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In the Beginning

The development of automatic digital

computers has made it possible to carry

out computations involving a very large

number of arithmetic operations and

this has stimulated a study of the

cumulative effect of rounding errors.

J. H. Wilkinson, Rounding Errors in Algebraic Processes, 1963



Rounding Errors and Stability

The output of an algorithm A is defined by f : Rn 7→ R.

� f∞(x): Output when A is executed in infinite precision

� f(x): Output when A is executed in working precision

Rounding errors are measured by |f∞(x)− f(x)|

For backward-stable computations,

f∞(x+ δx) = f(x)

for small perturbations δx.



Rounding Errors: A Cautionary Example

f = x;

for k = 1:L

f = sqrt(f);

end

for k = 1:L

f = f^2;

end

f = f^2;

Plot of f for L ≥ 60

This algorithm is not backward stable.

W. Kahan, Interval arithmetic options in the proposed IEEE . . . standard, 1980

HP-15C Advanced Functions Handbook, 1982



Mindless Assessment of Roundoff

Repeat the computation but . . .

� in higher precision

� with a different rounding mode

� with random rounding

� use slightly different inputs

� use interval arithmetic

How futile are mindless assessments of roundoff in floating-point computation?
W. Kahan, 2006. Work in progress, 56 pages.

CADNA: A library for estimating round-off error propagation,
F. Jézéquél and J-M. Chesneaux, Computer Physics Communications, 2008.



Uncertainty and Computational Noise

The uncertainty in f is an estimate of

|f(x+ δx)− f(x)|

for a small perturbation δx.

If the computed f is backward-stable, then the uncertainty is

|f∞(x+ δxr)− f(x)|

for a small δxr. This is an estimate of the rounding errors.

J. Moré and S. Wild, Estimating computational noise, 2011.



Research Issues

� What is a noisy function f?

� Determine the noise (uncertainty) in f with a few evaluations

� Reliably approximate a derivative of f

� How do you optimize f?



Computational Noise ∼ Uncertainty

Leading causes of noise

� 10X flops

� Iterative calculations

� Adaptive algorithms

� Mixed precision

Definition. The noise level of the computed f in a region Ω is

εf = E

{
1
2

(
f(x2)− f(x1)

)2
}1/2

,

where x1 and x2 are iid random vectors with range in Ω.



Two Theorems

Let x be a random vector with range in Ω.

Theorem 1.

εf = E
{
|f(x)− µ|2

}1/2
, µ = E {f(x)}

Theorem 2.

εf ≤ E
{
|f(x)− f∞(x)|2

}1/2
+ max
x1,x2∈Ω

‖f(x2)− f(x1)‖

εR = E
{
|f(x)− f∞(x)|2

}1/2
measures rounding errors.



The Noise Level εf and Uncertainty

Let µ be the expected value of f(x).

Chebyshev inequality

P
{
|f(x)− µ| > γεf

}
≤ 1

γ2

Cauchy-Schwartz inequality

E {|f(x)− µ|} ≤ εf

Two Claims

� The noise level εf is a measure of the uncertainty of f

� We can determine εf in a few function evaluations



The Noise Level εf : Basic Examples

Experiments with truncating x ∈ Rn to t bits: chop(x, t)

x 7→ ‖chop(x, t)‖2 with n = 1 (left) and n = 106 (right)



Case Study: Nonlinear Solvers

Compute f by solving erf [f(t)] = t with tolerance τ

erf (left) and the inverse f computed with bisection (right)

Bisection tolerance: τ = 10−4



Case Study: Nonlinear Solvers

Computed f with bisection (left) and the absolute noise εf (right)



Case Study: Nonlinear Solvers

Computed f (blue) and fs ± 2εf (red)

fs is the linear l2 fit to the f values



Case Study: Eigenvalue Solvers

Define f : R 7→ R by

f(t) =

p∑
i=1

λi

(
A+ diag (xb + tp)

)
where λi(·) is the i-th eigenvalue computed with tolerance τ .

Vectors xb and p are random in [0, 1]

A is the Laplacian on an L-shaped region, n = 7203



Case Study: Eigenvalue Solvers

Computed f with eigs (left) and the relative noise εf (right)

Tolerance τ = 10−3



Case Study: Eigenvalue Solvers

The computed f (blue) and fs ± 2εf (red)

fs is the linear l2 fit to the f values



The Noise Level: Assumptions and Analysis

We assume that the computed function f : Rn 7→ R satisfies

f [x(t)] = fs(t) + ε(t), t ∈ [0, 1]

where fs : R 7→ R is smooth and ε : R 7→ R is the iid noise.

This model accounts for

� Changes in computer, software libraries, operating system, . . .

� Code changes and reformulations

� Asynchronous, highly-concurrent algorithms

� Stochastic methods

� Variable/adaptive precision methods



ECnoise: Computing the Noise Level

� Construct the k-th order differences of f

∆k+1f(t) = ∆kf(t+ h)−∆kf(t).

1.74e+03 4.92e-04 -1.98e-06 4.02e-06 -6.95e-06 9.74e-06 -1.03e-05 8.40e-06

1.74e+03 4.90e-04 2.04e-06 -2.93e-06 2.79e-06 -5.11e-07 -1.85e-06

1.74e+03 4.92e-04 -8.92e-07 -1.39e-07 2.28e-06 -2.36e-06

1.74e+03 4.91e-04 -1.03e-06 2.14e-06 -7.83e-08

1.74e+03 4.90e-04 1.11e-06 2.07e-06

1.74e+03 4.91e-04 3.18e-06

1.74e+03 4.94e-04

1.74e+03

� Estimate the noise level from

lim
h→0

γk E
{[

∆kf(t)
]2
}

= ε2
f , γk =

(k!)2

(2k)!
.

R. W. Hamming, Introduction to Applied Numerical Analysis, 1971

J. Moré and S. Wild, Estimating computational noise, 2011.



ECnoise: Noise Levels for ∆f,∆2f, . . .



The Simplest Simulations: Krylov Solvers

Define fτ : Rn 7→ R as the iterative solution of a Krylov solver,

fτ (x) = ‖yτ (x)‖2, Ayτ (x) = b(x),

with relative residual error τ . We use b(x) = x.

yτ : Rn 7→ Rn is continuously differentiable for almost all τ

� UF symmetric positive definite matrices (116) with n ≤ 104

� Scaling: A← D−1/2AD−1/2, D = diag(ai,i)

� Solvers: bicgstab (similar results for pcg, minres, gmres, . . . )

� Tolerances: τ ∈ [10−8, 10−1]



What is the Noise Level of Krylov Simulations?

Distribution of εf for fτ (bicgstab)



New Phenomena: Noise Level Transitions

εf as a function of tolerance τ



Computing Derivatives of Noisy Simulations

Research Issues

� What is the noise level of the derivative?

� Is the noise level of the derivative higher than εf?

Algorithmic (Automatic) differentiation in MATLAB

� IntLab (Siegfried Rump, Hamburg)

� AdiMat (Andre Vehreschild, Aachen)

In our numerical results we use IntLab.

J. Moré and S. Wild, Estimating derivatives of noisy simulations, 2012.



Uncertainty in f ′: Cautionary Examples

Higham function f with L = 40 (left) and f ′ (right)



Uncertainty in f ′: Cautionary Examples

Higham function f with L = 50 (left) and f ′ (right)



Uncertainty in f ′: Cautionary Examples

Higham function f with L = 60 (left) and f ′ (right)



Measuring Uncertainty in f ′

re(f ′) = re
{
f ′(x0; p), f ′(x0; (1 + ε)p)

}
, ε = εM .

With infinite precision re(f ′) = ε for any ε > 0

The function re (·, ·) is the relative error metric (Ziv [1982])

re (α, β) =
|α− β|

max(|α|, |β|)
.

� re (α, β) ∈ (1
2 , 1] if and only if max(|α|, |β|) ≥ 2 min(|α|, |β|)

� re (α, β) ∈ (1, 2] if and only if α and β have opposite signs.



Can You Trust Derivatives?

Distribution of re(f ′τ ) for fτ (bicgstab)



Derivatives have Uncertainty re(f ′τ )� εf

Distribution of (εf , re(f ′τ )) for fτ (bicgstab)
Dashed line is (t, t)



Further Reading

S. Wild, Estimating Computational Noise in Numerical Simulations
www.mcs.anl.gov/~wild/cnoise
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� J. Moré and S. Wild, Estimating Derivatives of Noisy
Simulations, ACM Trans. Mathematical Software, 38 (2012).

� J. Moré and S. Wild, Do You Trust Derivatives or
Differences?, Mathematics and Computer Science Division,
Preprint ANL/MCS-P2067-0312, April 2012

www.mcs.anl.gov/~wild/cnoise

