
November 27, 2012

Toward a supernodal sparse direct
solver over DAG runtimes
Sparse Days 2013, Toulouse
X. Lacoste

Xavier LACOSTE
HiePACS team – Inria Bordeaux Sud-Ouest

Guideline
Context and goals
Kernels

Panel factorization
Trailing supernodes update (CPU version)
Sparse GEMM on GPU

Runtime
Results on DAG runtimes

Matrices and Machines
Multicore results
GPU results

Improvement on granularity
Smarter panel splitting

Results about granularity
Conclusion and futur works

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 2

1
Context and goals

Context and goals

Context and goals

I Robust and efficient Ax = b resolution using direct
factorization
→ PaStiX direct solver

I Factorization is time consuming, good performance required
I Emerging machines with many-cores and multiple GPUs
→ use it all !

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 5

Context and goals

Possible solutions
I Many-cores : PaStiX already finely tuned to using MPI and

P-Threads;
I Multiple-GPU and many-cores, two solutions:

I Manually handle GPUs:
I lot of work;
I heavy maintenance;

I Use dedicated runtime:
I May loose the performance obtained on many-core;
I Easy to add new computing devices.

Elected solution, runtime:
I StarPU: RUNTIME – Inria Bordeaux Sud-Ouest;
I PaRSEC: ICL – University of Tennessee, Knoxville.

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 6

Context and goals

Major steps for solving sparse linear systems

1. Analysis: matrix is preprocessed to improve its structural
properties (A′x ′ = b′ with A′ = PnPDr ADcQPT)

2. Factorization: matrix is factorized as A = LU, LLT or LDLT

3. Solve: the solution x is computed by means of forward and
backward substitutions

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 7

2
Kernels

Kernels Panel factorization

Panel factorization
I Factorization of the diagonal block (xxTRF);
I TRSM on the extra-diagonal blocks (ie. solves

X × bd = bi ,i>d – where bd is the diagonal block).

Panel

Panel storage

1: xxTRF

2: TRSM

Figure: Panel update

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 10

Kernels Trailing supernodes update (CPU version)

Trailing supernodes update

I One global GEMM in a temporary buffer;
I Scatter addition (many AXPY).

P1

P2

P1 P2

Compacted in memory

Figure: Panel update

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 11

Kernels Sparse GEMM on GPU

Why a new kernel ?

I A BLAS call ⇒ a CUDA startup paid;
I Many AXPY calls ⇒ loss of performance.

⇒ need a GPU kernel to compute all the updates from P1 on P2
at once.

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 12

Kernels Sparse GEMM on GPU

How ?
auto-tunning GEMM CUDA kernel

I Auto-tunning done by the framework ASTRA developped by
Jakub Kurzak for MAGMA and inspired from ATLAS;

I computes C ← αAX + βB, AX split into a 2D tiled grid;
I a block of threads computes each tile;
I each thread computes several entries of the tile in the shared

memory and substract it from C in the global memory.

Sparse GEMM cuda kernel
I Based on auto-tuning GEMM CUDA kernel;
I Added two arrays giving first and last line of each blocks of P1

and P2;
I Computes an offset used when adding to the global memory.

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 13

Kernels Sparse GEMM on GPU

Sparse GEMM on GPU

Tiled A × X

P2

fr1,1

lr1,1

fr1,2

fr1,2

fr1,3

fr1,3

fr2,1

lr2,1

fr2,2

fr2,2

blocknbr = 3;
blocktab = [fr1,1, lr1,1,

fr1,2, lr1,2,
fr1,3, lr1,3];

fblocknbr = 2;
fblocktab = [fr2,1, lr2,1,

fr2,2, lr2,2];

sparse gemm cuda(char TRANSA, char TRANSB, int m, int n, int k,
cuDoubleComplex alpha,
const cuDoubleComplex *d A, int lda,
const cuDoubleComplex *d B, int ldb,
cuDoubleComplex beta,
cuDoubleComplex *d C, int ldc,
int blocknbr, const int *blocktab,
int fblocknbr, const int *fblocktab,
CUstream stream);

Figure: Panel update on GPU

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 14

Kernels Sparse GEMM on GPU

GPU kernel experimentation

×

A11

AT
11

NcolA

NrowA

NrowA11

NcolB

Parameters
I NcolA = 100;
I NcolB = NrowA11 = 100;
I NrowA varies from 100 to 2000;
I Random number and size of

blocks in A;
I Random blocks in B matching

A;
I Get mean time of 10 runs for a

fixed NrowA with different
blocks distribution.

Figure: GPU kernel experimentation

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 15

Kernels Sparse GEMM on GPU

GPU kernel performance

0 1,000 2,00010−5

10−4

10−3

10−2

Number of rows

T
im

e
(s

)

GPU time
GPU time with transfer

CPU time

Figure: Sparse kernel timing with 100 columns.

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 16

3
Runtime

Runtime

Runtimes

I Task-based programming model;
I Tasks scheduled on computing units (CPUs, GPUs, . . .);
I Data transfers management;
I Dynamicaly build models for kernels;
I Add new scheduling strategies with plugins;
I Get informations on idle times and load balances.

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 19

Runtime

StarPU Tasks submission

Algorithm 1: StarPU tasks submission
forall the Supernode S1 do

submit panel (S1);
/* update of the panel */

forall the extra diagonal block Bi of S1 do
S2 ← supernode in front of (Bi);
submit gemm (S1,S2);
/* sparse GEMM Bk,k≥i × BT

i substracted from

S2 */

end
end

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 20

Runtime

PaRSEC’s parametrized taskgraph

panel(j) [high priority = on]
/* execution space */
j = 0 .. cblknbr-1
/* Extra parameters */
firstblock = diagonal block of(j)
lastblock = last block of(j)
lastbrow = last brow of(j) /* Last block generating an update on j */
/* Locality */
:A(j)
RW A ← leaf ? A(j) : C gemm(lastbrow)

→ A gemm(firstblock+1..lastblock)
→ A(j)

Figure: Panel factorization description in PaRSEC

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 21

Runtime

Giving more information to the runtime

Definition of a new scheduler PaStiX work stealing
I Use PaStiX static tasks placement;
I steal tasks from other contexts when no more tasks are ready

(based on StarPU work stealing policy).

Choose which GEMM will run on GPUs
I staticaly decide to place only some panels on GPUs following

a given criterium :
I panel size;
I number of update on the panel;
I number of flops for the panel update.

I PaRSEC can place task on a given GPU whereas it’s more
complicated with StarPU.

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 22

4
Results on DAG runtimes

Results on DAG runtimes Matrices and Machines

Matrices and Machines

Matrices
Name N NNZA Fill ratio OPC Fact
MHD 4.86×105 1.24×107 61.20 9.84×1012 Float LU
Audi 9.44×105 3.93×107 31.28 5.23×1012 Float LLT

10M 1.04×107 8.91×107 75.66 1.72×1014 Complex LDLT

Machines
Machine Processors Frequency GPUs RAM
Romulus AMD Opteron 6180 SE (4 × 12) 2.50 GHz Tesla T20 (×2) 256 GiB
Mirage Westmere Intel Xeon X5650 (2 × 6) 2.67 GHz Tesla M2070 (×3) 36 GiB
Riri Intel Xeon E7- 4870 (4 × 10) 2.40 GHz None 1 TB

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 25

Results on DAG runtimes Multicore results

CPU only results on Audi

1 2 4 6 12 24 36 48

102

103

Number of Threads

Fa
ct

or
iz

at
io

n
T

im
e

(s
)

PaStiX
PaStiX with StarPU
PaStiX with DAGuE

Figure: LLT decomposition on Audi (double precision)

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 26

Results on DAG runtimes Multicore results

CPU only results on MHD

1 2 4 6 12 24 36 48

102

103

Number of Threads

Fa
ct

or
iz

at
io

n
T

im
e

(s
)

PaStiX
PaStiX with StarPU
PaStiX with DAGuE

Figure: LU decomposition on MHD (double precision)

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 27

Results on DAG runtimes Multicore results

CPU only results on 10 Millions

1 2 4 6 12 24 36 48

103

104

Number of Threads

Fa
ct

or
iz

at
io

n
T

im
e

(s
)

PaStiX
PaStiX with StarPU
PaStiX with DAGuE

Figure: LDLT decomposition on 10M (double complex)

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 28

Results on DAG runtimes GPU results

GPU study on mirage

1 2 4 8

102

103

Number of Threads

Fa
ct

or
iz

at
io

n
T

im
e

(s
)

PaStiX dynsched
StarPU 0 CUDA device
ParSEC 0 CUDA device
StarPU 1 CUDA devices
ParSEC 1 CUDA devices
StarPU 2 CUDA devices
ParSEC 2 CUDA devices
ParSEC 3 CUDA devices

Figure: LLT decomposition on Audi (double precision)

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 29

5
Improvement on granularity

Improvement on granularity

Improvements on granularity

I Graph preprocessing minimal blocking → reduce number of
tasks;

I Smarter panel splitting to suppress low flop tasks.

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 32

Improvement on granularity Smarter panel splitting

Panel splitting

Why splitting panels ?
I create more parallelism.

Drawback
I induce facing block splitting that can create many tiny blocks.

Solution
I smarter panel splitting;
I avoid tiny blocks creation which leads to inneficient BLAS.

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 33

Improvement on granularity Smarter panel splitting

A smarter split

I For each panel :
I Construct a partition of the panel height with the number of

facing blocks;
I Decide to split where the number of splitted blocks is minimal.

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 34

Improvement on granularity Smarter panel splitting

A smarter split

Constant split size

Figure: Classical equal splitting

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 35

Improvement on granularity Smarter panel splitting

A smarter split

I 5 intervales partition :
start end facing blocks
60 70 0
70 78 1
78 81 2
81 88 1
88 90 0

I better to split only on of the
two facing blocks, on row 78
or 81.

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 36

Improvement on granularity Smarter panel splitting

A smarter split

Constant split size

(a) Classical equal splitting

A smarter split

(b) Smarter adapted splitting
Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 37

6
Results about granularity

Results about granularity

Preprocessing option comparaison on Audi, on Mirage

1 2 4 6 8

102

103

Number of Threads

Fa
ct

or
iz

at
io

n
T

im
e

(s
)

Dynsched
Dynsched + cmin=20

Dynsched + smart
Dynsched + smart + cmin=20

Figure: LLT decomposition on
Audi (double precision)

method Dynsched Dynsched + smart
cmin 0 20 0 20
analyze time 1.95 s 0.35 s 2.56 s 0.42 s
number of panels 118814 10082 118220 9491
number of blocks 2283029 338493 2213497 280722
created by splitting 65147 48284 18072 13081
Avg. panel size 7.94262 93.602 7.98253 99.4305
Avg. block height 10.1546 29.2206 9.08452 24.5355
Memory usage 10.1 Go 10.7 Go 10.5 Go 11.1 Go

Smart panel splitting
I Factorization time reduction : 6-15%;
I Analyze time augmentation : 16-20%.

cmin 20
I Analyze time reduction : 80%;
I Less tasks may reduce runtime overhead, no

effect on PaStiX fatorization time.

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 40

Results about granularity

Study on Scotch minimal subblock parameter (cmin), on
Riri

10 20 30 40

20

30

40

50

60

70

80

90
100

200

300

Number of Threads

Fa
ct

or
iz

at
io

n
T

im
e

(s
)

PaStiX cmin=0
PaStiX cmin=20
StarPU cmin=0
StarPU cmin=20
StarPU cmin=30
StarPU cmin=40

Figure: LLT decomposition on Audi (double precision)

Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 41

7
Conclusion and futur works

Conclusion and futur works

Conclusion
I Timing and scaling close to PaStiX;
I Speedup obtained with one (StarPU) or two (PaRSEC)

GPUs and little number of cores;

Future works
I More locality :

I StarPU : use contexts to attach tasks to a pool of processing
units;

I PaRSEC : Virtual processors : organize scheduling by socket;
I Streams : need streams to perform multiple kernel execution

on a GPU at a time.
I Group tasks to reduce the runtime overhead (gather small

tasks in PaStiX or let the runtime decide what is a small task);
I Distributed implementation (MPI), decide when to aggregate

contribution or send FANIN or let the runtime decide.
Xavier LACOSTE - Sparse Days - Toulouse June 18, 2013 - 44

Thanks !

Xavier LACOSTE
INRIA HiePACS team

Sparse Days - June 18, 2013

	Context and goals
	Kernels
	Panel factorization
	Trailing supernodes update (CPU version)
	Sparse GEMM on GPU

	Runtime
	Results on DAG runtimes
	Matrices and Machines
	Multicore results
	GPU results

	Improvement on granularity
	Smarter panel splitting

	Results about granularity
	Conclusion and futur works

