AllReduce Algorithms

Or Tall Skinny Algorithms if you are from Berkeley



AllReduce Algorithms

1) Tall Skinny matrices: Application
2) The CholeskyQR algorithm (see MATH6664)
3) AllIReduce Householder factorization

4) Application to dense LU and dense QR
factorizations



AllReduce Algorithms

1) Tall Skinny matrices: Application
2) The CholeskyQR algorithm (see MATH6664)
3) AllIReduce Householder factorization

4) Application to dense LU and dense QR
factorizations



Reduce Algorithms: Introduction

The QR factorization of a long and skinny matrix with its data partitioned
vertically across several processors arises in a wide range of applications.

Input: Output:
A is block distributed by rows Q is block distributed by rows
R is global

I‘




b)

Example of applications: in block iterative methods.

in iterative methods with multiple right-hand sides (block iterative methods:)

1)  Trilinos (Sandia National Lab.) through Belos (R. Lehoucq, H. Thornquist, U.
Hetmaniuk).

2)  BlockGMRES, BlockGCR, BlockCG, BlockQMR, ...

in iterative methods with a single right-hand side

1) s-step methods for linear systems of equations (e.g. A. Chronopoulos),

2)  LGMRES (Jessup, Baker, Dennis, U. Colorado at Boulder) implemented in PETSc,
3) Recent work from M. Hoemmen and J. Demmel (U. California at Berkeley).

in iterative eigenvalue solvers,

1)  PETSc (Argonne National Lab.) through BLOPEX (A. Knyazev, UCDHSC),

2)  HYPRE (Lawrence Livermore National Lab.) through BLOPEX,

3)  Trilinos (Sandia National Lab.) through Anasazi (R. Lehoucq, H. Thornquist, U.
Hetmaniuk),

4)  PRIMME (A. Stathopoulos, Coll. William & Mary ),
5) And also TRLAN, BLZPACK, IRBLEIGS.



Example of applications:
panel factorization of dense blocked factorization

LAPACK block LU (right-looking): dgetrf

LAPACK block QR (right-looking): dgeqrf

Panel

dgetf2

-4

dgeqf2 + dlarft
ﬂ* qr(l)

Update of the

dtrsm (+ dswp)

remaining submatrix [factorization

— R QY —
dgemm dlarfb
I —3 .‘-

“idmil




Example with PLASMA

N = 1536, NB = 64

LAPACK + BLAS threads

Threads - lookahezd = 0

. it

Threads - lookahezd = 1

DGETF2
DLASWP (right)
DTRSM

DGEMM

DLASWP (left)




Example with ScaLAPACK

e green: pdgemm
e blue : pdgetf2

e red : pdlswap

e magenta : pdtrsm
e cyan : topset

e vellow: igamn2d



What about strong scalability?

N =1536
NB =64
procs

=16




Reduce Algorithms: Introduction

Example of applications:

a) in block iterative methods (iterative methods with multiple right-hand sides or
iterative eigenvalue solvers),

b) indense large and more square QR factorization where they are used as the panel
factorization step, or more simply

c) inlinear least squares problems which the number of equations is extremely larger
than the number of unknowns.
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Reduce Algorithms: Introduction

Example of applications:

a) in block iterative methods (iterative methods with multiple right-hand sides or
iterative eigenvalue solvers),

b) indense large and more square QR factorization where they are used as the panel
factorization step, or more simply

c) inlinear least squares problems which the number of equations is extremely larger
than the number of unknowns.

The main characteristics of those three examples are that

a) there is only one column of processors involved but several processor rows,
b) all the data is known from the beginning,

c) and the matrix is dense.

Various methods already exist to perform the QR factorization of such matrices:
a) Gram-Schmidt (mgs(row),cgs),

b) Householder (qr2, qrf),

c) or CholeskyQR.

We present a new method:

Allreduce Householder (rhh_qr3, rhh_qrf).
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SYRK:

CHOL:
TRSM:

The CholeskyQR Algorithm

C:= ATA
R :=chol(C)
Q:= A\R

( mn?)
(n%/3)

( mn?)

a~—|

<—Ch0|( N )

i1

14




Bibliography

e First reference in an ETHZ tech. report from
W. Gander (1980):

In fact even the method, although we don’t recommend it,
of computing Q via the Cholesky decomposition of A’A,
A'A =R'R
and to put
Q=AR"
seems to be superior than Schmidt.

e Then A. Bjorck (p.67, 1997):

As pointed out by Gander (1980), even computing Q via
the Cholesky decomposition of A’A seems to be superior to
CGS.
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Trilinos (Sandia National Lab.) through Anasazi (R. Lehoucq, H. Thornquist, U.
Hetmaniuk),

PRIMMIE (A. Stathopoulos, Coll. William & Mary ).



Fall 2007: MATH 6664 — Numerical Linear Algebra
project

Abstract
The goal of this project is to analyze, program and experiments the Cholesky QR orthogonalization
scheme then write & small report about it. You will be evaluated on the quality of the report, the quality
of your experiments and your coding performance. This consists i the first part of the project, it s worth
75 points (over 150 of the project, over 400 of the total).
‘The orthogonalization scheme to be studied is Cholesky O and it can be described as follows:
algorithm: Cholesty OF.
input data: A is #-by-n and full rank.
output data: Q and R, such that: A= QR. Q is m-hy-n with orthonormal columms, R is n-hy-n
upper triangular with positive diagonal elements.

LG

2 ¢

20) C — ATA,

YR« chel(C),

3. (resMy Q —A/R
“The first time (1o my knowledge) this algorithm has heen mentionned is in Gander |3, unfortunatley Gander
forgets to give further reference. Stathopoulos and Wi have recently presented a new method (S¥DUE)
closely related sce [7].

Part I: Analysis

The first part of your report will consist in an analysis of the algorithm. The analysis of the algorithm needs
10 have:

. explanation on why this algorithm performs the reduced QR-factorization of A,
2. FLOPS count for this algorithm,
3. stability analysis with some experiments to assess the results (Matlab experiments),
4. scalability analysis in a parallel distributed framework.
Part II: Implementation
You need to provide me with three different flavors for the implementation of the algorithm: Matlab, se-
quential code (optional) and parallel distributed code.
perimentation

Finally, explanation of the codes performance based on the analysis made in the first part is expected.
General remarks

1. When it is asked to bound a quantity, it is implicitly assumed that the tighter the better ...
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2 Implementation
You need to provide me with three different flavors for the implementation of the algorithm:
1. Matlab
2. sequential code
3. parallel distributed code running on the cluster
All codes need to he checked. The sequential code is optionnal since one cam use without (much) penalty
the parallel one.
3 Experimentation

3.1 Verification in Matlab of the sharpness of the bound obtained in Equation (8) and Equa-
tion (9)

32 Compare experimentally the quality of Cholesky QR with CGS, MGS, and Houscholder.

33 Analyse the performance of your parallel code and compare with theory you have de-
veloped in section 1.4

4 Conclusion

You write whatever you flel like at this point.
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A Absolute value of matrices and norm - ITigham [6] Lemma 6.6.

Lemma 1 (6, Lemma 6.6, pl11]). Lot A and B be m-by-n symmetric matrices. Then

Lo Iflajl2 < 1632, j = 1, then

lAle < |Ble,  [Allz < +/rank(B) |Bl2, |4 < eeT|B]|

2 I Al < Brhen A2 <

1Bz -
34 \Al B then |Allz < /Tank(B)| B2 .

4 ||

B Weyl’s theorem (or more accuratley a corollary of Weyl’s theorem)

Corollary 1 (c.g. [$, Corollary
matrices. Then

1, p.69] or [4, Corollary 8.6.3, p.4491). Let A and £ be m-by-n symmetric

o

+E)—oia)| =

El2, i=12,...,p

Corollary 2 (e.g. [8. Theorem 4.34(4), p.72] or [4, Corollary 8.1.6, p:396]). T A and F be n-byn sym-
metric matrices. Then

) =Ml < |E], 1-12..p



Question 1.

_— _I
SYRK:  C:= ATA ( mn?)
. o= 3
CHOL: R:=chol(C) (n3/3) T «—chol | )
TRSM:  Q:=A\R (mn?)

i1

 Why does Cholesky QR generates a QR
factorization of the matrix A?



Questions 2 and 3.

FLOPs (total)
CholeskyQR mn2+ n3/3
CGram-Schmidt  2mn?
Mgram-Schmidt 2mn?

Householder 2mn2-2/3n3

Q and R are needed

FLOPs (total)
CholeskyQR 2mn2+ n3/3
CGram-Schmidt  2mn?
Mgram-Schmidt 2mn?

Householder 4mn2-4/3n3



Parallel distributed CholeskyQR

The CholeskyQR method in the parallel distributed context can be described as follows:

1: SYRK: C:= AA ( mn?)

1 W— _I
2: MPI_Reduce: C:=sum, s C (on proc 0) 2] H ‘—N N E 4 N’*N
1 2 3 4

3: CHOL: R :=chol( C) (n3/3)
3-4. N «—chol ( N )
4: MP|_Bdcast Broadcast the R factor on proc 0

to all the other processors > '_ \ R
5: TRSM: Q:= A\R ( mn?)

This method is extremely fast. For two reasons:
1. first, there is only one or two communications phase,
2. second, the local computations are performed with fast operations.
Another advantage of this method is that the resulting code is exactly four lines,
3. sothe method is simple and relies heavily on other libraries.
Despite all those advantages,
4. this method is highly unstable. 20



Operations/Latency/Bandwidth

Questions 14 and 15

FLOPs (total) # msg Vol data exchanged FLOPs
CholeskyQR mn2+ n3/3 2log,(p) 2log,(p) (n3/2) (mn?3)/p +n3/3
CGram-Schmidt 2mn? 2n log,(p) 2log,(p) (n?/2) (2mn?)/p
MGram-Schmidt 2mn? n? log,(p) 2log,(p) (n3/2) (2mn?)/p
Householder 2mn2-2/3n3 2n log,(p) 2log,(p) (n?/2) (2mn2-2/3n3)/p

FLOPs (total) # msg Vol data exchanged FLOPs
CholeskyQR 2mn2+ n3/3 2 log,(p) 2 log,(p) (n%/2) (2mn2)/p + n3/3
CGram-Schmidt 2mn? 4nlog,(p) 4log,(p)(n?/2) (2mn?)/p
MGram-Schmidt 2mn? 2 n?log,(p) 4log,(p)(n%/2) (2mn?)/p
Householder 4mn2-4/3n3 4 nlog,(p) 4log,(p)(n?/2) (4mn2-4/3n3)/p

The total time is
o * (# msg) + B * ( vol data exchanged) + y * ( FLOPs) 21



In this experiment, we fix
the problem: m=100,000

and n=50.

# of
procs

16
32

489.2
467.3
466.4
434.0
359.2
197.8

(1.02)
(0.54)
(0.27)
(0.14)
(0.09)
(0.08)

4

8

# of procs

134.1
78.9
71.3
67.4
54.2
41.9

(3.73)
(3.17)
(1.75)
(0.93)
(0.58)
(0.37)

73.5
39.0
38.7
36.7
31.6
29.0

(6.81)
(6.41)
(3.23)
(1.70)
(0.99)
(0.54)

39.1
22.3
22.2
20.8
18.3
15.8

Efficient enough?
Question 18

—cholqr

mgs(row)

——qrf

\‘_\
N
~N
\
\
\

_
k\\‘\
‘%=-=.~;.‘

(12.78)
(11.21)
(5.63)
(3.01)
(1.71)
(0.99)

2

8. 90)

31.21

29.58
21.15
14.44
8.38

ﬁl of p?ocs

(8.01)
(4.23)
(2.96)
(2.16)
(1.87)

CLOP/sec/ pE




Simple enough? 1‘ ‘“_I
> NN ¥ -NN
3'4-“<—chol( ‘ )

5. I<—I \“

int choleskyqr_A_vO(int mloc, int n, double *A, int Ida, double *R, int Idr,
MPI_Comm mpi_comm){

int info;

cblas_dsyrk( CblasColMajor, CblasUpper, CblasTrans, n, mloc,
1.0e+00, A, Ida, 0e+00, R, Idr);

MPI_Allreduce( MPI_IN_PLACE, R, n*n, MPI_DOUBLE, MPI_SUM, mpi_comm );

lapack_dpotrf( lapack_upper, n, R, Idr, &info );

cblas_dtrsm( CblasColMajor, CblasRight, CblasUpper, CblasNoTrans, CblasNonUnit,
mloc, n, 1.0e+00, R, Idr, A, Ida );

return O;

(And OK, you might want to add an MPI user defined datatype to send only the upper part of R)
23



m=100, n=50

Stable enough?

- Questions 16 and 17
< 1.00E-14
— ——cholqr
S~
_~ 1.00E-15 s
é 1.00E-16 B ——— e g S L S mgs
< 1.00E+00 1.00E+03 1.00E+06 1.00E+09 1.00E+12 1.00E+15 — Householder
— K,(A)
1.00E+00 [ g—u———e—a—u
1.00E-02 /
—' 1.00E-04
/ ——cholqr
O 1.00E-06 7
O 1.00E-08 o A ~=cgs
— 1.00E-10 mgs
~ 1.00E-12 - —=<Householder
1.00E-14 -
1.00E-16 - | | | | |

1.00E+00 1.00E+03 1.00E+06 1.00E+09 1.00E+12 1.00E+15
Kz(A)



SYRIG C=AA (mn?) Stable enough?

CHOL: R:=chol(C) (n3/3)

TRSM:  Q:=A\R (mn?) Questions 4 to 14

Theorem 1 (see [Bjorck, 1997, p.43] or [Higham, 2002, p.387]).
The computed C (hormal equations) is such that
C=ATA+ED, where [e;!] <1.06 mu |a;]||a].

Theorem 2 (see [Bjorck, 1997, Th. 2.2.2, p.49] or [Higham, 2002, Th 10.3, p.197]).
Let C be a n-by-n symmetric positive definite matrix. Provided that
c,(m,n)uk(C) < 1, where ¢, (n) = 20n3/2,
the Cholesky factor of C can be computed without breakdown, and the computed satisfy
RTR=C+E@, || E?|],<cs(n)u] |R]||,, where c;(n) = 2.5n3/2,
Theorem 3 (see [Higham, 2002, Chap. 8]).
Let the triangular systems Rx = b where R is nonsingular n-by-n matrix be solved by back

substitution (any ordering). Then the computed solution x satisfies
(T+AT)x=b, where | AT|< 1.12nu|T].



SYRIG C=AA (mn?) Stable enough?

CHOL: R:=chol(C) (n3/3)

TRSM:  Q:=A\R (mn?) Questions 4 to 14

Final Theorem (see [MATH6664]).

Let A be a m-by-n matrix. Provided that
ri(m,n)uk(A )2 <1,

then

the Cholesky factor of C of the computed normal equations can be computed without
breakdown and the computed Q and R satisfy

QR =A+E®, where || E®) |[,<P(m,n)u || Al],
|1 1-QTQ ||, < ¢(m,n) uk(A)?



Summary of stability results
Method _______[Il1-Q'Q ||, |Reference

Householder/Givens
Iterated Gram-Schmidt
Modified Gram-Schmidt
Cholesky QR

Classical Gram-Schmidt (P)

Classical Gram-Schmidt (S)

Y(m,n) u
Y(m,n) u
Y(m,n) u k(A)
B(m,n) u k(A)?
W(m,n) u k(A)?

b(m,n) u k(A)™

Wilkinson (1965-1966)
many references

Bjorck (1967)

Stathopoulos and Wu (2002)

Giraud, Langou, Rozloznik, van den Eshof (2005)
Barlow, Smoktuniwicz, Langou (2006)

Kietbasinski (1974)
Barlow, Smoktuniwicz, Langou (2006)



Goal for the next slides

The goal is to derive a new technique, fairly general, that follows the idea and
principle of the CholeskyQR algorithm. The resulting code will be simple and
efficient. We will only use Householder transformation so our method will be
stable.



AllReduce Algorithms

1) Tall Skinny matrices: Application
2) The CholeskyQR algorithm (see MATH6664)
3) AllIReduce Householder factorization

4) Application to dense LU and dense QR
factorizations



Reduce Algorithms

The gather-scatter variant of our algorithm can be
summarized as follows:

1. perform local QR factorization of the matrix A
2. gather the p R factors on processor O

3. perform a QR factorization of all the R put the
ones on top of the others, the R factor
obtained is the R factor

4. scatter the the Q factors from processor O to
all the processors

5. multiply locally the two Q factors
together, done.

P-3-4.

R |

> IJU I:u |'}UI

30




Reduce Algorithms

 This is the scatter-gather version of our algorithm.

e This variant is not very efficient for two reasons:
— first the communication phases 2 and 4 are highly involving
processor 0 ;

— second the cost of step 3 is p/3*n3, so can get prohibitive for
large p.

 Note that the CholeskyQR algorithm can also be
implemented in a scatter-gather way but reduce-
broadcast. This leads naturally to the algorithm presented
below where a reduce-broadcast version of the previous
algorithm is described. This will be our final algorithm.



On two processes
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On two processes
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On two processes
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On two processes
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On two processes

)g( ,m\)“eoﬁ(ﬁz)gl( g'ﬁ)) J Apply (
S
Apply ( Nto h )gm)
‘1) 0, m)

) Apply (

I to m)) I

time




The big picture ....
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The big picture ....
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More details

The communication of type 1 represents a send-receive of one upper
triangular matrix (R.0).

The communication of type 2 represents a send-receive of two upper
triangular matrices (QW, and R).

The computation 1 is done by your favorite QR sequential algorithm, the
cost is (2mn? - 4/3 n3)/p per processors.

The computation of 2 using a standard QR algorithm would be 10/3 n3;
using the fact that R/") R, are both upper triangular, we can reduce the cost
to 2/3 n3.

The computation of 3 using a standard QR algorithm would be 6 n3; using
the fact that Q!, Q,[), QW,, and QW, are all upper triangular, we can reduce
the cost to 2/3 n3.

The computation 4 is made using a tuned DORMQR the cost is roughly
2mn?2.
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int LILA gr uppers (int n, double *R1, double *R2, double *tau,
double *work ){
/*
* The cost of this operation is 2/3 n*3 to compare with
*10/3n73 (=2mn~2-2/3*n”3, with m=2n) using a standard
* Householder code
*
* We exploit the fact that:
* - the two matrices R1 and R2 are triangular
* - the matrix H is lower triangular

* The cost comes mainly from step (j.2): 2*(n-j)*j and (j.4): 2*(n-j)*j

* that you integrate from j=1:n.
*

* Purpose

* Consider the (2N)-by-N matrix:
*W=[R1]

*[R2]

*

* LILA gr uppers performs the QR factorization of W.

*

* The output are stored in

* TAU, the scalars to apply the Householder transformation
* for further use

* R2, the upper triangular matrix that holds the Householder
* vectors. They are represented as:

*[1]

*[R2]

* R1, the upper triangular matrix that holds the R factor

*/

int j;
for (j=1;j<n;j++){

lapack_dlarfg( j+2, &(R1[j*n+j]),
&(R2[j*n]), 1, &(tauljl));

if ((j<n-1)&&(tau[j] != 0.0e+00)){

/*
* w := R2(1:j,j+1:n)" * v(1:j) + R1(j,j+1:n)
*/
cblas_dgemv( CblasColMajor, CblasTrans,
j+1, n-j-1, 1.0e+00,
&(R2[(j+1)*n]), n,
&(R2[j*n]), 1,
0.0e+00, work, 1);
cblas_daxpy( n-j-1, 1.0e+00,
&(R1[(j+1)*n+j]), n, work, 1);
/*
* R1(j,j+1:n) = R1(j,j+1:n) - tau * w
* R2(1:j,j+1:n) = R2(1:j,j+1:n) - tau * v(1:j) * w
*/
cblas_daxpy( n-j-1, tau[j], work, 1,
&(R1[(j+1)*n+j]), n);
cblas_dger( CblasColMajor, j+1, n-j-1,
'tau[j], &(RZ[J*n])I 1;
work, 1, &(R2[(j+1)*n]), n);
}
}
return O;
}




Operations/Latency/Bandwidth

FLOPs (total) # msg Vol data exchanged FLOPs
CholeskyQR mn2+ n3/3 2log,(p) 2log,(p) (n3/2) (mn?3)/p +n3/3
Gram-Schmidt 2mn? 2n log,(p) 2log,(p) (n?/2) (2mn?)/p
Householder 2mn2-2/3n3 2n log,(p) 2log,(p) (n3/2) (2mn2-2/3n3)/p
Allreduce HH (2mn2-2/3n3) 2log,(p) 2log,(p) (n?/2) (2mn2-2/3n)/p

+2/3 n3p +2/3 n*log,(p)

Q and R are needed

FLOPs (total) # msg Vol data exchanged FLOPs
CholeskyQR 2mn2+ n3/3 2 log,(p) 2 log,(p) (n?/2) (2mn?)/p + n3/3
Gram-Schmidt 2mn? 4 nlog,(p) 4log,(p)(n?/2) (2mn?)/p
Householder 4mn2-4/3n3 4nlog,(p) 4log,(p)(n3/2) (4mn2-4/3n3)/p
Allreduce HH (4mn2-4/3n3) 2 log,(p) 2 log,(p) (n3/2) (4mn?-4/3n3)/p

+4/3 n3p +4/3 n3log,(p)

The total time is

o * (# msg) + B * ( vol data exchanged) + y * ( FLOPs)
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Latency but also possibility of fast
panel factorization.

. . QR factorization and construction of T
DGEQR3 is the recursive m = 100,000
algorlthm (See Elmroth and Perf in MFLOP/sec (Times in sec)

Gustavson, 2000), DGEQRF and
DGEQR2 are the LAPACK

n DGEQR3 DGEQRF DGEQR?2
50 173.6  (0.29) 65.0 (0.77) 64.6  (0.77)

routines.

100 2405 (0.83) 626 (3.17) 653  (3.04)
Times include QR and DLARFT. 150 2779  (1.60) 81.6  (5.46) 642  (6.94)
Run on Pentium III. 200 3125 (253) 1113 (7.09) 659 (11.98)

350

et
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250
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When only R is wanted: The
MPI_Allreduce

In the case where only R is wanted, instead of constructing our own tree, one can simply use
MPI_Allreduce with a user defined operation. The operation we give to MPI is basically the
Algorithm 2. It performs the operation:

QR(g)—>‘

This binary operation is associative and this is all MPI needs to use a user-defined operation on
a user-defined datatype. Moreover, if we change the signs of the elements of R so that the
diagonal of R holds positive elements then the binary operation Rf act or becomes

commutative.
The code becomes two lines:
lapack_dgeqrf( mloc, n, A, lda, tau, &dlwork, Ilwork, &info );
MPI_Allreduce( MPI_IN_PLACE, A, 1, MPI_UPPER,
LILA_MPIOP_QR_UPPER, mpi_comm);



Does it work?



Does it work?

The experiments are performed on the beowulf cluster at the University of Colorado at Denver. The
cluster is made of 35 bi-pro Pentium Il (900MHz) connected with Dolphin interconnect.

Number of operations is taken as 2mn? for all the methods
The block size used in ScaLAPACK is 32.

The code is written in C, use MPI (mpich-2.1), LAPACK (3.1.1), BLAS (goto-1.10), the LAPACK Cwrappers
(http://icl.cs.utk.edu/~delmas/lapwrapmw.htm ) and the BLAS C wrappers
(http://www.netlib.org/blas/blast-forum/cblas.tgz)

The codes has been tested in various configuration and have never failed to produce a correct answer,
releasing those codes is in the agenda

_ FLOPs (total) for R only FLOPs (total) for Q and R

CholeskyQR mn2+ n3/3 2mn2+ n3/3
Gram-Schmidt 2mn? 2mn?

Householder 2mn2-2/3n3 4mn2-4/3n3

Allreduce HH (2mn2-2/3n3)+2/3 n3p (4mn2-4/3n3)+4/3 n3p

57



Q and R: Strong scalability

* In this experiment, we fix the

problem: m=100,000 and n=50.
Then we increase the number of

processors.

 Once more the algorithm
rhh_qr3 is the second behind

CholeskyQR. Note that rhh_qr3

is incondionnally stable while the
stability of CholeskyQR depends

on the square of the condition

number of the initial matrix.

@LOP/SQC/p@( Time in sec )

# of cholqr
procs

1 (102 ) 1200  (417)

2 467.3 (0.54) 100.8 (2.48)
4 466.4  (0.27) 97.9 (1.28)
8 434.0 (0.14) 95.9 (0.65)
16 359.2 (0.09) 103.8 (0.30)

32 197.8 (0.08) 84.9 (0.18)

134.1
78.9
71.3
67.4
54.2
41.9

120

=
<

MFLOP/sec/proc
=
-

40

20

(3.73)
(3.17)
(1.75)
(0.93)
(0.58)
(0.37)

\

100 -

——cholqr
—=—rhh_q13
——CgS
mgs(row)
——rhh_qirf
——qrf
——qr2

73.5
39.0
38.7
36.7
31.6
29.0

(6.81)
(6.41)
(3.23)
(1.70)
(0.99)
(0.54)

8

51.9
31.2
31.0
34.0
27.8
33.3

# procs

(9.64)
(8.02)
(4.03)
(1.84)
(1.12)
(0.47)

39.1
22.3
22.2
20.8
18.3
15.8

(12.78)
(11.21)
(5.63)
(3.01)
(1.71)
(0.99)

343 (14.60)
20.2 (12.53)

18.8 (6.66)
17.7 (3.54)
16.3 (1.91)
14.5 (1.08)




Q and R: Weak scalability with respect to m

We fix the local size to be mloc=100,000 150

and n=50. When we increase the number 140 \

of processors, the global m grows

proportionally. 9110 \\ cholqr
E—l 00 e, | [*1hh_q13

rhh_qr3 is the Allreduce algorithm with § ' —cgs

recursive panel factorization, rhh_qrf is o S s

the same with LAPACK Householder QR. 9 MEs(row)

We see the obvious benefit of using "2" rhh_qrf

recursion. See as well (6). gr2 and qgrf —-qif

correspond to the ScaLAPACK ; :; :;— ——q12

Householder QR factorization routines.
1 2 4 8 16 32 o4

QVIFLOP/sec/proc ) # procs

# of
procs
489 2 - 121.2 (4.13) 135.7 (3.69) 70.2 (7.13) 51.9 (9.64) 39.8 (12.56) 35.1 (14.23)

2 466.9 (1.07) 102.3 (4.89) 84.4 (5.93) 35.6 (14.04) 27.7 (18.06) 20.9 (23.87) 20.2 (24.80)
4 454.1 (1.10) 96.7 (5.17) 67.2 (7.44) 41.4 (12.09) 32.3 (15.48) 20.6 (24.28) 18.3 (27.29)
8 458.7 (1.09) 96.2 (5.20) 67.1 (7.46) 33.2 (15.06) 28.3 (17.67) 20.5 (24.43) 17.8 (28.07)
16 4513 (1.11) 94.8 (5.27) 67.2 (7.45) 33.3 (15.04) 27.4 (18.22) 20.0 (24.95) 17.2 (29.10)
32 4421 (1.13) 94.6 (5.29) 62.8 (7.97) 32.5 (15.38) 26.5 (18.84) 19.8 (25.27) 16.9 (29.61)

64 414.9 (1.21) 93.0 (5.38) 62.8 (7.96) 323 (15.46) 27.0 (18.53) 19.4 (25.79) 16.6 (30.13)



Q and R: Weak scalability with respect to n

 We fix the global size 200 O
m=100,000 and then we n3 effect
increase n as sqrt(p) so that o
the workload mn2 per g_l:w() —*~cholqr
processor remains constant. & -=-1hh q13

glOO e

* Due to better performance in QO \ mgs(row)
the local factorization or = ——rhh_qrf
SYRK, CholeskyQR, rhh_g3 and = - . _._ -f_
rhh_qgrf exhibit increasing S0 w N\ o
performance at the beginning v D 3 —ar?
until the n3 comes into play | | | o

0
— 150)  2071)  4(100) S(I141) 16(200) 32(283) 64(400)
QUIFLOP/sec/procY CTime in sec ) # procs (n )
procs

1 Ca907)Cro2)) 1208  (414) 1340 (3.73) 69.7 (7.17) 51.7 (9.68) 39.6 (12.63) 39.9 (14.31)
2 5102 (0.99)  126.0  (4.00) 78.6 (6.41) 40.1 (12.56) 321 (15.71)  25.4 (19.88) 19.0 (26.56)
4 5411  (0.92) 1494  (3.35) 75.6 (6.62) 39.1 (12.78) 311  (16.07) 255 (19.59) 18.9 (26.48)
8 5402  (0.92) 173.8  (2.86) 72.3 (6.87) 38.5 (12.89) 436  (11.41)  27.8 (17.85) 20.2 (24.58)
16 5015  (1.00) 1952  (2.56) 66.8 (7.48) 38.4 (13.02) 513 (9.75) 28.9 (17.29) 19.3 (25.87)
32 3792 (1.32) 1774  (2.82) 59.8 (8.37) 36.2 (13.84) 614 (8.15) 29.5 (16.95) 19.3 (25.92)

64 266.4 (1.88) 83.9 (5.96) 323 (15.46) 36.1 (13.84) 52.9 (9.46) 28.2 (17.74) 18.4 (27.13)



R only: Strong scalability

In this experiment, we fix the
problem: m=100,000 and n=50. Then

we increase the number of

processors.

@LOP/SQC/p@( Time in sec )

147.6 (3.38) 139.309

1067.856  (0.23) 123.424 (2.02) 78.649
1034.203  (0.12) 116.774 (1.07) 71.101
876.724 (0.07) 119.856 (0.52) 66.513
619.02 (0.05) 129.808 (0.24) 53.352
468.332 (0.03) 95.607 (0.16) 42.276
195.885 (0.04) 77.084 (0.10) 25.89

MFLOP/sec/proc

(3.58)
(3.17)
(1.76)
(0.94)
(0.59)
(0.37)
(0.30)

150

140

130
120

.
\\\\V/\\

110
100

\

90

cholqr
—=—r1hh _q13

80
70

60

“—Cgs

mgs(row)

50

40 -

30

20
10

rhh_qif
- ql'f
—_— q1'2

0

73.5
39.0
38.7
36.7
31.6
29.0
22.8

(6.81)
(6.41)
(3.23)
(1.70)
(0.99)
(0.54)
(0.34)

2 4

# procs

69.049
41.837
39.295
37.397
33.581
37.226
36.126

8

(7.24)
(5.97)
(3.18)
(1.67)
(0.93)
(0.42)
(0.22)

16 32 o4

69.108
38.008
36.263
35.313
31.339
25.695
17.746

(7.23)
(6.57)
(3.44)
(1.77)
(0.99)
(0.60)
(0.44)

68.782
40.782
36.046
34.081
31.697
25.971
17.725

(7.27)
(6.13)
(3.47)
(1.83)
(0.98)
(0.60)
(0.44)



R only: Weak scalability with respect to m

We fix the local size to be mloc=100,000
and n=50. When we increase the number
of processors, the global m grows

proportionally.

CMFLOP/sec/proc )

MFLOP/sec/

150
140

—cholqr

—=—r1hh _q13

AN e

R —_— mgs(row)

rhh_qif

| —— i apa—_— P |

—qr2

4

8 16 32 o4
# procs

# of
procs
(1098.7) - 145.4

c B~ N

32
64

1048.3
1044.0
993.9
918.7
950.7
764.6

(0.47)
(0.47)
(0.50)
(0.54)
(0.52)
(0.65)

124.3
116.5
116.2
115.2
112.9
112.3

(3.43)
(4.02)
(4.29)
(4.30)
(4.33)
(4.42)
(4.45)

138.2
70.3
82.0
66.3
64.1
63.6
62.7

(3.61)
(7.11)
(6.09)
(7.53)
(7.79)
(7.85)
(7.96)

70.2
35.6
41.4
33.2
333
32.5
32.3

(7.13)
(14.04)
(12.09)
(15.06)
(15.04)
(15.38)
(15.46)

70.6
43.1
35.8
35.1
34.0
334
34.0

(7.07) 68.7 (7.26) 69.1 (7.22)
(11.59) 35.8 (13.95) 36.3 (13.76)
(13.94) 36.3 (13.74) 34.7 (14.40)
(14.21) 35.5 (14.05) 33.8 (14.75)
(14.66) 334 (14.94) 33.0 (15.11)
(14.95) 333 (15.01) 32.9 (15.19)

(14.66) 32.6 (15.33) 323 (15.46)
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AllReduce Algorithms

1) Tall Skinny matrices: Application
2) The CholeskyQR algorithm (see MATH6664)
3) AllIReduce Householder factorization

4) Application to dense LU and dense QR
factorizations



Example of applications:
panel factorization of dense blocked factorization

LAPACK block LU (right-looking): dgetrf

LAPACK block QR (right-looking): dgeqrf

Panel

dgetf2

-4

dgeqf2 + dlarft
ﬂ* qr(l)

Update of the

dtrsm (+ dswp)

remaining submatrix [factorization

— R QY —
dgemm dlarfb
I —3 .‘-

“idmil
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Conclusions

We have described a new method for the Householder QR factorization of skinny matrices. The
method is named Allreduce Householder and has four advantages:

1. there is only one synchronization point in the algorithm,

2. the method harvests most of efficiency of the computing unit by large local operations,
3. the method is stable,
4

. and finally the method is elegant in particular in the case where only R is needed.

Allreduce algorithms have been depicted here with Householder QR factorization. However it
can be applied to anything for example Gram-Schmidt or LU.

Current development is in writing a 2D block cyclic QR factorization and LU factorization based
on those ideas.
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