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Motivation: sparse factorization

Numerically robust, efficient for many RHS.
X Expensive. For model problems on regular grids (mesh size k):

@ 2D (N = k?): flops = O(N log N), memory = O(N>/?).
@ 3D (N = k%): flops = O(N*/3), memory = O(N?).

Example: finite difference, 1000 x 1000 x 1000 grid, 27pt stencil:
flops=50 exaflops, mem>200 TB (the whole Cray XE6 system at NERSC!).

Idea J

Resort to approximation.




Outline
@ Review of multifrontal LU
o Structured partial factorization: HSS-embedded multifrontal
@ Parallelization, performance

@ Remarks
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Nested dissection ordering
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Nested dissection ordering
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Nested dissection ordering
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Nested dissection ordering
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Nested dissection ordering
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@ Better parallel properties
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Nested dissection ordering
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@ Better parallel properties

@ Fewer entries in factors (here, 129 vs. 116)
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Nested dissection ordering

o4

X

%ﬂg AR

] graph
2 T

5
<SRN )
R iR
PRI

@ Better parallel properties
@ Fewer entries in factors (here, 129 vs. 116)
@ Implementation: using Scotch partitioner, since separator info needed
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Frontal and Update matrices

@ Each separator corresp. to a dense submatrix (frontal & update)
» Dominant cost: F = LU, F, 1, F 2, Update matrix

Fi,z,li




Observation : presence of data-sparseness

Several approches are available in the literature that exploit low-rank in
dense / structured matrices:

e Hierarchical matrices: , H% (Bebendorf, Bérm, Grasedyck,
Hackbusch, ...)

@ Hierarchically/Sequential Semiseparable (HSS /SSS) representations
(Chandrasekaran, Dewilde, Gu, Li, Olshevsky, Vandebril, Xia, ...)

@ BLR (Amestoy et al.)

Some representations are simpler and apply to broader classes of problems
but provide less gain in memory/operations;
Some others are more complex but allow for further gains in complexity.

We focus on Hierarchically Semi-Separable matrices (HSS) ...
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Hierarchically Semi-Separable matrices

An HSS matrix A is a dense matrix whose off-diagonal blocks are low-rank.

High-level structure: 2 x 2 blocks

Dy | vV

A—
U:BV | Dy
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Hierarchically Semi-Separable matrices

An HSS matrix A is a dense matrix whose off-diagonal blocks are low-rank.
Recursion

Dy UB VI U3B3 VT
6

UszVlT D>

T Dy | UsBsVT
UsBe V3 UsBsVI | Ds

A=
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Hierarchically Semi-Separable matrices

An HSS matrix A is a dense matrix whose off-diagonal blocks are low-rank.
Recursion

Dy UB VI U3B3 VT
6

UszVlT D>

T Dy | UsBsVT
UsBe V3 UsBsVI | Ds

A=

Fundamental property required for efficiency: nested bases

up 0

U3 — |: 0 U :| Uévmall, Ugmall 2k % k
2

Same for U3, Ug, Vg and recursively at subsequent levels.
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Hierarchical bases, HSS tree
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For efficiency, require:
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Each basis is a product of descendents’ bases:
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HSS explicit representation (construction)

[Martinsson]
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@ keep it as an unevaluated product & sum

@ operations going up / down the HSS tree
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HSS operations

With r the maximum rank of a block:
@ HSS construction (compression of low-rank blocks): ©(rN?).
@ ULV factorization: (~)(er ) [Chandrasekaran et al.].
@ HSS solution ©(rN).

Provable r for some discretized PDESs: [Chandrasekaran et al.’ 10, Enquist-Ying’11]

2D Poisson O(1)
2D Helmbholtz | O(logk)
3D Poisson O (k)
3D Helmbholtz | ©(k)

Constructing the HSS structure is the dominant operation.
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Embedding HSS in multifrontal

Approximate Frontal & Update matrices by HSS
Operations:
@ HSS construction of frontal F;, ULV factorize F;(1, 1)
@ HSS approximation of U, U;
e extend-add of HSS matrices U4; and Uf; to parent

Difficulty: extend-add of two non-matching HSS structures
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Embedding HSS in multifrontal

Several ways to deal with frontal matrices:

= Fully structured: HSS on the whole frontal matrix. No
£ || 2 dense matrix.
= € Partial+: HSS on the whole frontal matrix.
£ 3 Dense frontal matrix. L
bt 3 Partially structured: HSS on the L, U part only. Dense
g < frontal matrix, dense CB in stack after partial
y factorization.

Once a frontal matrix is in partial or complete HSS form, an ULV factorization is
applied instead of usual LU factorization.
Complexity (for fully-structured) [Xia 11, Chandrasekaran et al. *11]:

Problem Classical MF MF with HSS

Mem Flops Mem Flops
2D Poisson O(NlogN) O(N3/?) O (N loglogN) ©O(NlogN)
2D Helmholtz O (NlogN) O(N3/?) O (N loglog N) O (NlogN)
3D Poisson O(N*/3) O(N?) ©(NlogN) O(N*/3)
3D Helmholtz O(N*/3) O(N?) O(NlogN) O(N*/3 1ogN)
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Experiments

@ Hopper, Cray XE6 at NERSC.
@ Hsolver (for Helmholtz), geometric HSS-embedded multifrontal solver

@ Helmholtz equations with PML boundary

(-8 ) s =stee

A: Laplacian
w: angular frequency
v(x): seismic velocity field
u(x,w): time-harmonic wavefield equation
o Finite Difference discretized system: complex, pattern-symmetric,
non-Hermitian. Indefinite, ill-conditioned

@ single precision
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MF + HSS: two types of tree-based parallelism

@ Outer tree: separator tree for multifrontal factorization

o Inner tree: HSS tree at each internal separator node

parallel multifrontal tree‘,.—"'—

parallel

level

switeh. 3

level /
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HSS paerformance

@ HSS constrcution on the last Schur complement corresp. to the top
separator.

Performance ratio of LU over HSS:

2D - ratio of LU over HSS construction 3D - ratio of LU over HSS construction
16403 - 1e+02
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[ Memory [ Memory
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(a) 2D, max_rank=7 (b) 3D, max_rank=848



Sparse results - 2D problems

2D Helmholtz problems on square grids (mesh size k, N = k%), 10 Hz.

MaX; TAlTeD:

k 10,000 20,000 40,000 80,000

P 64 256 1,024 4,096

Factorization (s) 258.6 544.8 1175.8 2288.5

Gflops/s 507.3 2109.3 8185.6 31706.9

MF Solution+refinement (s) 104 10.8 11.5 11.6

Factors size (GB) 120.1 526.7 2291.2 9903.7

Max. peak (GB) 2.3 2.5 2.7 2.9
Communication volume (GB) 136.2 1202.5 9908.1

HSS+ULV (s) 97.9 172.5 325.3 659.3

Gflops/s 196.9 715.6 2820.7 9820.6

Solution+refinement (s) 20.2 554 61.4 115.8

Steps 3 3 9 9

Factors size (GB) 66.2 267.7 13332 4572.3

HSS Max. peak (GB) 1.7 1.7 1.7 1.7
Communication volume (GB) 74.2 573.8 4393.4

HSS rank 258 503 1013 2015

[]x = xmel] /|| xmE] | 1.5x107° | 22x107° | 3.1 x 107> | 3.5 x 107

R 7.1 107 | 1.0x 1075 | 2.0 x 1076 | 3.5 x 1076
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Results - 3D problems
3D Helmholtz problems on cubic grids (mesh size k, N = k%), 5 Hz.
k 100 200 300 400
P 64 256 1,024 4,096
Factorization (s) 88.4 1528.0 1175.8 6371.6
Gflops/s 600.6 2275.7 9505.6 35477.3
MF Solution+refinement (s) 0.6 2.2 3.5 4.8
Factors size (GB) 16.6 280.0 1450.1 4636.1
Max. peak (GB) 0.5 1.9 2.5 2.0
Communication volume (GB) 83.1 2724.7 26867.8 165299.3
HSS+ULV (s) 120.4 1061.3 2233.8 3676.5
Gflops/s 207.8 720.4 2576.6 6494.8
Solution+refinement (s) 2.3 8.2 31.5 182.8
Steps 4 5 10 6
Factors size (GB) 10.7 1129 4343 845.3
HSS Max. peak (GB) 0.5 1.7 2.1 04
Communication volume (GB) 93.6 2241.2 18621.1 143300.0
HSS rank 481 925 1391 1860
[]x = xmel] /|| xmE] | 62x107° 194 x1077 | 1.1 x107¢ | 1.7 x 107
R 15% 1077 | 57 %1077 | 9.7 %1077 | 3.7 x 1076

MaX; TAlTeD:
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Performance analysis — rank imbalance

@ Rank revealing QR is the dominant operation (2/3 of the total time).

@ Observed some load imbalance (factors up to 2.5) due to some imbalance
in the ranks found in frontal matrices (run time of RRQR is proportional
to the rank).

Example: ranks in the row compression of the root of a 100* problem

/
/\
263 288
271 361 337 315

SN NN N

206 384 262 414 347 320 339 344

HSS tree; 8 leaves/8 processes.
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Ordering of separators/fully-summed variables

In a regular 3D mesh with nested dissection, each frontal matrix corresponds
to a plane:

®|.

/

o

Top of the elimination tree.

Within a frontal matrix/separator, the ordering of the variables is crucial to get
low rank blocks (cf. admissibility condition for PDEs [Bsrm, Grasedyck, Hackbush]).
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Ordering of separators/fully-summed variables — 2

Vertex-based approach:

2D separator from a 3D domain.

Edge-based approach:

2D separator from a 3D domain.

HSS leaf 1

HSS leaf 2

HSS leaf 1

HSS leaf 2

Frontal matrix.

Frontal matrix.

Fully-summed
variables
(separator)

CB

Fully-summed
variables
(separator)

CB

@ An edge-based Nested Dissection / Morton ordering better preserves geometry

and should provide better balance in ranks.

@ On some medium-sized problems we observed ~ 10% gain in run time. Work

in progress.
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Summary, future

@ Parallel geometric HSS-embedded MF solver for Helmholtz equations is
faster than a regular MF solver. Gains increase with problem size.

o Using iterative refinement, it delivers accurate solutions.

@ Explore ways to reduce further the memory footprint, in particular the
stack of contribution blocks. Structured Schur complement?
Randomized sampling?

Move towards a parallel algebraic solver
Analyze communication bound

Black-box preconditioner? (compare to ILU, etc.)

Compare to sparse solvers using other low-rank forms [Saad et al.,
Weisbecker et al., Ying et al.]

Resilience at extreme scale
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