Approximating Hessians in multilevel unconstrained optimization

Vincent Malmedy^{1,2} Philippe Toint¹

¹Department of Mathematics, FUNDP - University of Namur ²Research Fellow, F.R.S.-FNRS (vincent.malmedy@fundp.ac.be)

Sparse Days CERFACS, Toulouse, France June 23–24, 2008

Motivation

Structure preserving Hessian approximation schemes

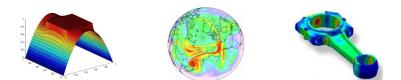
- Finite-difference methods
- Sparse PSB
- Partially separable PSB
- Partitioned BFGS

3 Numerical experience

Multilevel problems

Lots of practical problems defined in an infinite-dimensional space:

- Parameter estimation in ODE or PDE
- Optimal control problems
- Variational problems (minimum surface problem)
- Surface design (shape optimization)
- Data assimilation in weather forecast



Considered problem

Discretization used to approximate the real solution, but

- several levels of accuracy possible \rightarrow multilevel problems
- fine mesh for good accuracy \rightarrow large-scale problem at the finest level

Consider at finest level, the unconstrained optimization problem:

 $\min_{x\in \mathbf{R}^n} f(x)$

with

- $f: \mathbb{R}^n \to \mathbb{R}$ twice-continuously differentiable and bounded below
- no convexity assumption
- unavailable (or too expensive) Hessian

Finite-difference methods

Motivation

2 Structure preserving Hessian approximation schemes

- Finite-difference methods
- Sparse PSB
- Partially separable PSB
- Partitioned BEGS

Numerical experience

Finite-difference methods Classical framework — drawback

 Each Hessian matrix column classically given by a small variation of ∇_xf in the corresponding canonical direction e_j:

$$H_{:,j}(x) := \frac{\nabla_x f(x + he_j) - \nabla_x f(x)}{h}$$

 $\rightarrow \# \texttt{gradient evaluation} = \texttt{problem size}$

- However, sparsity typically encountered in such problems
 → Try to not compute known zeros
- Powell-Toint method (symmetric adaptation of Curtis-Powell-Reid for Jacobians, 1974)

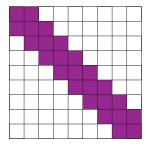
Finite-difference methods

Finite-difference methods Powell & Toint, 1979

Powell-Toint

• Apply CPR algorithm to lower triangular sparsity pattern of H

- ② Estimate corresponding gradient differences
- Reconstruct entries of the estimated H by solving a triangular system



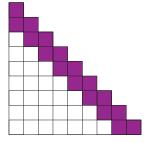
Finite-difference methods

Finite-difference methods Powell & Toint, 1979

Powell-Toint

• Apply CPR algorithm to lower triangular sparsity pattern of H

- 2 Estimate corresponding gradient differences
- Reconstruct entries of the estimated H by solving a triangular system



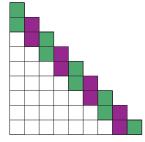
Finite-difference methods

Finite-difference methods Powell & Toint, 1979

Powell-Toint

• Apply CPR algorithm to lower triangular sparsity pattern of H

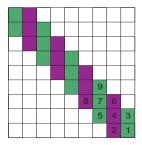
- 2 Estimate corresponding gradient differences
- Reconstruct entries of the estimated H by solving a triangular system



Finite-difference methods Powell & Toint, 1979

Powell-Toint

- Apply CPR algorithm to lower triangular sparsity pattern of H
- Stimate corresponding gradient differences
- **\bigcirc** Reconstruct entries of the estimated *H* by solving a triangular system



Sparse PSB

Motivation

Structure preserving Hessian approximation schemes

- Finite-difference methods
- Sparse PSB
- Partially separable PSB
- Partitioned BFGS

3 Numerical experience

Secant updates Classical secant updating schemes — drawback

Secant equation

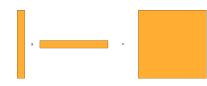
$$H^+s = y$$

with
$$s = x^+ - x$$
 and $y = g^+ - g$

BFGS:
$$H^+ = H - \frac{(Hs)(Hs)^T}{\langle s, Hs \rangle} + \frac{yy^T}{\langle s, y \rangle}$$

- Do not take account of the usually existent structure of large-scale problems → inefficiency
- Fills the Hessian
 - \rightarrow memory storage problems

SR1:
$$H^+ = H + \frac{(y-Hs)(y-Hs)^T}{\langle s, y-Hs \rangle}$$



Sparse PSB

Sparse Powell-symmetric-Broyden (PSB)

Impose: Hessian symmetry and sparsity, secant equation

Sparse PSB

• Define
$$S = \mathcal{P}(ss^T) + \operatorname{diag}(s \bullet s)$$
.

2 Solve
$$S\lambda = y - Hs$$
 for λ .

• Compute
$$H^+ = H + \mathcal{P}(s\lambda^T + \lambda s^T)$$
.

 \mathcal{P} : operator zeroing entries outside sparsity structure

Global and superlinear local convergence when combined with trust-region technique

Partially separable PSB

Motivation

2 Structure preserving Hessian approximation schemes

- Finite-difference methods
- Sparse PSB
- Partially separable PSB
- Partitioned BFGS

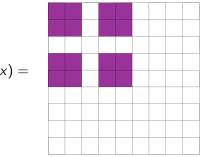
3 Numerical experience

• Structured problem \rightarrow partial separability:

$$f = \sum f_i$$

with each element function f_i depending on a few components

• Known Hessian shape:



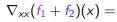
$$\nabla_{xx}f_1(x) =$$

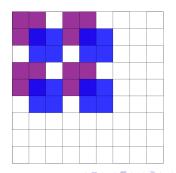
• Structured problem \rightarrow partial separability:

$$f = \sum f_i$$

with each element function f_i depending on a few components

• Known Hessian shape:



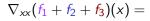


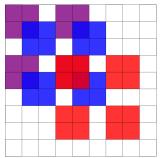
• Structured problem \rightarrow partial separability:

$$f = \sum f_i$$

with each element function f_i depending on a few components

• Known Hessian shape:

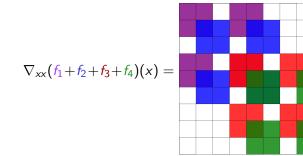




• Structured problem \rightarrow partial separability:

$$f = \sum f_i$$

with each element function f_i depending on a few components
Known Hessian shape:



Partially separable PSB

Partitioned Hessian update Griewank & Toint, 1982

Main idea

Update each H_i rather than H

- but not always possible
- or often expensive

Partially separable PSB

Partitioned Hessian update Griewank & Toint, 1982

Main idea

Update each H_i rather than H

x	-	<i>→</i>	

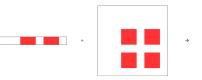
- but not always possible
- or often expensive

Partially separable PSB

Partitioned Hessian update Griewank & Toint, 1982

Main idea

Update each H_i rather than H



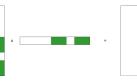
- but not always possible
- or often expensive

Partially separable PSB

Partitioned Hessian update Griewank & Toint, 1982

Main idea

Update each H_i rather than H



- but not always possible
- or often expensive

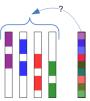
Partially separable PSB

Partitioned Hessian update Griewank & Toint, 1982

Main idea

Update each H_i rather than H

- but not always possible
- or often expensive



Partially separable PSB

Partially separable PSB Variational approach

$$\begin{split} \min_{H_i^+, y_i} \frac{1}{2} \sum \|H_i^+ - H_i\|_F^2 \\ \text{s.t.} &\begin{cases} H_i^+ s_i &= y_i & \text{[secant equations]} \\ J_i \bullet H_i^+ &= H_i^+ & \text{[sparsity of } H_i^+ \text{]} \\ E_i^T &= E_i := H_i^+ - H_i & \text{[symmetric correction]} \\ \sum y_i &= y & \text{[gradient decomposition]} \\ I_i y_i &= y_i & \text{[sparsity of } y_i \text{]} \end{cases} \end{split}$$

with $J_i = e_i e_i^T$ and $I_i = diag(e_i)$, where

$$[e_i]_j = \begin{cases} 1 & \text{if } f_i \text{ depends on the } j \text{-th component} \\ 0 & \text{otherwise} \end{cases}$$

Partially separable PSB Algorithm

Partially separable PSB

3 Set
$$S = \sum (\|s_i\|^2 I_i + s_i s_i^T)$$

- **2** Solve the positive definite system $S\lambda = y Hs$ for λ
- **3** Update $H^+ = H + \sum (\lambda_i s_i^T + s_i \lambda_i^T)$
 - do not include in the summation *i* for which $||s_i|| \approx 0$
 - implicit computation of H_i^+ and y_i
 - equivalence between some weighted sparse PSB and partially separable PSB
 - no guarantee of positive definiteness

Partitioned BFGS

Motivation

2 Structure preserving Hessian approximation schemes

- Finite-difference methods
- Sparse PSB
- Partially separable PSB
- Partitioned BFGS

3 Numerical experience

Partitioned BFGS

Other possibilities to split y into y_i to update H?

Straightforward solution

- Split uniformly y into y_i
- 2 Apply BFGS on each element Hessian H_i using these y_i

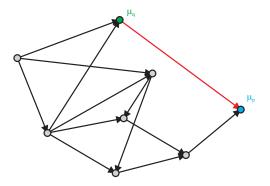
Still no guarantee of positive definiteness: $\mu_i := \langle s_i, y_i \rangle$ may be negative

Poised solution

- Split uniformly y into y_i
- 2 Perform some poising process on the μ_i
- Solution Apply BFGS on each element Hessian H_i using these y_i

Partitioned BFGS Network Flow

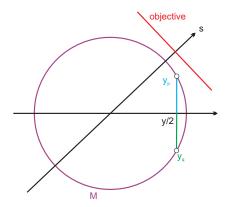
Represent Hessian blocks on a network:



- nodes: each block, with value μ_i
- arcs: binding blocks sharing at least a component, from larger μ_q to smaller μ_p

Partitioned BFGS Transferring curvature

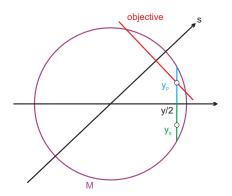
Now perform transfers along arcs to poise the μ_i



aim: increase μ_p to obtain some prescribed objective constraint: summation $(y_p + y_q = y)$, max. norm on $y_p, y_q = 1$, where $\mu_p = y_q$

Partitioned BFGS Transferring curvature

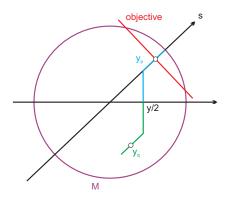
Now perform transfers along arcs to poise the μ_i



aim: increase μ_p to obtain some prescribed objective constraint: summation $(y_p + y_q = y)$, max. norm on $y_{\mathcal{B}}, y_{\mathcal{Q}} = 1$ and $y_{\mathcal{B}}, y_{\mathcal{Q}} = 1$

Partitioned BFGS Transferring curvature

Now perform transfers along arcs to poise the μ_i



aim: increase μ_p to obtain some prescribed objective constraint: summation $(y_p + y_q = y)$, max. norm on $y_{\mathcal{B}}, y_{q} = 1$, z = -2 Partitioned BFGS Push-relabel algorithm (Goldberg & Tarjan, 1986)

Consider the problem as a maximal flow problem from sources (with large μ_i) to sinks (with small μ_i)

Push-relabel

Given:

- distance label for each node,
- a processing order for nodes,
- perform at each active node (μ_i not poised):

push: transfer some amount of curvature between adjacent nodes with consecutive distance label

relabel: update current node label to make a push available

next: go to next node if node becomes inactive

Numerical experience

Motivation

- 2 Structure preserving Hessian approximation schemes
 - Finite-difference methods
 - Sparse PSB
 - Partially separable PSB
 - Partitioned BFGS

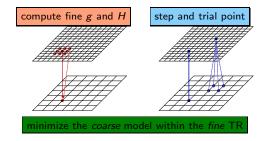
3 Numerical experience

Recursive Multilevel Trust-Region (RMTR) Gratton, Sartenaer & Toint, 2005

Trust-region framework

At each iteration, choose between:

- a local Taylor model
- a model for a coarser description

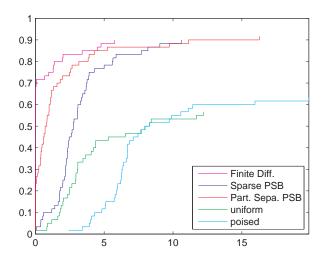


Preliminary numerical experience Implementation

- Experience inside a multilevel algorithm: RMTR (Fortran 90/95)
- Galerkin model: $H_{down} = RH_{up}P$
- Use test problems from the RMTR paper and MINPACK-2 collection (size between 225 and 261121)
- $H_0 = \sum I_i$
- Preconditioned CG used in both PSB updates
- Lowest label ordering based on distance label to the sink, used in poised partitioned BFGS with some heuristics to accept or refuse the poised y_i (based on improvement of μ_i and non-degradation of element secant equation)

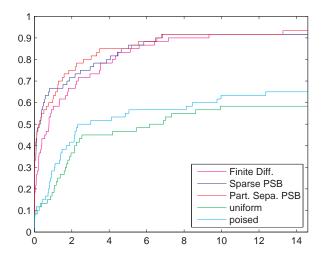
Results

Performance profile CPU time



Results

Performance profile Function and gradient evaluations (#f + 5#g)



Conclusion and perspectives

Motivation

- 2 Structure preserving Hessian approximation schemes
 - Finite-difference methods
 - Sparse PSB
 - Partially separable PSB
 - Partitioned BFGS
- Numerical experience

Conclusion – Perspectives

- Structured finite differences efficient
- Partially separable PSB competitive, and especially efficient with costly gradient and larger problems
- Exploiting partial separability appears to be a bit more efficient than only sparsity
- more test problems needed
- hardest and more expensive problems
- investigation of limited memory multisecant Hessian update for a better integration to multilevel algorithm

Thanks for your attention

Questions?