
	64	0.58	0.19	0.31	0.08