
A Supernodal Approach to ILU with Partial Pivoting

X. Sherry Li

xsli@lbl.gov

Lawrence Berkeley National Laboratory

Meiyue Shao

Umeå University, Sweden

Sparse Days 2010 at CERFACS

June 15-17, 2010

Outline

• Supernodal LU factorization (SuperLU)

• Supernodal ILUTP with adaptive dual dropping

 Threshold dropping in supernode

 Secondary dropping for memory concern

• Variants: Modified ILU (MILU)

• Extensive experiments, comparison with other approaches

 232 matrices

• Software available in SuperLU 4.0

2

ILU preconditioner

• Structure-based dropping: level-of-fill

 ILU(0), ILU(k)

 Rationale: the higher the level, the smaller the entries

 Separate symbolic factorization to determine fill-in pattern

• Value-based dropping: drop truly small entries

 Fill-in pattern must be determined on-the-fly

• ILUTP[Saad]: among the most sophisticated, and (arguably)

robust; implementation similar to direct solver

 “T” = threshold, “P” = pivoting

 Dual dropping: ILUTP(p,tau)

1) Remove elements smaller than tau

2) At most p largest kept in each row or column

3

SuperLU [Demmel/Eisenstat/Gilbert/Liu/Li ’99]

http://crd.lbl.gov/~xiaoye/SuperLU

4

• Left-looking, supernode

DONE NOT

TOUCHED
WORKING

U

L

A

panel

1.Sparsity ordering of columns

use graph of A’*A

2.Factorization

For each panel …

• Partial pivoting

• Symbolic fact.

• Num. fact. (BLAS 2.5)

3.Triangular solve

Primary dropping rule: S-ILU(tau)

• Similar to ILUTP, adapted to supernode

1. U-part:

2. L-part: retain supernode

• Remarks

1) Delayed dropping

2) Entries computed first, then dropped.

May not save many flops compared to LU

3) Many choices for RowSize() metric

5

0set then ,)(:, If 
 ijij ujAu 

zero torowth - entire set the then ,):,(if),:(:, Supernode itsiRowSizetsL 

i

Dropping in supernode

RowSize() metric: let m = t-s+1, supernode size

1) Mean: [used by Gupta/George for IC]

2) Generalized-mean:

3) Infinity-norm:

Every dropped entry in L would also be

dropped in a column-wise algorithm

6

zero torowth - entire set the then ,):,(if),:(:, Supernode itsiRowSizetsL 

i

veconservati is 3) ,aggressivemost is 1) , ||||
||||||||

 Since 21
 x

m

x

m

x

m

x
xRowSize 2||||

)(

 ||||)(xxRowSize

m

x
xRowSize 1||||

)(

Secondary dropping rule: S-ILU(p,tau)

• Control fill ratio with a user-desired upper bound

• Earlier work, column-based

 [Saad]: ILU(p, tau), at most p largest nonzeros allowed in each row

 [Gupta/George]: p adaptive for each column

May use interpolation to compute a threshold function, no sorting

• Our new scheme is area-based



 Define adaptive upper bound function

 More flexible, allow some columns to fill more, but limit overall

7

))(:,()(jAnnzjp  

)):1(:,(/)):1(:,()(

j toup 1column from ratio fillat Look

jAnnzjFnnzjfr

:





],1[)(jf

)()(such that largest, ponly retain , exceeds)(If jfjfrf(j)jfr 

):1(:, jF

j+1

Experiments: GMRES + ILU

• Use restarted GMRES with ILU as a right preconditioner

• Size of Krylov subspace set to 50

• Initial guess is a 0-vector

• Stopping criteria:

• 232 unsymmetric test matrices; RHS is generated so the true

solution is 1-vector

 227 from Univ. of Florida Sparse Matrix Collection

dimension 5K – 1M, condition number below 1015

 5 from MHD calculation in tokmak design for plasma fusion

energy

• AMD Opteron 2.4 GHz quad-core (Cray XT5), 16 GBytes

memory, PathScale pathcc and pathf90 compilers

8

PbyULPA - 1)
~~

(Solve

iterations 500 and 10
2

8

2
  b x-Ab k

Compare with column C-ILU(p, tau)

• C-ILU: set maximum supernode size to be 1

• Maxsuper = 20, gamma = 10, tau = 1e-4

9

Factor construction GMRES Total Sec.

Fill-

ratio

S-node

Cols

Flops

(109)

Fact.

sec.

Iters Iter sec.

138 matrices succeeded

S-ILU 4.2 2.8 7.60 39.69 21.6 2.93 42.68

C-ILU 3.7 1.0 2.65 65.15 20.0 2.55 67.75

134 matrices succeeded

S-ILU 4.2 2.7 9.45 54.44 20.5 3.4 57.0

C-ILU 3.6 1.0 2.58 74.10 19.8 2.88 77.04

mxxRowSize /||||)(2

 ||||)(xxRowSize

Supernode vs. column

• Less benefit using supernode compared to complete LU

 Better, but Less than 2x speedup

• What go against supernode:

 The average supernode size is smaller than in LU.

 The row dropping rule in S-ILU tends to leave more fill-ins and

operations than C-ILU … we must set a smaller “maxsuper”

parameter.

e.g., 20 in ILU vs. 100 in LU

10

S-ILU for extended MHD calculation (fusion)

• ILU parameters:

• Up to 9x smaller fill ratio, and 10x faster

11

Problems order Nonzeros

(millions)

ILU

time fill-ratio

GMRES

time iters

SuperLU

time fill-ratio

matrix31 17,298 2.7 m 8.2 2.7 0.6 9 33.3 13.1

matrix41 30,258 4.7 m 18.6 2.9 1.4 11 111.1 17.5

matrix61 66,978 10.6 m 54.3 3.0 7.3 20 612.5 26.3

matrix121 263,538 42.5 m 145.2 1.7 47.8 45 fail -

matrix181 589,698 95.2 m 415.0 1.7 716.0 289 fail -

10 ,10 4   

S-ILU comprehensive tests

• Performance profile of fill ratio – fraction of the problems a solver

could solve within a fill ratio of X

• Performance profile of runtime – fraction of the problems a solver

could solve within a factor X of the best solution time

• Conclusion:

 New area-based heuristic is much more robust than column-based one

 ILUTP(tau) is reliable; but need secondary dropping to control memory

12

Other features in the software

• Zero pivot ?

• Threshold partial pivoting

• Preprocecssing with MC64 [Duff-Koster]

 With MC64, 203 matrices converge, avg. 12 iterations

 Without MC64, 170 matrices converge, avg. 11 iterations

• Modified ILU (MILU)

 Reduce number of zero pivots

13

dconditione-ill not too is so , with increasing adaptive, ,10)(ˆ

||)(:,||)(ˆ it toset ,0 if

)/1(2 Ujj

jAju

nj

jj













• Reduce the effect of dropping: for a row or column, add up

the dropped elements to the diagonal of U

• Classical approach has the following property:

 Maintain row-sum for a row-wise algorithm:

 Maintain column-sum for a column-wise algorithm:

• Another twist … proposed for MIC

Maintain for any x, using diagonal

perturbations

 Dupont-Kendall, Axelsson-Gustafsson, Notay (DRIC)

 Reduce condition number of elliptic discretization matrices by

order of magnitude (i.e., from O(h-2) to O(h-1))

Modified ILU (MILU)

14

eAeUL 
~~

xDxAxLU 

AeULe TT 
~~

MILU algorithm

• C-MILU:

1) Obtain filled column F(:, j), drop from F(:, j)

2) Add up the dropped entries: s = ∑dropped fij ; Set fij := fij + s

3) Set U(1:j, j) := F(1:j, j); L(j+1:n, j) := F(j+1: n, j) / F(j, j)

• S-MILU:

1) First drop from U, s = ∑dropped U(:,j)

Set ujj := fjj + s;

2) When a supernode is formed in L, drop more

rows in L, add the dropped entries to

diagonal of U

• Our variants:

 S-MILU-1: s = ∑dropped U(:,j)

 S-MILU-2: s = | ∑dropped U(:,j) |, ujj := fij + sign(fjj)*s

 S-MILU-3: s = ∑dropped |U(:,j)|, ujj := fij + sign(fjj)*s

15

i

Modified ILU (MILU)

16

Converge Slow Diverge
Zero

pivots

Average

iterations

S-ILU 133 51 46 1737 35

S-MILU-1 125 72 33 1058 34

S-MILU-2 127 71 31 296
30

S-MILU-3 129 73 28 289 33

Another look at MILU – 232 matrices

17

Compare with the other preconditioners

• SPARSKIT [saad] : ILUTP, closest to ours

 Row-wise algorithm, no supernode

 Secondary dropping uses a fixed p for each row

• ILUPACK [Bolhoefer et al.] : very different

 Inverse-based approach: monitor the norm of the k-th row of L-1,

if too large, delay pivot to next level

 Multilevel: restart the delayed pivots in a new level

• ParaSails [Chow]: very different

 Sparse approximate inverse: M ~ A-1

 Pattern of powers of sparsified A as the pattern of M

“thresh” to sparsify A, “nlevels” to keep level of neighbors

 Default setting: thresh = 0.1, nlevels = 1

Only 39 matrices converge, 62 hours to construct M, 63 hours

after GMRES

 Smaller thresh and larger nlevels help, but too expensive

18

Compare with SPARSKIT, ILUPACK

19

• S-ILU:

• ILUPACK :

• SPARSKIT :

0.1h diag_thres ,5 ,10 4   

5 ,5 ,10 4   

n

nnz
p    ,5 ,10 4

Comparison (cont) … a closer look …

• S-ILU and ILUPACK are comparable: S-ILU is slightly faster,

ILUPACK has slightly lower fill

• None of the preconditioners works for all problems … unlike

direct methods

• They do not solve the same set of problems

 S-ILU succeeds with 142

 ILUPACK succeeds with 130

 Both succeed with 100 problems

• Remark

Two methods complimentary to one another, both have their

place in practice

20

Summary of contributions

• Supernode

 Useful, but to less extend compared with complete LU

• Secondary dropping: area-based, adaptive-p, adaptive-tau

 More reliable

• Empirical study of MILU

 Limited success, disappointing in general

21

Final remarks

• 60-70% success with S-ILUTP for 232 matrices.

When it works, much more efficient than direct solver.

• Software

 Available in serial SuperLU V4.0, June 2009

 Same can be done for SuperLU_MT (left-looking, multicore)

• Scalable parallel ILUTP?

 How to do this with right-looking, multifrontal algorithms?

e.g., SuperLU_DIST, MUMPS

22

