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Derivative-Free Methods

Derivative Free Optimization

Problem

min{f (x) : x ∈ Rn}, f not analytically available.

Typical framework

Gradients are unavailable or too expensive (simulation...)

The objective function is noisy (values/gradients are inexact)

The algorithm is going to be used on a wide variety of
problems

need wide convergence properties
desire easy to follow structure
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Derivative-Free Methods

Derivative Free Optimization

Methods

Numerical Differentiation Stability

Automatic Differentiation Need Source Code

Evolutionary/Genetic Algorithms, simulated Annealing
No or weak convergence results

Derivative-Free Methods Robust, Convergence results
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Proximal Point Method

Proximal Point Method

Proximal Map

Pr f (x) = arg min
y

{
f (y) +

r

2
‖y − x‖2

}
.

Proximal Point Method

If Pr is well-defined, then the proximal point method is

xk+1 ∈ Prk f (xk).
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Proximal Point Method

Basic Results

Theorem: [Moreau, ‘63]
If f is convex and 0 ∈ ∂f (x̄), then P1f (x̄) = {x̄}.

Theorem: [Martinet, ‘72]
If f is convex, then xk+1 ∈ P1f (xk) converges to a minimizer.

Theorem: [Rockafellar, ‘76]
If f is convex and x̄ is a strict critical point, then xk+1 ∈ Prk f (xk)
converges to x̄ in a finite number of iterations.

Theorem: [Poliquin & Rockafellar ‘96 : H. & Lewis ‘04]
If f is prox-regular and rk is sufficiently large, then the above still
works.
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Proximal Point Method

Stability

Theorem: [Moreau, ‘65]
If f is convex, then P1f is Lipschitz.

Theorem: [Poliquin & Rockafellar ‘96]
If f is prox-regular, then Pr f is Lipschitz for large r .

Theorem: [Hare & Poliquin, ‘07]
If fλ is para-prox-regular, then for r large

|Pr fλ(x)− Pr fλ(x̃)| ≤ Cx |x − x̃ |
|Pr fλ(x)− Pr̃ fλ(x)| ≤ Cr |r − r̃ |
|Pr fλ(x)− Pr fλ̃(x)| ≤ Cf |λ− λ̃|
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Proximal Point Method

Robustness

Theorem: [Kiwiel, ‘90]
Approximating convex f with piecewise linear cutting-planes
models creates a convergent algorithm.

Theorem: [Noll et al. ‘08 : Hare & Sagastizábal, ‘09]
For nonconvex f , approximating f + η 1

2 | · |
2 with piecewise linear

cutting planes models creates a convergent algorithm.

Theorem: [Kiwiel, ‘10]
Approximating convex f with inexact piecewise linear models
creates a convergent algorithm.
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DFPP Algorithm

Sample Radius

∆(Y ) = max
y i∈Y

‖y i − y0‖
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DFPP Algorithm

A Derivative-Free Proximal Point Method

1 Initialize: Input starting point and parameters.
2 Model and Stopping Conditions: Create a quadratic

interpolation model of f over sample radius ∆k

qk(x) := αk + 〈gk , x〉+ 〈x ,Hkx〉.

Check stopping conditions (‖∇qk(xk)‖ small and ∆k small)
3 Prox-feasiblity Check:

If rk ≤ −λn(Hk), then (qk + rk 1
2‖ · ‖

2 is not convex) increase rk

4 Prox Trial Point:

x̃k = Prkq
k(xk) = (2Hk + rk Id)−1(rkxk − gk)

5 Serious/Null Check:
If x̃k is good, then (declare a serious step) line search in direction
xk − x̃k

Else (declare a null step), either increase rk or decrease ∆k or both
6 Loop

12 / 26



Derivative-Free Optimization Proximal Point Methods Derivative-Free Proximal Point Conclusion

DFPP Algorithm

Comparison with quasi-Newton trust region methods

Similarities

quadratic model to approximate the function

minimize model to obtain the next iterate

Differences

QN: minimizes other a ball

PP: minimizes using a quadratic penalty

convexify the approximating quadratic so all subproblems are
easily solvable
automatically enforces an Armijo-like descent that provides a
clean convergence analysis
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DFPP Algorithm

Poisedness

Y = {y0, y1, . . . yp} is poised for quadratic interpolation over f if
(p + 1 =)|Y | = (n + 1)(n + 2)/2 and there is a unique quadratic
function q such that

q(y i ) = f (y i ) for each y i ∈ Y .

To say the interpolation points Y are poised for quadratic
interpolation implies that the points provide reasonable coverage
across the full dimension of Rn.
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DFPP Algorithm
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DFPP Algorithm
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DFPP Algorithm

over- and under-determined quadratic models

Quadratic interpolation can be replaced with

quadratic regression: use more than (n + 1)(n + 2)/2 points
and replace the exact interpolation with a least-squares
regression to determine the quadratic model.

underdetermined quadratic models: use less than
(n + 1)(n + 2)/2 points and use pick the Lagrange
polynomials that generate the minimum Frobenius norm.

Can be done with O(n) points

18 / 26



Derivative-Free Optimization Proximal Point Methods Derivative-Free Proximal Point Conclusion

Convergence Results

Stopping

Theorem:
Suppose f is smooth, bounded below, and good interpolation sets
are used.

If ‖∇qk(xk)‖ is small and ∆k is small, then ‖∇f (xk)‖ is small.
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Convergence Results

Serious/Null choice

Predicted decrease: δk = qk(xk)− qk(x̃k).

If f (x̃k) ≤ f (xk)−mδk , Serious Step:

(line search) set xk+1 = xk + α(x̃k − xk)

update Y k+1 st
xk+1 ∈ Y k+1 and ∆(Y k+1) ≤ ∆(Y k)

Else Null Step:

if x̃k /∈ B∆(Y k )(xk), rk+1 → 2rk : set xk+1 = xk and

Y k+1 = Y k .
if rk+1 > rtol, STOP

else set xk+1 = xk and update Y k+1 st
xk+1 ∈ Y k+1 and ∆(Y k+1) ≤ Γ∆(Y k).
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Convergence Results

Convergence

Theorem:
Suppose f is smooth, bounded below, and good interpolation sets
are used.

If an infinite number of serious steps occur and rk is bounded
above, then

lim∇f (xk) = 0.
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Convergence Results

Convergence

Theorem:
Suppose f is smooth, bounded below, and good interpolation sets
are used.

If a finite number of serious steps occurs and an infinite number of
null steps occur, then

∇f (xk) = 0,

where xk is the result of the last serious step.
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Numerical Tests

Numerical Tests

The algorithm was implemented in MATLAB.

The Moré-Garbow-Hillstrom test set was used.

Successful on 29 of 35 problems.

The majority of failures were on badly scaled functions

e.g., f (x , y) = (104xy − 1)2 + (e−x + e−y − 1.0001)2
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Conclusion

Summary and Future Directions

X� Proof of concept algorithm that uses ideas from quasi-Newton
trust region methods and the proximal point algorithm.

X� DFO Prox-point method convergence proof.

� Refinement of the implementation to improve numerical
results (line search)

� Developing methods to deal with badly scaled problems.

� Bundle approaches? Limited memory approaches?

� (Split) Bregman methods?
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