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Derivative-Free Methods

Derivative Free Optimization

min{f(x) : x € R"}, f not analytically available.

Typical framework

@ Gradients are unavailable or too expensive (simulation...)

@ The objective function is noisy (values/gradients are inexact)

@ The algorithm is going to be used on a wide variety of
problems
o need wide convergence properties
o desire easy to follow structure
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Derivative-Free Methods

Derivative Free Optimization

@ Numerical Differentiation Stability

@ Automatic Differentiation Need Source Code

@ Evolutionary/Genetic Algorithms, simulated Annealing
No or weak convergence results
@ Derivative-Free Methods
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Proximal Point Method

Proximal Point Method

Proximal Map

_ i Tty — x|I2
Prf(X)—argmyln{f(y)+2Hy x| }

v

Proximal Point Method

If P, is well-defined, then the proximal point method is

Xk e P f(xK).

A\
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Proximal Point Method

Basic Results

Theorem: [Moreau, ‘63]
If fis convex and 0 € Of(x), then P1f(x) = {x}.

Theorem: [Martinet, ‘72]
If f is convex, then x*1 € Py f(xk) converges to a minimizer.

Theorem: [Rockafellar, ‘76]
If f is convex and X is a strict critical point, then xk*1 € P f(x*)
converges to X in a finite number of iterations.

Theorem: [Poliquin & Rockafellar ‘96 : H. & Lewis ‘04]
If f is prox-regular and r¥ is sufficiently large, then the above still
works.
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Proximal Point Method

Stability

Theorem: [Moreau, ‘65]
If f is convex, then Pif is Lipschitz.

Theorem: [Poliquin & Rockafellar ‘96]
If f is prox-regular, then P,f is Lipschitz for large r.

Theorem: [Hare & Poliquin, '07]
If f, is para-prox-regular, then for r large

|Prta(x) = PAN(X)] < Gufx = X|
‘Prf)\(X)—P;f)\(X)| S Cr|r—?|
|PA(x) = Prfs(X)] < Crld = A
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Proximal Point Method

Robustness

Theorem: [Kiwiel, ‘90]
Approximating convex f with piecewise linear cutting-planes
models creates a convergent algorithm.

Theorem: [Noll et al. ‘08 : Hare & Sagastizabal, '09]
For nonconvex f, approximating f + 17%| - |> with piecewise linear
cutting planes models creates a convergent algorithm.

Theorem: [Kiwiel, '10]
Approximating convex f with inexact piecewise linear models
creates a convergent algorithm.
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DFPP Algorithm

Sample Radius

A(Y) = max |y —y°|
y'ey
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DFPP Algorithm

A Derivative-Free Proximal Point Method

© INITIALIZE: Input starting point and parameters.
© MODEL AND STOPPING CONDITIONS: Create a quadratic

interpolation model of f over sample radius AX
g4(x) i= 0 + (g%, x) + (x, HX).

Check stopping conditions (||Vg*(x¥)|| small and A* small)
© PROX-FEASIBLITY CHECK:

If rk < —X,(H*), then (g¥ 4+ r¥3| - ||? is not convex) increase rk
© Prox TRIAL POINT:

%K = Pug (x*) = (2Hk + r*Id) " (e — gx)

© SERIOUS/NULL CHECK:
If X¥ is good, then (declare a serious step) line search in direction

Xk _ )?k
Else (declare a null step), either increase r* or decrease A* or both s
O Loor
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DFPP Algorithm

Comparison with quasi-Newton trust region methods

@ quadratic model to approximate the function

@ minimize model to obtain the next iterate

v

@ QN: minimizes other a ball

@ PP: minimizes using a quadratic penalty
o convexify the approximating quadratic so all subproblems are
easily solvable
o automatically enforces an Armijo-like descent that provides a
clean convergence analysis

A
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DFPP Algorithm

Poisedness

Y ={y% y!,...yP} is poised for quadratic interpolation over f if
(p+1=)|Y|=(n+1)(n+2)/2 and there is a unique quadratic
function g such that

q(y") = f(y') foreachy' €Y.

To say the interpolation points Y are poised for quadratic
interpolation implies that the points provide reasonable coverage
across the full dimension of R".

UBC|

14/26



Derivative-Free Proximal Point
00008000

DFPP Algorithm

0.7 q

0.6 4

05F ] i

0.4 B

0.3 q

15 /26



Derivative-Free Proximal Point
00000800

DFPP Algorithm

0.7 q

0.6 4

0.5~ q

0.4 -

0.3 q

0.6 0.7 0.8 0.9 1

16 /26



Derivative-Free Proximal Point
00000080

DFPP Algorithm

0.7 q

0.6 4

05F ] i

0.4 -

0.3 q

0.6 0.7 0.8 0.9 1

17/26



Derivative-Free Proximal Point
0000000e

DFPP Algorithm

over- and under-determined quadratic models

Quaderatic interpolation can be replaced with

@ quadratic regression: use more than (n+ 1)(n+ 2)/2 points
and replace the exact interpolation with a least-squares
regression to determine the quadratic model.

@ underdetermined quadratic models: use less than
(n+1)(n+ 2)/2 points and use pick the Lagrange
polynomials that generate the minimum Frobenius norm.

Can be done with O(n) points
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Convergence Results

Stopping

Theorem:
Suppose f is smooth, bounded below, and good interpolation sets
are used.

If ||[Vgk(x¥)|| is small and A is small, then ||V f(x)]| is small.
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Convergence Results

Serious/Null choice

Predicted decrease: 6K = g*(x*) — g(%).
If f(x¥) < f(x¥) — mé¥, SERIOUS STEP:
o (line search) set xk*1 = xk 4 a(xk — xk)
e update YK+ st
Xk+1 c yk—i—l and A(yk-i—l) < A(Yk)
Else NULL STEP:
o if XK & Ba(yry(x¥), rktt — 2rk: set xk*1 = x* and
vkl _ yk
if rkt1 > .01, STOP

o else set x**1 = xk and update YK+ st

xkT1 e Yk+1 and A(YKHL) <TA(YH). =
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Convergence Results

Convergence

Theorem:
Suppose f is smooth, bounded below, and good interpolation sets
are used.

If an infinite number of serious steps occur and r¥ is bounded
above, then
lim VF(x*) = 0.
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Convergence Results

Convergence

Theorem:
Suppose f is smooth, bounded below, and good interpolation sets
are used.

If a finite number of serious steps occurs and an infinite number of
null steps occur, then

VFf(xK) =0,

where x¥ is the result of the last serious step.
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Numerical Tests

The algorithm was implemented in MATLAB.

The Moré-Garbow-Hillstrom test set was used.

Successful on 29 of 35 problems.

The majority of failures were on badly scaled functions
o eg, f(x,y) = (10*y — 1)® + (¥ + e7¥ — 1.0001)?
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Conclusion

Summary and Future Directions

vi Proof of concept algorithm that uses ideas from quasi-Newton
trust region methods and the proximal point algorithm.

¥i DFO Prox-point method convergence proof.

[ Refinement of the implementation to improve numerical
results (line search)

[ Developing methods to deal with badly scaled problems.
[J Bundle approaches? Limited memory approaches?
[J (Split) Bregman methods?
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