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Recover a function from a partial and
approximate knowledge of its Fourier
transform.
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ple 1. Fourier series

f e L*C,) where C,:=[-a/2,a/2]



f e L*C, where C,:=[-a/2, a/2]

—p. 4/35



f e L*C, where C,:=[-a/2, a/2]
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f e L*C, where C,:=[-a/2, a/2]

e =3 j (5) sinc 7a (e . 5)
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Example 3: MRI

Non-Cartesian and sparse acquisitions:
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Fourier extrapolation

Let VV andWW be subsets dR“¢. Assume that’ is
bounded and thdl” has a non-empty interior. Recover

fo € L*(V) from the knowledge of its Fourier transform
onWV.
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Fourier extrapolation

Let VV andWW be subsets dR“¢. Assume that’ is

bounded and thdl” has a non-empty interior. Recover

fo € L*(V) from the knowledge of its Fourier transform
onW'.

A. LANNES, S. ROoQUEsand M.-J. QASANOVE,

Stabilized reconstruction in signal and image processing;

Part |: partial deconvolution an spectral extrapolation
with limited field J. Mod. Opt.34, pp. 161-226, 1987.
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Truncated Fourier operator:

Tw: L*(V) — L*(W)
f — Twf:=1wf=1yUf.

—p. 9/35



Fourier extrapolation

Let VV andWV be subsets dR?. Assume thal is
bounded and thdl” has a non-empty interior. Recover

fo € L*(V) from the knowledge of its Fourier transform
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Truncated Fourier operator:

To: L*(V) — L*Q)
f o Tof:=1of =1oUf.
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arties of Ty,

2 1)(E) = /}R 2O ()14 (€) f() da.

| e/
oz, &) € L*(R? x RY)

—  Tw Is Hilbert-Schmidt



Properties of Iy

(T 1)(€) = / e 2T (o) Ly () f () da.

R N————————
oz, &) € L*(R* x RY)

— Tw IS

Reminder The Fourier transform of compactly
supported functions are entire functions
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Properties of Iy

(B 1)) = [ 9y (@) l(€) S (o) de
oz, &) € L*(RY x RY)

— Tw IS

Reminder The Fourier transform of compactly
supported functions are entire functions

—  Tw IS
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Properties of Iy

Thus, 77,1y, Is , , Hermitian, positive.
— T': ranTy — L*(V) is unbounded

— ran Ty IS not closed
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Properties of Iy

Thus, 77,1y, Is , , Hermitian, positive.
— T': ranTy — L*(V) is unbounded

— ran Ty IS not closed

— Ty, is unbounded an® (T3, ) L* (W)

D(Ty,) is a dense subset éf (17)
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Properties of Iy

Thus, 77,1y, Is , , Hermitian, positive.
— T': ranTy — L*(V) is unbounded
— ran Ty IS not closed
— Ty, is unbounded an® (T3, ) L* (W)
D(Ty,) is a dense subset éf (17)

The operator equatidfy,, f = g Is ill-posed
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ral framework

osed equation Tfy=¢g with: T: F —

Minimize %Hg—TfH2+ozH(f)
st feF




General framework
lll-posed equation T fy=¢9g with: T:F — G

Minimize %Hg—TfHQ—F H(f)
st. fekF

Main issues
Well-posedness
Asymptotic behavior{ | 0)
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Alternative approach

lll-posed equation T fy,=¢g with: T: F — G

Jo = + (L = Cp)fo
whereC's approache$ asj | 0

Assume there exists an operafoy: G — G such that
TCs = DT
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Alternative approach

lll-posed equation T fy,=¢g with: T: F — G

Jo = + (L = Cp)fo
whereC's approache$ asj | 0

Assume there exists an operafoy: G — G such that
TCs = DT

Tf() ~ g I = (I)ﬁTfQ ~ (I)gg

. . 1
Minimiser | @ ~Tf||;. + > (7= Co)f ||
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ISSuUes

1
imize H<I>gg—TfH?;+ % (1= Cﬁ)fH?:

Well-posedness



Maln issues

.1
Minimize 5 | ®sg —Tf ||é Ty |(1—Cs)f H?r
Well-posedness

Asymptotic behavior{ | 0 and/org3 | 0)
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ples

TCs=®3T with Cp:= U_lﬁgU

T =Ty
TCs = Ly UU ' psU = ¢slywlU = dsT

Dy = (g ¢39)



ples

TCs=®3T with Cp:= U_lﬁgU

T = K = U'kU, convolution byk
— TOg — CgT
®g = Cg



Examples

TCys = ®5T with Cy:=U"lgsU
T = R, the Radon operator

(Rf)(8, s) = Q/f x)) dx

R(fi* f2) = Rfi ® Rfs
® convolution w.r.t.s

TCsf =T(pp*[f)=Tog®Tf
®g = (g+— Tos® g)
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larization of Ty f = ¢

ze | LY la-dni
28 §H¢ﬁg—TWfHL2(W)+§‘ P25 2 (may

s.t. feL*V)



Regularization of Ty f = g

2

. Ly - 2 2\
Minimize §H¢ﬁg—T fH —|-QH(1—¢ﬁ)f

2 L2(R%)
s.t. fe L*V)

Regularized datays := ®3g9 = gﬁgg



Regularization of Ty f = g

2

AN

Minimize %Hgggg—T sz +%H(1—g£ﬁ)f
s.t. fe L*V)

L?2(R?)

Regularized datays := ®3g9 = gﬁgg

o) = 530 (5) 9l =656



Regularization of Ty f = g

1 ~ 2 18 ~ ~ 112
Minimize -— — T H —H 1 —
5 || 059 f 5 || (L= 9s)f o
s.t. feL*(V)

Regularized datays := ®3g9 = gﬁgg

o) = 530 (5) 9l =656

Proposition Leta, 8 > 0 be fixed. ThenP, 3) has a

unique solutionf, s, which depends continuously on
ge L*(W).

—p. 16/35



e

roduction

urier synthesis

ymptotic analysis

tension

ote on proximal inversion



ximation of 777 o | 0




ximation of 777 o | 0

.. Ly - 2
Minimize §H¢59_waH

(Po,8)
s.t. feL*V)




ximation of 7,7 o | 0

1 " 2
Minimize - — 1 H
(7)0,[3) 5 ¢69 Wf

s.t. feL?V)

Unique solution;" (¢39)



Approximation of ;"

(Po,s)

Minimize

110 - 2
9 Ppg — Ly f H
s.t. feL*(V)

Unique solutionT}; (¢39)

Theorem Let 3 > 0 be fixed and ley € D(T;;").

(1)
(i1

f 939 € D(T), t
f ¢39 ¢ D(T), t

nenf, 3 — T (d39) asa | 0.

ven|| fusla) — oo asa | 0.
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Approximation of ;'

. Ly ~ 2
P, ) Minimize 5 ®39 — Ly f H
s.t. feL*(V)

Unique solutionT}; (¢39)

Proposition Assume that € L' (RY) is such that is

analytical, and leg > 0 be fixed and; € D(T;;,). Then,
the following are equivalent:

() $39 € D(T;});
(i) supp(¢y = T g) C V.
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om  Assume that

> 0 (fixed)



ximation of 7i-: 6| 0

om  Assume that

> 0 (fixed)
LY(R%) with [ ¢(z) dz = 1 (i.e. ¢(0) = 1)



Approximation of 7;;>: 8 | 0

Theorem Assume that

= a > 0 (fixed)
= ¢ € LY(RY) with [ ¢(z)dz = 1 (i.e. (0) = 1)

w1 — G(&)] ~e—o K| €||° for someK, s > 0



Approximation of 7;;>: 8 | 0

Iheorem Assume that
= a > 0 (fixed)
= ¢ € LY(RY) with [ ¢(z)dz = 1 (i.e. (0) = 1)

# [1— ()] ~eo K[£]|* for somek, s > 0

= V€ € R\ {0}, 9(€) # 1



Approximation of 7;;>: 8 | 0

Iheorem Assume that
= a > 0 (fixed)
= ¢ € LY(RY) with [ ¢(z)dz = 1 (i.e. (0) = 1)

# [1— ()] ~eo K[£]|* for somek, s > 0

= V€ € R\ {0}, 9(€) # 1

If g € T,,(L*(V) N H*(RY)), then
asp; | 0.
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iew of the proof

3(fa,6)5e(0,1] IS bounded
(fa.5) ge(o.1) CONverges weakly td;; g

On L0, frn = faﬁn
fo) = T g



Overview of the proof

(fa,8) e (0.1 1S POUNded
(fa,) se(0.1] CONVerges weakly tdy: g

Bn l 0, fn .= fa,ﬁn
m () — TVE/FQ

the convergence is In fact strong
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Overview of the proof

(fa,8) e (0.1 1S POUNded

(fa.8) ge (.1 CONVErges weakly tdy;: g

677, l 0, fn = fa
m () — TM_/FQ

On

the convergence is Iin fact strong

.
(f») bounded

lim sup/ | folz) P doz =0
lz||>R

R—oo 4

sup || 7 fr — full = 0 asl/h|| — 0

/

> = (f,) precompact
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Overview of the proof

(fa,8) e (0.1 1S POUNded
(fa,) se(0.1] CONVerges weakly tdy: g

Bn l 0, fn .= fa,ﬁn
m () — TVE/FQ

the convergence is In fact strong

= (f,) is bounded (Step 1)
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Overview of the proof

(fa,8) e (0.1 1S POUNded
(fe) 5e 01 CONnverges weakly ;g

Bn l O! fn = faaﬂn
() — TVE/FQ

the convergence is In fact strong

= (f,) is bounded (Step 1)
= V bounded— lim Sup/ | fo(2)]?dz = 0
| ||>R

R—oo g
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Overview of the proof

(fa,8) e (0.1 1S POUNded
(fe) 5e 01 CONnverges weakly ;g

Bn l O! fn = faaﬁn
() — TVE/FQ

the convergence is In fact strong

= (f,) is bounded (Step 1)
= V bounded— lim Sup/ | fo(2)]?dz = 0
| ||>R

R—oo g

u sup,, || Tpfo — full = 0 as|ja|| — 0
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ples: Levy kernels

11— (6| ~eo [1€1I

A

vE e RU\ {0}, (&) #1

O: € exp(—[l€]*), < 0.2



Examples: Levy kernels

1= 60| ~eo [l
vE e RT\ {0}, o(¢) #1
b1 & — exp(—|¢]),
x> Ut exp(—| - [I°) (x)

— ¢ IS positive, iIsotropic, radially decreasing,™



Point spread functions
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Cauchy filter (s=1) Filter for s=0.6

0 0.5 : 0 0.5
€ €

Cauchy kernel (s=1) Kernel for s=0.6
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Extension

lll-posed equation T fy,=¢g with: T: F — G

Jo = + (L = Cp)fo
whereC's approache$ asj | 0

Assume that there Is no operatbf: G — G
such that/'Cs = ®3T°
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Extension

lll-posed equation T fy,=¢g with: T: F — G

Jo = + (L = Cp)fo
whereC's approache$ asj | 0

Assume that there Is no operatbf: G — G
such that/'Cs = ®3T°

Minimize % |TCs — XT|°
st. X e L(G), X =0 on (ranT)*

(Qp)
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T: L*(V) — G, G Hilbert space
('3 convolution byg;
Assume thaf is well-defined onran Cj (for G € (0, v))
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T: L*(V) — G, G Hilbert space
('3 convolution byg;
Assume thaf is well-defined onran Cj (for G € (0, v))

L1
(Ps) Minimize | @59 — T 5 | (1 - Cﬁ)fH;(Rd)
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Extension

T: L*(V) — G, G Hilbert space
('3 convolution byg;
Assume thaf’ is well-defined orran Cjs (for 5 € (0, v))

(P3) Minimize % | @59 — T

(Qp)

9 || ( — Cﬁ)in2(Rd)

Minimize X — ||TCs — XT|
st. X e L(G), X =0 on (ranT)*
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Solving (9;s)

Proposition If TC3T™ is bounded, thedCs T admits
a continuous extension @k which is a solution td Q;).
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If TCsT™ is bounded, the@CsT" admits
a continuous extension @k which is a solution td Q;).

TCT™ is bounded if and only if there exists a
positive numbelk such that

Vf € (kerT)", [|TCfllr < K|Tfllc

—p. 26/35



Let T be the integral operator of kerne)
thatis: 7' f(z) = [ a(z,y) f(y) dy, with

a: RY x Rd — (. Assume that
() Jra v lo(z, y)]?dedy < oo

(i) forall z,y,z € RY, a(x,y + 2) = alz,y)g(z, 2);

() there exists a positive constanf,, depending o
only, such that

Vo € R, y d(2)g(x,z)dz| < My.

ThenT is well-defined onran C and7'CT* is bounded
on Its domain.



1) Problem(Q;) is ill-posed. However, théargetl'Cj

does not undergo any perturbation. A proximal strategy
may be suitable.
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1) Problem(Q;) is ill-posed. However, théargetl'Cj
does not undergo any perturbation. A proximal strategy
may be suitable.

2) The convergence theorem (&g 0) remains valid in
this extended context.

3) A numerical study is under consideration.

4) Other operators thafiz may be considered.

—p. 28/35
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luction

Minimize X — ||TCz — XT||
st. X eM,w,(R), X =0 on (ranT)*




For simplicity, we consider here the problem of
computing the pseudo-inverse of an ill-posed matrix
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For simplicity, we consider here the problem of
computing the pseudo-inverse of an ill-posed matrix

The pseudo-inverse of a matrix
M € M,,.,(R) is the solution of minimum Frobenius
norm of the optimization problem

Minimize f(®):= 1| M® — I|%

(P) st. ® € M,«n(R)
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The proximal algorithm

The proximal point algorithm is a general algorithm for
computing zeros of maximal monotone operators.
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The proximal algorithm

A well-known application is the minimization of a
convex functionf by finding a zero In its subdifferential.
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In our setting, It consists in the following steps:
1. Choose an initial matrio, € M., «,(R);

2. Generate a sequen@®; ).~ according to the
formula

1
ch—cbku?},
Uk

$,,; = argmin {f(CI)) | :
PeM,wm(R)

in which (i1 )r>0 IS @ sequence of positive numbers,
until some stopping criterion is satisfied.

—p. 31/35
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ality conditions

, | 1 2
argmin < —=||M® — I||% - d — P, }
@EMMR){QH I+ 5@ — o]

1
M"(M®,. — 1)+ E(cbk+1 —®;,) =0

(I + M M)®ppq1 = Op + M’



Optimality conditions

. 1 |
®, 1 = argmin {§HMCI>—]]% 5 CIDCIDkQ}
deM,,m(R) ok

1
M"(M®— 1)+ ﬁ(q)kqtl — @) =0

Op g = Py + ppM '

SinceM ' M is positive semi-definite and, is positive
for all k&, the matrix(I + M " M) is nonsingular and
the proximal iteration also reads

Dpi1 = (P + M)

—p.32/35






1) In the case wherg;, = u for all £, each proximal
iteration involves the multiplication by the same inverse

matrix (I + M " M)~ and that the latter inverse may
be quite easy to compute numerically, If the matrix

[ + uM " M is well-conditioned.
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1) In the case wherg;, = u for all £, each proximal
iteration involves the multiplication by the same inverse

matrix (I + M " M)~ and that the latter inverse may
be quite easy to compute numerically, If the matrix

[ + uM " M is well-conditioned.

2) The proximal iteration may be performed by means of
any efficient minimization algorithm.

—p. 33/35






Let oy denote the smallest nonzero

eigenvalue of\/ ' M and letE; be the corresponding
eigenspace. Assume that = u for all £ and thatd Is
not orthogonal to the eigenspage. Then,

|M (@511 — D) 1 Dy —
R and
[@fr 1 — Dy 1+ aqp | @pp1 — Dy

In which ¥ Is a unit eigenvector it’;. Moreover the
sequence®d;) generated by the proximal algorithm
converges linearly to the orthogonal projectionigf
onto the solution setrgmin f = M ™ + ker M.

—p. 34/35
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A standard approximation of
the pseudo-inverse of an ill-conditioned mathikis

(M"M + =I)"'M", where- is a small positive number.
This approximation is nothing but the

of M, with regularization parameter

The choiced, = 0 yields the latter approximation for
e = 1/u after one proximal iteration.
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Additional comments

Link with existing iterative methods. |In the case where
w = p for all £, the proximal algorithm belongs to the
class offixed point methodsalong with the algorithms
of Jacobi, Gauss-Seidel, SOR and SSOR.

It IS easy to check that/ " satisfies thdixed point
equation
b = p(d):= Bd + C,

with
B:={[+uM'M)? and C:=(M'M+pu'D'M'.

Clearly, ¢ Is acontractionand, if M Is invertible, then
M ' M is positive definite angb is astrict contraction

—p. 35/35
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