

A Supernodal Approach to ILU with Partial Pivoting

X. Sherry Li

xsli@lbl.gov Lawrence Berkeley National Laboratory

Meiyue Shao

Umeå University, Sweden

Sparse Days 2010 at CERFACS June 15-17, 2010

Outline

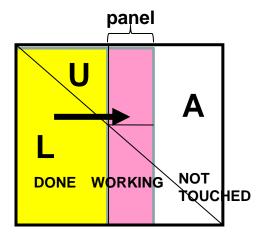
- Supernodal LU factorization (SuperLU)
- Supernodal ILUTP with adaptive dual dropping
 - Threshold dropping in supernode
 - Secondary dropping for memory concern
- Variants: Modified ILU (MILU)
- Extensive experiments, comparison with other approaches
 - 232 matrices
- Software available in SuperLU 4.0

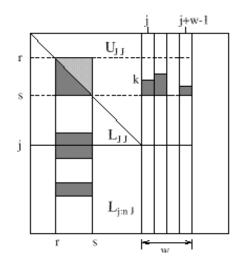
ILU preconditioner

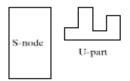
- Structure-based dropping: level-of-fill
 - ILU(0), ILU(k)
 - Rationale: the higher the level, the smaller the entries
 - Separate symbolic factorization to determine fill-in pattern
- Value-based dropping: drop truly small entries
 - Fill-in pattern must be determined on-the-fly
- ILUTP[Saad]: among the most sophisticated, and (arguably) robust; implementation similar to direct solver
 - "T" = threshold, "P" = pivoting
 - Dual dropping: ILUTP(p,tau)
 - 1) Remove elements smaller than tau
 - 2) At most p largest kept in each row or column

SuperLU [Demmel/Eisenstat/Gilbert/Liu/Li '99] http://crd.lbl.gov/~xiaoye/SuperLU

Left-looking, supernode







1.Sparsity ordering of columns use graph of A'*A

2.Factorization

- For each panel ...
- Partial pivoting
- Symbolic fact.
- Num. fact. (BLAS 2.5)

3. Triangular solve

Similar to ILUTP, adapted to supernode
1. U-part:

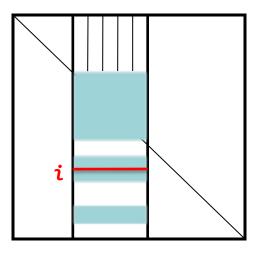
If
$$|u_{ij}| < \tau \cdot ||A(:,j)||_{\infty}$$
, then set $u_{ij} = 0$

2. L-part: retain supernode

Supernode L(:,s:t), if $RowSize(i,s:t) < \tau$, then set the entire *i* - th row to zero

Remarks

- 1) Delayed dropping
- 2) Entries computed first, then dropped. May not save many flops compared to LU
- 3) Many choices for RowSize() metric



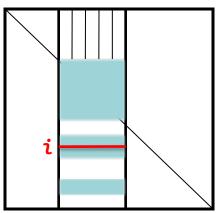
Dropping in supernode

Supernode L(:,s:t), if $RowSize(i,s:t) < \tau$, then set the entire *i* - th row to zero

RowSize() metric: let m = t-s+1, supernode size

1) Mean: $RowSize(x) = \frac{||x||_1}{m}$ [used by Gupta/George for IC]

- **2)** Generalized-mean: $RowSize(x) = \frac{||x||_2}{\sqrt{m}}$
- 3) Infinity-norm: $RowSize(x) = ||x||_{\infty}$ Every dropped entry in L would also be dropped in a column-wise algorithm



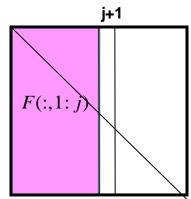
Since $\frac{\|x\|_1}{m} \le \frac{\|x\|_2}{\sqrt{m}} \le \|x\|_{\infty}$, 1) is most aggressive, 3) is conservative

Secondary dropping rule: S-ILU(p,tau)

- Control fill ratio with a user-desired upper bound $~{\cal Y}~$
- Earlier work, column-based
 - [Saad]: ILU(p, tau), at most p largest nonzeros allowed in each row
 - [Gupta/George]: p adaptive for each column $p(j) = \gamma \cdot nnz(A(:, j))$ May use interpolation to compute a threshold function, no sorting
- Our new scheme is area-based
 - Look at fill ratio from column 1 up to j:

fr(j) = nnz(F(:,1:j)) / nnz(A(:,1:j))

- Define adaptive upper bound function $f(j) \in [1, \gamma]$ If fr(j) exceeds f(j), retain only p largest, such that $fr(j) \leq f(j)$
- > More flexible, allow some columns to fill more, but limit overall



Experiments: GMRES + ILU

- Use restarted GMRES with ILU as a right preconditioner Solve $PA(\tilde{L}\tilde{U})^{-1}y = Pb$
- Size of Krylov subspace set to 50
- Initial guess is a 0-vector
- Stopping criteria: $\|b Ax_k\|_2 \le 10^{-8} \|b\|_2$ and ≤ 500 iterations
- 232 unsymmetric test matrices; RHS is generated so the true solution is 1-vector
 - 227 from Univ. of Florida Sparse Matrix Collection dimension 5K – 1M, condition number below 10¹⁵
 - 5 from MHD calculation in tokmak design for plasma fusion energy
- AMD Opteron 2.4 GHz quad-core (Cray XT5), 16 GBytes memory, PathScale pathcc and pathf90 compilers

Compare with column C-ILU(p, tau)

- C-ILU: set maximum supernode size to be 1
- Maxsuper = 20, gamma = 10, tau = 1e-4

	Factor construction				GMRES		Total Sec.	
	Fill- ratio	S-node Cols	Flops (10 ⁹)	Fact. sec.	Iters	Iter sec.		
	$RowSize(x) = x _2 / \sqrt{m}$ 138 matrices succeeded							
S-ILU	4.2	2.8	7.60	39.69	21.6	2.93	42.68	
C-ILU	3.7	1.0	2.65	65.15	20.0	2.55	67.75	
	$RowSize(x) = x _{\infty} $ 134				matrices succeeded			
S-ILU	4.2	2.7	9.45	54.44	20.5	3.4	57.0	
C-ILU	3.6	1.0	2.58	74.10	19.8	2.88	77.04	

Supernode vs. column

- Less benefit using supernode compared to complete LU
 - Better, but Less than 2x speedup
- What go against supernode:
 - The average supernode size is smaller than in LU.
 - The row dropping rule in S-ILU tends to leave more fill-ins and operations than C-ILU ... we must set a smaller "maxsuper" parameter.

e.g., 20 in ILU vs. 100 in LU

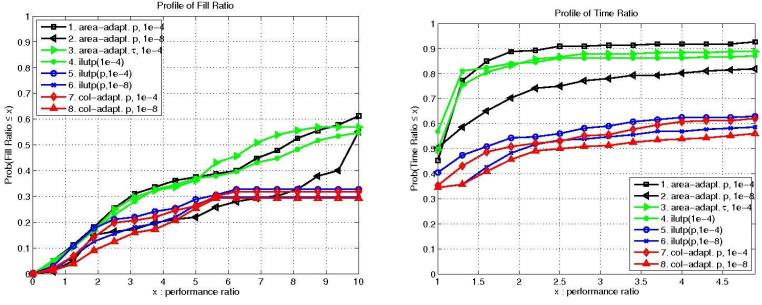
S-ILU for extended MHD calculation (fusion)

- ILU parameters: $\tau = 10^{-4}$, $\gamma = 10$
- Up to 9x smaller fill ratio, and 10x faster

Problems	order	Nonzeros (millions)	ILU time f	fill-ratio	GMRES time	S iters	SuperL time f	.U ill-ratio
matrix31	17,298	2.7 m	8.2	2.7	0.6	9	33.3	13.1
matrix41	30,258	4.7 m	18.6	2.9	1.4	11	111.1	17.5
matrix61	66,978	10.6 m	54.3	3.0	7.3	20	612.5	26.3
matrix121	263,538	42.5 m	145.2	1.7	47.8	45	fail	-
matrix181	589,698	95.2 m	415.0	1.7	716.0	289	fail	-

S-ILU comprehensive tests

- Performance profile of fill ratio fraction of the problems a solver could solve within a fill ratio of X
- Performance profile of runtime fraction of the problems a solver could solve within a factor X of the best solution time



- Conclusion:
 - New area-based heuristic is much more robust than column-based one
 - ILUTP(tau) is reliable; but need secondary dropping to control memory

Other features in the software

• Zero pivot ?

if $u_{jj} = 0$, set it to $\hat{\tau}(j) \| A(:,j) \|_{\infty}$

 $\hat{\tau}(j) = 10^{-2(1-j/n)}$, adaptive, increasing with *j*, so *U* is not too ill-conditioned

- Threshold partial pivoting
- **Preprocessing with MC64** [Duff-Koster]
 - With MC64, 203 matrices converge, avg. 12 iterations
 - Without MC64, 170 matrices converge, avg. 11 iterations
- Modified ILU (MILU)
 - Reduce number of zero pivots

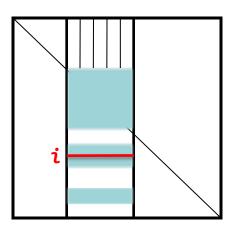
Modified ILU (MILU)

- Reduce the effect of dropping: for a row or column, add up the dropped elements to the diagonal of U
- Classical approach has the following property:
 - Maintain row-sum for a row-wise algorithm: $\tilde{L}\tilde{U}e = Ae$
 - Maintain column-sum for a column-wise algorithm: $e^T \tilde{L} \tilde{U} = e^T A$
- Another twist ... proposed for MIC Maintain $LUx = Ax + \Lambda Dx$ for any x, using diagonal perturbations
 - Dupont-Kendall, Axelsson-Gustafsson, Notay (DRIC)
 - Reduce condition number of elliptic discretization matrices by order of magnitude (i.e., from O(h⁻²) to O(h⁻¹))

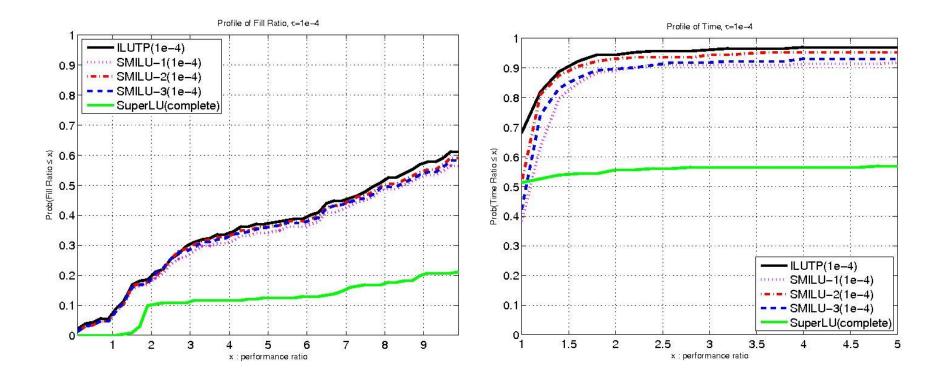
15

MILU algorithm

- C-MILU:
 - 1) Obtain filled column F(:, j), drop from F(:, j)
 - 2) Add up the dropped entries: $s = \sum_{dropped} f_{ij}$; Set $f_{ij} := f_{ij} + s$
 - 3) Set U(1:j, j) := F(1:j, j); L(j+1:n, j) := F(j+1: n, j) / F(j, j)
- S-MILU:
 - 1) First drop from U, $s = \sum_{dropped} U(:,j)$ Set $u_{ii} := f_{ii} + s;$
 - When a supernode is formed in L, drop more rows in L, add the dropped entries to diagonal of U
- Our variants:
 - S-MILU-1: $s = \sum_{dropped} U(:,j)$
 - S-MILU-2: $s = |\sum_{dropped} U(:,j)|, u_{jj} := f_{ij} + sign(f_{jj})*s$
 - S-MILU-3: $s = \sum_{dropped} |U(:,j)|, u_{jj} := f_{ij} + sign(f_{jj})*s$



Modified ILU (MILU)



Another look at MILU – 232 matrices

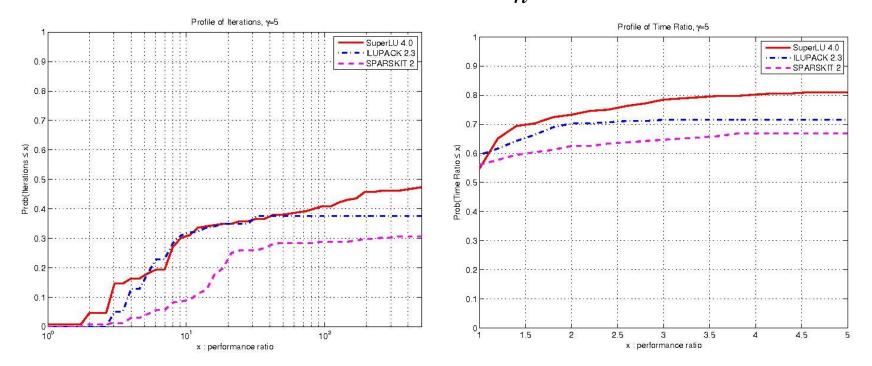
	Converge	Slow	Diverge	Zero pivots	Average iterations
S-ILU	133	51	46	1737	35
S-MILU-1	125	72	33	1058	34
S-MILU-2	127	71	31	296	30
S-MILU-3	129	73	28	289	33

Compare with the other preconditioners

- SPARSKIT [saad] : ILUTP, closest to ours
 - Row-wise algorithm, no supernode
 - Secondary dropping uses a fixed p for each row
- ILUPACK [Bolhoefer et al.] : very different
 - Inverse-based approach: monitor the norm of the k-th row of L⁻¹, if too large, delay pivot to next level
 - Multilevel: restart the delayed pivots in a new level
- ParaSails [Chow]: very different
 - Sparse approximate inverse: M ~ A⁻¹
 - Pattern of powers of sparsified A as the pattern of M "thresh" to sparsify A, "nlevels" to keep level of neighbors
 - Default setting: thresh = 0.1, nlevels = 1
 Only 39 matrices converge, 62 hours to construct M, 63 hours after GMRES
 - Smaller thresh and larger nlevels help, but too expensive

Compare with SPARSKIT, ILUPACK

- **S-ILU:** $\tau = 10^{-4}, \gamma = 5, \text{ diag_thresh } \eta = 0.1$
- **ILUPACK**: $\tau = 10^{-4}$, $\gamma = 5$, $\nu = 5$
- **SPARSKIT**: $\tau = 10^{-4}$, $\gamma = 5$, $p = \gamma \cdot \frac{nnz}{n}$



Comparison (cont) ... a closer look ...

- S-ILU and ILUPACK are comparable: S-ILU is slightly faster, ILUPACK has slightly lower fill
- None of the preconditioners works for all problems ... unlike direct methods
- They do not solve the same set of problems
 - S-ILU succeeds with 142
 - ILUPACK succeeds with 130
 - Both succeed with 100 problems
- Remark

Two methods complimentary to one another, both have their place in practice

Summary of contributions

- Supernode
 - Useful, but to less extend compared with complete LU
- Secondary dropping: area-based, adaptive-p, adaptive-tau
 - More reliable
- Empirical study of MILU
 - Limited success, disappointing in general

Final remarks

- 60-70% success with S-ILUTP for 232 matrices.
 When it works, much more efficient than direct solver.
- Software
 - Available in serial SuperLU V4.0, June 2009
 - Same can be done for SuperLU_MT (left-looking, multicore)
- Scalable parallel ILUTP?
 - How to do this with right-looking, multifrontal algorithms?
 e.g., SuperLU_DIST, MUMPS