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Fourier Synthesis

Recover a function from a partial and

approximate knowledge of its Fourier

transform.

– p. 3/35



Example 1: Fourier series

f ∈ L2(Ca) where Ca := [−a/2, a/2]d
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Example 1: Fourier series

f ∈ L2(Ca) where Ca := [−a/2, a/2]d

f(x) =
1

an

∑

k∈Zn

f̂

(
k

a

)

exp

[

2iπ

〈
k

a
, x

〉]

1Ca
(x)
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Example 1: Fourier series

f ∈ L2(Ca) where Ca := [−a/2, a/2]d

f̂(ξ) =
∑

k∈Zn

f̂

(
k

a

)

sinc πa

(

ξ −
k

a

)
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Example 2: Aperture synthesis
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Example 3: MRI

Standard acquisitions:

– p. 7/35



Example 3: MRI

Non-Cartesian and sparse acquisitions:
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Fourier extrapolation

Let V andW be subsets ofRd. Assume thatV is
bounded and thatW has a non-empty interior. Recover
f0 ∈ L2(V ) from the knowledge of its Fourier transform
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Fourier extrapolation

Let V andW be subsets ofRd. Assume thatV is
bounded and thatW has a non-empty interior. Recover
f0 ∈ L2(V ) from the knowledge of its Fourier transform
onW .
A. L ANNES, S. ROQUESand M.-J. CASANOVE,
Stabilized reconstruction in signal and image processing;
Part I: partial deconvolution an spectral extrapolation
with limited field, J. Mod. Opt.34, pp. 161-226, 1987.

Truncated Fourier operator:

TΩ : L2(V ) −→ L2(Ω)

f 7−→ TΩf := 1Ωf̂ = 1Ω Uf.
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Properties ofTW

(TWf)(ξ) =

∫

Rd

e−2iπ〈x,ξ〉
1V (x)1W (ξ)

︸ ︷︷ ︸
f(x) dx.

α(x, ξ)∈ L2(Rd ×R
d)
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(TWf)(ξ) =

∫

Rd

e−2iπ〈x,ξ〉
1V (x)1W (ξ)

︸ ︷︷ ︸
f(x) dx.

α(x, ξ)∈ L2(Rd ×R
d)

→֒ TW is Hilbert-Schmidt

Reminder The Fourier transform of compactly
supported functions are entire functions

→֒ TW is injective
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Properties ofTW

Thus,T ⋆
WTW is compact, injective, Hermitian, positive.
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Properties ofTW

Thus,T ⋆
WTW is compact, injective, Hermitian, positive.

→֒ T−1
W : ran TW → L2(V ) is unbounded

→֒ ran TW is not closed

→֒ T+
W is unbounded andD(T+

W )(L2(W )

D(T+
W ) is a dense subset ofL2(W )

The operator equationTWf = g is ill-posed
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Ill-posed equation: Tf0 = g with : T : F → G
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General framework

Ill-posed equation: Tf0 = g with : T : F → G

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥g − Tf

∥
∥2

+ αH(f)

s.t. f ∈ F
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General framework

Ill-posed equation: Tf0 = g with : T : F → G

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥g − Tf

∥
∥2

+ αH(f)

s.t. f ∈ F

Main issues
Well-posedness

Asymptotic behavior (α ↓ 0)
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α

2

∥
∥(I − Cβ)f

∥
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Well-posedness

Asymptotic behavior (α ↓ 0 and/orβ ↓ 0)
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Examples

TCβ = ΦβT with Cβ := U−1φ̂βU

T = TW

→֒ TCβ = 1WUU−1φ̂βU = φ̂β1WU = φ̂βT

Φβ = (g 7→ φ̂βg)
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Examples

TCβ = ΦβT with Cβ := U−1φ̂βU

T = K = U−1k̂U , convolution byk

→֒ TCβ = CβT
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Examples

TCβ = ΦβT with Cβ := U−1φ̂βU

T = R, the Radon operator

(Rf)(θ, s) =

∫

f(x)δ(s − 〈θ,x〉) dx

R(f1 ∗ f2) = Rf1 ⊛ Rf2

⊛ convolution w.r.t.s

→֒ TCβf = T (φβ ∗ f) = Tφβ ⊛ Tf

Φβ = (g 7→ Tφβ ⊛ g)
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Regularization of TWf = g

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

L2(W )
+

α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

L2(Rd)

s.t. f ∈ L2(V )
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Regularization of TWf = g

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

L2(W )
+

α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

L2(Rd)

s.t. f ∈ L2(V )
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Regularization of TWf = g

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

L2(W )
+

α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

L2(Rd)

s.t. f ∈ L2(V )

Regularized data: gβ := Φβg = φ̂βg

φβ(x) =
1

βd
φ

(
x

β

)

φ̂β(ξ) = φ̂(βξ)
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Regularization of TWf = g

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

L2(W )
+

α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

L2(Rd)

s.t. f ∈ L2(V )

Regularized data: gβ := Φβg = φ̂βg

φβ(x) =
1

βd
φ

(
x

β

)

φ̂β(ξ) = φ̂(βξ)

Proposition Let α, β > 0 be fixed. Then(Pα,β) has a
unique solutionfα,β, which depends continuously on
g ∈ L2(W ).
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Approximation of T+
W : α ↓ 0

(P0,β)

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
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∥
∥
∥

2
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Approximation of T+
W : α ↓ 0

(P0,β)

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

s.t. f ∈ L2(V )

Unique solution:T+
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Approximation of T+
W : α ↓ 0

(P0,β)

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

s.t. f ∈ L2(V )

Unique solution:T+
W (φ̂βg)

Theorem Let β > 0 be fixed and letg ∈ D(T+
W ).

(i) If φ̂βg ∈ D(T+
W ), thenfα,β → T+

W (φ̂βg) asα ↓ 0.

(ii) If φ̂βg /∈ D(T+
W ), then‖fα,β‖L2(V ) → ∞ asα ↓ 0.
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Approximation of T+
W : α ↓ 0

(P0,β)

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

s.t. f ∈ L2(V )

Unique solution:T+
W (φ̂βg)

Proposition Assume thatφ ∈ L1(Rd) is such that̂φ is
analytical, and letβ > 0 be fixed andg ∈ D(T+

W ). Then,
the following are equivalent:

(i) φ̂βg ∈ D(T+
W );

(ii) supp(φβ ∗ T+
W g) ⊆ V .
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∫
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Approximation of T+
W : β ↓ 0

Theorem Assume that

α > 0 (fixed)

φ ∈ L1(Rd) with
∫

φ(x) dx = 1 (i.e. φ̂(0) = 1)

|1 − φ̂(ξ)| ∼ξ→0 K‖ξ‖s for someK, s > 0

∀ξ ∈ Rd \ {0}, φ̂(ξ) 6= 1

If g ∈ TW (L2(V ) ∩ Hs(Rd)), thenfα,β → T+
W g strongly

asβ ↓ 0.
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(
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)

β∈(0,1]
is bounded

Step 2:
(
fα,β

)

β∈(0,1]
converges weakly toT+

W g

βn ↓ 0, fn := fα,βn

∃(fnk
) ⇀ T+

W g

Step 3:the convergence is in fact strong

(fn) bounded

lim
R→∞

sup
n

∫

‖x‖>R

|fn(x)|2 dx = 0

sup
n

‖Thfn − fn‖ → 0 as‖h‖ → 0







⇒ (fn) precompact
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∣
∣
∣1 − φ̂(ξ)

∣
∣
∣ ∼ξ→0

∥
∥ξ

∥
∥s

∀ξ ∈ R
d \ {0}, φ̂(ξ) 6= 1

φ̂ : ξ 7→ exp
(
−‖ξ‖s

)
, s ∈ [0, 2]
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∣
∣
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∥
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∥
∥s

∀ξ ∈ R
d \ {0}, φ̂(ξ) 6= 1

φ̂ : ξ 7→ exp
(
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)
, s ∈ [0, 2]
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Examples: Lévy kernels

∣
∣
∣1 − φ̂(ξ)

∣
∣
∣ ∼ξ→0

∥
∥ξ

∥
∥s

∀ξ ∈ R
d \ {0}, φ̂(ξ) 6= 1

φ̂ : ξ 7→ exp
(
−‖ξ‖s

)
, s ∈ [0, 2]

φ : x 7→ U−1 exp
(
−‖ · ‖s

)
(x)

→֒ φ is positive, isotropic, radially decreasing,C∞
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Examples: Lévy kernels
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Examples: Lévy kernels
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Extension

Ill-posed equation: Tf0 = g with : T : F → G

f0 = Cβf0 + (I − Cβ)f0

whereCβ approachesI asβ ↓ 0

Assume that there is no operatorΦβ : G → G

such thatTCβ = ΦβT

(Qβ)

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥TCβ − XT

∥
∥2

s.t. X ∈ L(G), X = 0 on (ran T )⊥
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Extension

T : L2(V ) → G, G Hilbert space
Cβ convolution byφβ

Assume thatT is well-defined onran Cβ (for β ∈ (0, ν))
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Extension

T : L2(V ) → G, G Hilbert space
Cβ convolution byφβ

Assume thatT is well-defined onran Cβ (for β ∈ (0, ν))

(Pβ) Minimize
1

2

∥
∥Φβg − Tf

∥
∥2

G
+

α

2

∥
∥(I − Cβ)f

∥
∥2

L2(Rd)

– p. 25/35



Extension

T : L2(V ) → G, G Hilbert space
Cβ convolution byφβ

Assume thatT is well-defined onran Cβ (for β ∈ (0, ν))

(Pβ) Minimize
1

2

∥
∥Φβg − Tf

∥
∥2

G
+

α

2

∥
∥(I − Cβ)f

∥
∥2

L2(Rd)

(Qβ)

∣
∣
∣
∣
∣

Minimize X 7→ ‖TCβ − XT ‖

s.t. X ∈ L(G), X = 0 on (ran T )⊥
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Solving (Qβ)

Proposition If TCβT
+ is bounded, thenTCβT

+ admits
a continuous extension onG which is a solution to(Qβ).
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Solving (Qβ)

Proposition If TCβT
+ is bounded, thenTCβT

+ admits
a continuous extension onG which is a solution to(Qβ).

Remark TCT+ is bounded if and only if there exists a
positive numberK such that

∀f ∈ (ker T )⊥, ‖TCf ‖F ≤ K‖Tf ‖G.
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Example

Proposition Let T be the integral operator of kernelα,
that is:Tf(x) =

∫
α(x, y)f(y) dy, with

α : Rd ×Rd → C. Assume that

(i)
∫

Rd×V
|α(x, y)|2 dx dy < ∞

(ii) for all x, y, z ∈ Rd, α(x, y + z) = α(x, y)g(x, z);

(iii) there exists a positive constantMφ, depending onφ
only, such that

∀x ∈ R
d,

∣
∣
∣
∣

∫

Rd

φ(z)g(x, z) dz

∣
∣
∣
∣
< Mφ.

ThenT is well-defined onran C andTCT+ is bounded
on its domain. – p. 27/35



Remarks

1) Problem(Qβ) is ill-posed. However, thetargetTCβ

does not undergo any perturbation. A proximal strategy
may be suitable.
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3) A numerical study is under consideration.
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Remarks

1) Problem(Qβ) is ill-posed. However, thetargetTCβ

does not undergo any perturbation. A proximal strategy
may be suitable.

2) The convergence theorem (asβ ↓ 0) remains valid in
this extended context.

3) A numerical study is under consideration.

4) Other operators thanCβ may be considered.
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Introduction

(Qβ)

∣
∣
∣
∣
∣

Minimize X 7→ ‖TCβ − XT ‖

s.t. X ∈ Mm×n(R), X = 0 on (ran T )⊥
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Introduction

For simplicity, we consider here the problem of
computing the pseudo-inverse of an ill-posed matrixM .
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Introduction

For simplicity, we consider here the problem of
computing the pseudo-inverse of an ill-posed matrixM .

TheoremThe pseudo-inverse of a matrix
M ∈ Mm×n(R) is the solution of minimum Frobenius
norm of the optimization problem

(P)

∣
∣
∣
∣
∣

Minimize f(Φ) := 1
2‖MΦ − I‖2

F

s.t. Φ ∈ Mn×m(R)
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The proximal algorithm
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The proximal algorithm

The proximal point algorithm is a general algorithm for
computing zeros of maximal monotone operators.
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The proximal algorithm

A well-known application is the minimization of a
convex functionf by finding a zero in its subdifferential.
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The proximal algorithm

In our setting, it consists in the following steps:

1. Choose an initial matrixΦ0 ∈ Mm×n(R);

2. Generate a sequence(Φk)k≥0 according to the
formula

Φk+1 = argmin
Φ∈Mn×m(R)

{

f(Φ) +
1

2µk

‖Φ − Φk‖
2

}

,

in which (µk)k≥0 is a sequence of positive numbers,
until some stopping criterion is satisfied.
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Optimality conditions

Φk+1 = argmin
Φ∈Mn×m(R)

{
1

2
‖MΦ − I‖2

F +
1

2µk

‖Φ − Φk‖
2

}
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Optimality conditions

Φk+1 = argmin
Φ∈Mn×m(R)

{
1

2
‖MΦ − I‖2

F +
1

2µk

‖Φ − Φk‖
2

}

M⊤(MΦk+1 − I) +
1

µk

(Φk+1 − Φk) = 0
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Optimality conditions

Φk+1 = argmin
Φ∈Mn×m(R)

{
1

2
‖MΦ − I‖2

F +
1

2µk

‖Φ − Φk‖
2

}

M⊤(MΦk+1 − I) +
1

µk

(Φk+1 − Φk) = 0

(I + µkM
⊤M)Φk+1 = Φk + µkM

⊤
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Optimality conditions

Φk+1 = argmin
Φ∈Mn×m(R)

{
1

2
‖MΦ − I‖2

F +
1

2µk

‖Φ − Φk‖
2

}

M⊤(MΦk+1 − I) +
1

µk

(Φk+1 − Φk) = 0

(I + µkM
⊤M)Φk+1 = Φk + µkM

⊤

SinceM⊤M is positive semi-definite andµk is positive
for all k, the matrix(I + µkM

⊤M) is nonsingular and
the proximal iteration also reads

Φk+1 = (I + µkM
⊤M)−1

(
Φk + µkM

⊤
)
.
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Remarks

– p. 33/35



Remarks

1) In the case whereµk = µ for all k, each proximal
iteration involves the multiplication by the same inverse
matrix (I + µM⊤M)−1, and that the latter inverse may
be quite easy to compute numerically, if the matrix
I + µM⊤M is well-conditioned.
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Remarks

1) In the case whereµk = µ for all k, each proximal
iteration involves the multiplication by the same inverse
matrix (I + µM⊤M)−1, and that the latter inverse may
be quite easy to compute numerically, if the matrix
I + µM⊤M is well-conditioned.

2) The proximal iteration may be performed by means of
any efficient minimization algorithm.
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Convergence
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Convergence

Proposition Let α1 denote the smallest nonzero
eigenvalue ofM⊤M and letE1 be the corresponding
eigenspace. Assume thatµk = µ for all k and thatΦ0 is
not orthogonal to the eigenspaceE1. Then,

‖M(Φk+1 − Φk)‖

‖Φk+1 − Φk‖
→

1

1 + α1µ
and

Φk+1 − Φk

‖Φk+1 − Φk‖
→ Ψ1 as

in whichΨ1 is a unit eigenvector inE1. Moreover the
sequence(Φk) generated by the proximal algorithm
converges linearly to the orthogonal projection ofΦ0

onto the solution setargmin f = M+ + kerM.
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Additional comments
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Additional comments

Tikhonov approximation. A standard approximation of
the pseudo-inverse of an ill-conditioned matrixM is
(M⊤M + εI)−1M⊤, whereε is a small positive number.
This approximation is nothing but theTikhonov
regularizationof M+, with regularization parameterε.

The choiceΦ0 = 0 yields the latter approximation for
ε = 1/µ after one proximal iteration.
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Additional comments

Link with existing iterative methods. In the case where
µk = µ for all k, the proximal algorithm belongs to the
class offixed point methods, along with the algorithms
of Jacobi, Gauss-Seidel, SOR and SSOR.

It is easy to check thatM+ satisfies thefixed point
equation

Φ = ϕ(Φ) := BΦ + C,

with

B := (I+µM⊤M)−1 and C := (M⊤M+µ−1I)−1M⊤.

Clearly,ϕ is acontractionand, ifM is invertible, then
M⊤M is positive definite andϕ is astrict contraction.
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