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Motivation Multilevel problems

Multilevel problems

Lots of practical problems defined in an infinite-dimensional space:

Parameter estimation in ODE or PDE

Optimal control problems

Variational problems (minimum surface problem)

Surface design (shape optimization)

Data assimilation in weather forecast
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Motivation Multilevel problems

Considered problem

Discretization used to approximate the real solution, but

several levels of accuracy possible → multilevel problems

fine mesh for good accuracy → large-scale problem at the finest level

Consider at finest level, the unconstrained optimization problem:

min
x∈IRn

f (x)

with

f : IRn → IR twice-continuously differentiable and bounded below

no convexity assumption

unavailable (or too expensive) Hessian
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Structure preserving Hessian approximation schemes Finite-difference methods

Finite-difference methods
Classical framework — drawback

Each Hessian matrix column classically given by a small variation of
∇x f in the corresponding canonical direction ej :

H:,j(x) :=
∇x f (x + hej ) −∇x f (x)

h

→ #gradient evaluation = problem size

However, sparsity typically encountered in such problems
→ Try to not compute known zeros

Powell-Toint method (symmetric adaptation of Curtis-Powell-Reid for
Jacobians, 1974)
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Structure preserving Hessian approximation schemes Finite-difference methods

Finite-difference methods
Powell & Toint, 1979

Powell-Toint

1 Apply CPR algorithm to lower triangular sparsity pattern of H

2 Estimate corresponding gradient differences

3 Reconstruct entries of the estimated H by solving a triangular system
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Structure preserving Hessian approximation schemes Sparse PSB

Secant updates
Classical secant updating schemes — drawback

Secant equation

H+s = y

with s = x+ − x and y = g+ − g

BFGS: H+ = H − (Hs)(Hs)T

〈s,Hs〉 + yyT

〈s,y〉 SR1: H+ = H + (y−Hs)(y−Hs)T

〈s,y−Hs〉

Do not take account of
the usually existent structure
of large-scale problems
→ inefficiency

Fills the Hessian
→ memory storage problems
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Structure preserving Hessian approximation schemes Sparse PSB

Sparse Powell-symmetric-Broyden (PSB)

Impose: Hessian symmetry and sparsity, secant equation

Sparse PSB

1 Define S = P(ssT ) + diag(s • s).

2 Solve Sλ = y − Hs for λ.

3 Compute H+ = H + P(sλT + λsT ).

P: operator zeroing entries outside sparsity structure

Global and superlinear local convergence
when combined with trust-region technique
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Structure preserving Hessian approximation schemes Partially separable PSB

Partial separability
Griewank & Toint, 1982

Structured problem → partial separability:

f =
∑

fi

with each element function fi depending on a few components

Known Hessian shape:

∇xx f1(x) =
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Structure preserving Hessian approximation schemes Partially separable PSB

Partitioned Hessian update
Griewank & Toint, 1982

Main idea

Update each Hi rather than H

Require the knowledge of the
gradient differences decomposition

but not always possible

or often expensive
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Structure preserving Hessian approximation schemes Partially separable PSB

Partially separable PSB
Variational approach

min
H+

i
,yi

1

2

∑

‖H+
i − Hi‖

2
F

s.t.























H+
i si = yi [secant equations]

Ji • H+
i = H+

i [sparsity of H+
i ]

ET
i = Ei := H+

i − Hi [symmetric correction]
∑

yi = y [gradient decomposition]
Iiyi = yi [sparsity of yi ]

with Ji = eie
T
i and Ii = diag(ei ), where

[ei ]j =

{

1 if fi depends on the j-th component

0 otherwise
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Structure preserving Hessian approximation schemes Partially separable PSB

Partially separable PSB
Algorithm

Partially separable PSB

1 Set S =
∑

(‖si‖
2Ii + sis

T
i )

2 Solve the positive definite system Sλ = y − Hs for λ

3 Update H+ = H +
∑

(λi s
T
i + siλ

T
i )

do not include in the summation i for which ‖si‖ ≈ 0

implicit computation of H+
i and yi

equivalence between some weighted sparse PSB and partially
separable PSB

no guarantee of positive definiteness
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Structure preserving Hessian approximation schemes Partitioned BFGS

Partitioned BFGS

Other possibilities to split y into yi to update H?

Straightforward solution

1 Split uniformly y into yi

2 Apply BFGS on each element Hessian Hi using these yi

Still no guarantee of positive definiteness: µi := 〈si , yi 〉 may be negative

Poised solution

1 Split uniformly y into yi

2 Perform some poising process on the µi

3 Apply BFGS on each element Hessian Hi using these yi

Vincent Malmedy (University of Namur) Approx. Hessians in multilevel optimization June 2008 17 / 29



Structure preserving Hessian approximation schemes Partitioned BFGS

Partitioned BFGS
Network Flow

Represent Hessian blocks on a network:

mp

mq

nodes: each block, with value µi

arcs: binding blocks sharing at least a component,
from larger µq to smaller µp
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Structure preserving Hessian approximation schemes Partitioned BFGS

Partitioned BFGS
Transferring curvature

Now perform transfers along arcs to poise the µi

s

yp

objective

y/2

yq

M

aim: increase µp to obtain some prescribed objective
constraint: summation (yp + yq = y), max. norm on yp, yq
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Structure preserving Hessian approximation schemes Partitioned BFGS

Partitioned BFGS
Push-relabel algorithm (Goldberg & Tarjan, 1986)

Consider the problem as a maximal flow problem
from sources (with large µi ) to sinks (with small µi)

Push-relabel

Given:

distance label for each node,

a processing order for nodes,

perform at each active node (µi not poised):

push: transfer some amount of curvature between adjacent nodes
with consecutive distance label

relabel: update current node label to make a push available

next: go to next node if node becomes inactive
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Numerical experience Implementation

Recursive Multilevel Trust-Region (RMTR)
Gratton, Sartenaer & Toint, 2005

Trust-region framework

At each iteration, choose between:

a local Taylor model

a model for a coarser description

compute fine g and H step and trial point

minimize the coarse model within the fine TR
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Numerical experience Implementation

Preliminary numerical experience
Implementation

Experience inside a multilevel algorithm: RMTR (Fortran 90/95)

Galerkin model: Hdown = RHupP

Use test problems from the RMTR paper and MINPACK-2 collection
(size between 225 and 261121)

H0 =
∑

Ii

Preconditioned CG used in both PSB updates

Lowest label ordering based on distance label to the sink, used in
poised partitioned BFGS with some heuristics to accept or refuse the
poised yi (based on improvement of µi and non-degradation of
element secant equation)
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Numerical experience Results

Performance profile
CPU time
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Numerical experience Results

Performance profile
Function and gradient evaluations (#f+ 5#g)
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Conclusion and perspectives

Conclusion – Perspectives

Structured finite differences efficient

Partially separable PSB competitive, and especially efficient with
costly gradient and larger problems

Exploiting partial separability appears to be a bit more efficient than
only sparsity

more test problems needed

hardest and more expensive problems

investigation of limited memory multisecant Hessian update
for a better integration to multilevel algorithm
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Conclusion and perspectives Thanks

Thanks for your attention
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Conclusion and perspectives Questions

Questions?
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