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Outline

Consider the problem of preconditioning a sequence of linear systems
Akx=by, k=1,...

where A, € R™" are nonsingular indefinite sparse matrices.

@ Computing preconditioners Py, P, ..., for individual systems
separately can be very expensive.

A reduction of the cost can be achieved by sharing some of the
computational effort among subsequent linear systems.

@ Given an algebraic preconditioner Pgeeq for some seed matrix Ageeq of
the sequence, we investigate how to form updated preconditioners for
subsequent matrices Ay at a low computational cost.
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Outline (c.ed)

Updating strategies are an alternative to freezing the preconditioner.

A periodical or dynamic refresh of the seed preconditioner may be
necessary.

Content of the talk:

© State of art in preconditioning update techniques for nonsymmetric
and symmetric linear systems.

@ New proposals for updating preconditioners for two classes of systems:

@ nonsymmetric linear systems arising in Newton-Krylov methods;

o KKT systems arising in Interior Point methods.

Benedetta Morini () Preconditioner updates Toulouse, July 2013 3 /48



State of art

Updating frameworks in literature

Limited-memory Quasi-Newton preconditioners:

@ symmetric positive definite (SPD) matrices and nonsymmetric matrices
arising in Newton methods:

[Morales, Nocedal 2000], [Bergamaschi, Bru, Martinez, Putti 2006], [Gratton, Sartenaer,
Tshimanga 2011].

Recycled Krylov information preconditioners:

@ symmetric and nonsymmetric matrices:
[Carpentieri, Duff, Giraud 2003], [Knoll, Keyes, 2004], [Loghin, Ruiz, Tohuami 2006],
[Giraud, Gratton, Martin, 2007], [Fasano, Roma 2013].

Incremental ILU preconditioners:
@ nonsymmetric matrices: [Calgaro, Chehab, Saad 2010].
Updates of factorized preconditioners:

@ SPD matrices and nonsymmetric matrices:
[Meurant 2001], [Benzi, Bertaccini 2003], [Duintjer Tebbens, Tuma 2007, 2010], [Bellavia,
Bertaccini, M. 2011], [Bellavia, De Simone, di Serafino, M. 2011-2012]
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Approximate updates of factorized preconditioners

Consider two linear systems
-AseedX = b7 AkX = bk

and let Pseeg = LDU =~ Ageeq.

o It follows

Ak = Aseed + (Ak - Aseed) ~ L( D + Lil(Ak - -Aseed)Ui1 )U

ideal update

@ The ideal update of the middle-term is costly:
o the difference matrix Ay — Aseeq should be formed;

o in general the ideal update is dense and its factorization is impractical.

@ Form an approximate and cheap update.
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Preconditioning & Matrix-free setting

@ Unpreconditioned Krylov methods are matrix-free.

But a truly matrix-free setting is lost when an algebraic preconditioner
is used.

@ A preconditioning strategy is classified as nearly matrix-free if it lies
close to a true matrix-free settings. Specifically, if

o only a few full matrices are formed;
o for preconditioning most of the systems of the sequence, matrices that
are reduced in complexity with respect to the full A} s are required.

[Knoll, Keyes 2004]

@ Nearly matrix-free updating strategies have been proposed.
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State of art

Update of LDU factorizations [puintjer Tebbens, Tuma 2007, 2010]

Ideal updated preconditioner for Ay:

A ~ L(D + L_l(.Ak - Aseed)U_l)U

The approximate updated preconditioner is obtained as follows:

© Neglect either L= or U~ (closeness of L or U to the identity
matrix):

A = L( D+ (Ak - Aseed)U_l )U
Ak ~ L( D + Lil(Ak - Aseed) )U

© Use only a triangular part of the current matrix Ayg:

Pr = L(DU+ triu(Ax — Aseed))
Pk = (LD+tI’I./(Ak*Aseed))U

Py is factorized. This approach is not suitable for symmetric matrices.
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State of art

Motivation: matrices with decaying inverses:
@ banded SPD and indefinite matrices [Demko, Moss, Smith 1984][Meurant 1992];
@ nonsymmetric block tridiagonal matrices [Nabben 1999];
@ matrices h(A) with A symm and banded and h analytic [Benzi, Golub 99].

Wireframe mesh of L°!
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2D Nonlinear Convection diffusion problem. Sparsity pattern (on the left) and wireframe mesh
(on the right) of the inverses of the L and U factors obtained from the ILU factorization of the

Jacobian at the null vector (n = 400)
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Banded approximate factors

Ideal updated preconditioner for Ay:

A = L(D + LAy — Aseeq) U HU

The approximate updated preconditioner is obtained as follows:

O Let /(M) = band(M, kj, k,), be the banded approximation of M with
k; lower and k, upper diagonals.

Q Let
Ex = f(-Ak - -Aseed)a Fr = f([_il Eyx Ufl),

and
Pr=L(D+ Fy)U.

[Benzi, Golub 1999], [Benzi, Bertaccini 2003], [Bellavia, Bertaccini, M. 2011], [Bellavia, M.,
Porcelli 2013]
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State of art

@ Small bandwidth values k; and k, are viable.

The computationally most convenient approximations E, and Fj are
diagonal (k; = k, = 0).

@ Forming/approximating L~ and U~

o Use the Approximate INVerse (AINV) preconditioner [Benzi, Meyer, Tuma
1996], [Benzi, Tuma 1998]

Peoed = WD 12T ~ AL

seed

The updated P, takes the form
Pe=W (D+F) 2T
[Benzi, Bertaccini 2003], [Bertaccini 2004], [Bellavia, Bertaccini, M. 2011]

@ Use banded approximation of L=! and U™, computable without the
neeed of a complete inversion of L= and U™!.
[Bellavia, M., Porcelli 2013]
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Sequences of symmetric systems

@ KKT matrices: we are aware of low-rank updates of the factorizations
of the blocks, [Griewank, Walther, Korzec 2007]

@ Updating techniques for SPD matrices:

o Update of the factorized preconditioner for the Schur complement in
Interior Point (IP) methods for linear programming,
[Baryamureeba, Steihaug, Zhang 1999], [Wang, O’Leary 2000]

@ Factorization preconditioner updates for diagonally modified matrices
arising in regularizing optimization methods and bound-constrained

convex optimization,
[Meurant 2001], [Bellavia, De Simone, di Serafino, M. 2011, 2012]

We devise and analyze modifications of the existing approaches for
sequences of SPD matrices which can be used for sequences of
nonsymmetric and KKT matrices respectively.
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Sequences of systems in Newton-Krylov methods

F(x)=0

F : R" — R” continuously differentiable, J Jacobian matrix of F.

Sequence of Newton equations

J(xk)s = —F(xx), k=0,1,...

@ By continuity, {J(xk)} varies slowly if the iterates are close enough.
@ Generally, J(xx) is nonsymmetric.

@ Let Pyeey = LDU.
Discard the off-diagonals of Jx — Jseeq from the ideal update
Jk = Jseed + (Jk - Jseed) ~ DU + diag(Jk - Jseed)
—_——

¥ =diag(ok,,...,0k)
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Approximate diagonally modified sequences

C=LDLT +%,
LDLT is symmetric positive definite
>« is diagonal positive semidefinite.
© Form an approximate factorization for C setting

Pr = LkDy L]
with
Dk = D+ zlﬂ
Ly = eye(n), off(Lx) = off(L)Zx
: dii
Zy = dlag(zfl, . ,Z,l,(n), Z,'I,f = m, ey

[Bellavia, De Simone, di Serafino, M. 2012].
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Diagona”y Updated “_U (DU,ILU) [Bellavia, Morini, Porcelli 2013]

@ Consider
Ji ~ LDU + diag(Jx — Jseed)
——

¥ =diag (ot ,....ck,)

@ Form the approximate factorization Py = LDy Uy for LDU + X

Dy = D+ Xy,

Ly = eye(n), off(Ly) = off(L)Z

Uc = eye(n), off(Ux) = Zoff(U)

K |dil

" il + okl

k

Zi = diag(zly,...,z~), =1,...,n

[Gill, Murray, Ponceleon, Saunders 1992].
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Preconditioner updates in Newton-Krylov methods

Properties of DU _ILU

Scaling matrix Zy = diag(z{y, ..., zK,):
K |dii|
= | = ..., n
11 ’d”| _"_ ‘O'Ilj Y ) ) Y

@ Since z,-’,f € (0, 1], the conditioning of Ly and U is at least as good as
the conditioning of L and U respectively [Lemeire 1975].

@ If the entries of X, are small then LDU + ¥ is close to LDU and Zj
is close to the identity matrix.
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Properties of DU_ILU (c.ed)

@ Quality of DU_ILU preconditioner
[ = Pill < [ Jseed — Pseed || + [|0fF (S = Jseed) || + |||

The upper bound depends on

9 || Jseed — Pseed||: quality of the seed preconditioner;
o ||off (Jk — Jseed)||: information discarded in the update;
o ||off (Jx — Jseed)|| and ||Zk|| small for slowly varying sequences.

@ In order to form X, diag(Jx) can be evaluated by finite differences.

If the cost for evaluating the n components of F is roughly the cost of
one full F-evaluation (i.e. F is separable) then forming ¥ amounts
to one F-evaluation.
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Preconditioned Newton-Krylov method with linesearch:
numerical comparison under Matlab

@ Linear solver: BiCGSTAB, LIg.x = 400

@ Refresh: if the backtracking strategy fails in producing an acceptable
step then a Jseeq and Peeeq are initialized.

@ Finite difference approximation for computing Jseeq, Jx times a
vector, diag(Jk).

@ Test Problems:
- Nonlinear Convection-Diffusion (NCD), Re = 750, 1000, 1250
- Flow in a Porous Medium (FPM),
- CounterCurrent Reactor (CCR)

Varying dimension n = 4900, 8100, 10000, 15625, 22500.
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Numerical Results

Nonlinear Convection-Diffusion problem

Re n | L.IT NL.IT Time N_REFR
750 | 4900 | 1159 16 29.84 1
8100 | 1010 15 74.45 2

10000 | 1009 16 107.01 2

15625 | 923 15 194.83 1

22500 | 810 15  408.8 1

1000 | 4900 | 1204 16 3454 2
8100 | 799 16 71.17 2

10000 | 1010 16 106.99 2

15625 | 675 17 238.61 2

22500 | 1281 15 423.13 1

1250 | 4900 | 877 16 31.96 2
8100 | 1002 17 74.99 2

10000 | 909 16 106.71 2

15625 | 1068 17 256.65 2

22500 | 753 17 518.49 2
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Numerical Results

Comparison between DU _1,U and Duintjer Tebbens &
Tuma approach

@ In terms of computational time, the DU_ILU strategy resulted to be
faster than the procedure by Duintjer Tebbens and Tuma.

@ In terms of F-evaluations, the two strategies were comparable
(measure relevant in a nearly matrix-free setting).

Future work: combination of an incremental factorization and an updating
strategy for sequence of symmetric indefinite matrices in constrained and
unconstrained optimization.
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Sequences of KKT matrices
Let Ay be the KKT matrix of the form

Q+el) AT

A, =
) A —eP

with
@ @ € R"™" symmetric positive semidefinite,
@ Ac R™" 0 < m< n, full rank

o) ¢ R"*" diagonal SPD,

622) € R™*™ diagonal positive semidefinite.

This matrix arises at the kth iteration of an IP method for the convex QP problem
1

minimize EXTQX + ch7

s.t. Aix—s=by, Aox=by, x+v=u, (x,s,v)>0,

see e.g. [S. Wright, 1997], [D'Apuzzo, De Simone, di Serafino 2010], [Gondzio 2012]
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Constraint Preconditioners (CPs)

@ H, “simple” symmetric approximation to Q + @E{l); here
Hy = diag(Q + @5{1)), [Benzi, Golub, Liesen 2005]

@ Spectral properties of 73,:1./4;(. With p = rank(ef)),
an eigenvalue at 1 with multiplicity 2m — p;

n — m+ p real positive eigenvalues such that the better H approximates

Q + @E(l) the more clustered around 1 they are,
[Keller, Gould, Wathen, 2000; Dollar, 2007]
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Numerical Results

Factorization of CPs

@ Bunch-Parlett factorization
Px = LiDiL],
Ly unit lower triang., D, symm. block diagonal with 1 x 1 or 2 x 2 blocks
@ Factorize the negative Schur complement Sy of H, in Ay

S =AH AT + 0 = 1,D,L] Cholesky-like factorization

_ l, 0 He 0 I, H'AT
Pe = [AHk‘l /,nH —SkHo I
I

and let

In large-scale problems, the factorization of CPs may still account for a large part
of the cost of the IP iterations.
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Inexact CPs

@ Approximations of CPs: based on approximate factorizations of the Schur
complement or on sparse approximations of A
[Luksan, VIgek, 1998], [Perugia, Simoncini 2000], [Durazzi, Ruggiero 2002],
[Bergamaschi, Gondzio, Venturin, Zilli, 2007].

No exploitation of CPs for previous matrices in the sequence.

@ Our focus is on inexact CPs of the form

[ o O[H 0 b H AT
(Pk)mex— |: AH;I I :| |: 0 _(Sk)inex :| |: 0 I

where

o (Sk)inex is a SPD matrix;
@ (Sk)inex is computationally cheaper than S.
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Inexact CPs built by updating

@ Given Q+@(1) AT
-Aseed — seed B
L A 7eseed
Sseed = AH_lAT + @gid = LDLT
A 0 H 0 l, HTAT
Pseed — I AH_1 Im :| |: 0 — Seced :| |: 0 Im :| seed CP
Q Let

Q+em AT
A -0

= AG AT + 00

} . G =diag(Q+6eW)

Form an inexact CP where S is replaced by a SPD matrix obtained by
updating Sseed-
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Updating constraint preconditioners

Spectral analysis of Inexact CPs

Our updating strategy is guided by the spectral analysis for inexact CPs.

@ Spectral characterization of inexact CPs has been carried out
[Benzi, Simoncini, 2006], [Bergamaschi, 2011], [Sesana, Simoncini, 2013].

@ The eigenvalues of the preconditioned matrix may fail to explain the
behaviour of a nonsymmetric solver, e.g. when the condition number
of the eigenvector matrix is far from one or when the matrix itself is
higly non-normal [Greenbaum, Ptak, Strakos 1998], [Arioli, Ptak, Strakos 1998].

@ Nonetheless, in many practical cases the convergence of a Krylov
method applied to the preconditioned system is determined by the
distribution of eigenvalues of 73,:1./4;(.
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Updating constraint preconditioners

[Benzi, Simoncini 2006]

’P,-;:X.A has at most 2m eigenvalues with nonzero imaginary part, counting

conjugates.
Sinex = RRT, ,PI;:X.AW = \w
4
X Y u 1\ l, 0 u
yr -z v| 0 —In v
where

X = G :(Q+oeW):
(Ih— X)G2ATR™T,
Z = R (AG—%(zln—X)G—%AT+e<2>) RT,

~<

Benedetta Morini () Preconditioner updates Toulouse, July 2013 26 / 48



Updating constraint preconditioners

X = G :(Q+0eW)G:
Y = (IL—X)G:ATRT
7 = R! (AG—%(Q/,, _X)G AT 4+ @(2)) R-T

If Y is full rank and Z is positive semidefinite:
o if Im(\) # 0, then
[Im(N)] < Y]

%()\m,-,,(X) + Amin(Z)) < Re(X) <

@ if Im(\) =0, then either
Amin(X) <A < Amax(X), for v =0,
or
2min{Amin(X), Amin(Z2)} < X < max{Amax(X), Amax(Z)} for v # 0.
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New bounds on Y and Z

The quality of Sipex with respect to S affects the bound on || Y|| and the

spectrum of Z.

Q Y[l < [l = X[/ Amax(Sipex S)

Q If Z is positive definite, then
Amax(Z) < Amax(Si 2 S)max{2 — A\pin(X), 1},

mnex

Amin(Z) > Amin(sigelx S) mln{2 - )\max(X), 1}

Specific choices of Sjnex along with these bounds yield algorithmic consequences.
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Building S,pq4. Zero (2,2) block

Seeed = AHIAT = IDLT, S=AG AT,
Supd = AJTIAT

Let ;(J) be the diagonal entries of JG~! sorted in nondecreasing order

min G = 1) <) < <d) = X G

Then the eigenvalues of 5,;115 satisfy

OEPICAESAE)

upd

I

Form S,pg as a low-rank correction of Sgeeq [Baryamureeba, Steihaug, Zhang 1999]

v
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Choosing J

© Compute ;(H) (v1(H) and v,(H) bounds on A(S_L,S)).
Q Let
I = {indices of the g; largest and g» smallest v;(H)'s}, g=qg1 + g < m
Gj; ifierl
H;  otherwise

Q Set Sypg = AJTIAT, Ui = {

I
Yn(J) = max {1, T;IX’Vj(H)} < Yn-q(H)
71(J) = min {Lr};ip %(H)} > Yg+1(H)

Improved bounds on the eigenvalues if y,_q,+1(H) and ~y4,(H) are well separated
from vp_q, (H) and vg,+1(H).

PLprA has 2qg unit eigenvalues with geometric multiplicity g

Sesana, Simoncini 2013].
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Updating constraint preconditioners

G; ifierl

o —1/7T v —
SuPd =AJT"A ’ J” - { H,',' otherwise

with I = {indices of the g; largest and go smallest v;(H)'s}, g=¢1+ g2 < m

I

Supd = AJTIAT = Seq + AKAT

K € R7%9 diagonal with entries G; ' — H; ', i € I; A € R™9 corresp. cols of A

o
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° 5u_pld can be computed by the Sherman-Morrison formula and this
-1

yields the factorization of Poupd-

@ The factorization of S,,4 can be computed using procedures for
updating/downdating a Cholesky factorization
[Gill, Golub, Murray, Saunders, 1974], [Davis, Hager 1999, 2001, 2009].

@ Assume g = 0, I empty set. Then the Sy is frozen.

Supd = Sseed = AHTAT, S— AG1aAT

seed

it o - o)

’ is small, then ~1(H) and ~,(H) are close to 1
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Updating constraint preconditioners

Spectra of preconditioned matrices
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Updating constraint preconditioners

Building S,,4, nonzero (2,2) block

Let ©@ and égiid be the submatrix of ©() and G)g‘)ed with nonzero diagonal
elements.

Let I, consist of all columns of I,, with indices as ©(

S [ HT 0 AT
_ 12T [}
Sseed = AH A" + eseed - [ A Im ] |: 0 égﬁld :| |: Im :|
S AGIAT+0@ = [a G, 1] ¢ ¢ .
_ = ALl 0|7

We consider

Supa = AJTIAT + 012,

where J is a low-rank update of H and @Ei)) is low-rank update of o®

seed”
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Updating constraint preconditioners

[ A 7m][é1 %(2) Hfg]

upd

_ 2
Supd = AJTIAT 02 =

If vi(J, éfi)d) are the diagonal entries of

J 0 [G—l 0 ]
0o (621 |[ o 6®

sorted in nondecreasing order,
(2
(4,600 <1204, 60) < - < (4, 64)
Then the eigenvalues of 5 ¢S satisfy

S) < 7a(J,6@)).

’71('/ @upd) < )‘(5 upd

upd
J

Form S,p4 as a low-rank correction of S

J and @( ) low-rank corrections of H and @( )

upd seed bUIlt as before
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Preliminary numerical experiments: sequences from PRQP

PRQP

@ Fortran 90 primal-dual Potential Reduction solver for convex Quadratic
Programming (feasible and infeasible versions)
[Cafieri, D’Apuzzo, De Simone, di Serafino, Toraldo, 2007-2010]
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Preliminary numerical experiments: sequences from PRQP

PRQP

@ Fortran 90 primal-dual Potential Reduction solver for convex Quadratic
Programming (feasible and infeasible versions)
[Cafieri, D’Apuzzo, De Simone, di Serafino, Toraldo, 2007-2010]

Test KKT sequences

@ Sequences of KKT systems (with right-hand sides and CG tolerances)
obtained by running PRQP on convex QP problems with linear equality
constraints only (©(2) = 0)

@ QP problems from CUTEr (different size and structure of the KKT matrix
and its Schur complement)
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Numerical experiments

Preliminary numerical experiments: implementation details

@ Solution of KKT systems by SQMR (Matlab implementation)

@ Sparse LDLT factorizations and updates/downdates computed by using
CHOLMOD through its Matlab interface [Davis, Hager et al., 2008-2009]

® g=q1+q2=0,50,100, only v;(H) = H;;/Gj > 10 or
’}",’(H) = H,',‘/G,',' <0.1
@ "“Refresh” of Pseed
@ after a fixed max number of updates has been performed;
@ when the time (prec 4 solve) for solving a system exceeds 90% of the

time for the last solution with the CP.

@ Computational environment: Intel Core i7 processor @ 2.67 GHz, 12 GB of
RAM and 8 MB of cache memory; Linux O.S. 3.2.0-35-generic; gcc 4.3.4
compiler; Matlab R2011b (7.13); CHOLMOD 2.1.2
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Numerical experiments

Comparison of Py with Py

constr. prec Pupd (g =0) Pupd (g=50) Pupd (g=100)
Problem n,m nit time nit time nit time nit time
CVXQP1 igggg 232 5.76e+1 | 740 3.79e+1 530 3.72e+1 495 4.05e+1
CVXQP3 igggg 497 8.32e+2 | 2006 4.82e+2 | 1166 3.67e+2 1118 3.76e+2
20000
CVXQP2 5000 273 1.29e4+0 | 352 1.65e+0 330 1.57e+40 308 1.46e+0
STCQP2 186139805 259 1.44e+40 | 267 1.47e+40 267 1.49e+0 267 1.49e+40

nit = # SQMR iterations, max # updates: 4
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Numerical experiments

CVXQP1 (n = 20000, m = 10000): details

exact constr. prec. Pypd (g=50)
k nit Tprec Tsolve nit Tprec Tsolve
1 29 2.75e+0 9.87e-1 29 2.75e4-0 9.87e-1
2 16 2.74e+0 5.50e-1 19 3.76e-1 6.60e-1
3 10 2.73e+40 3.60e-1 14 6.87e-1 491e-1
4 6 2.75e+0 2.22e-1 18 6.54e-1 6.18e-1
5 4 2.75e+0 1.56e-1 24 6.68e-1 8.36e-1
6 6 2.74e+40 2.21e-1 6 2.74e+40 2.21le-1
11 12 3.02e+0 4.46e-1 12 3.02e+4-0 4.46e-1
12 13 3.01e+0 4.79%-1 19 1.04e-1 7.08e-1
13 14 3.01e+0 5.19e-1 27 6.48e-1 9.40e-1
14 16 3.01e+0 5.84e-1 74 6.51e-1 2.59e+-0
15 18 3.01e+0 6.51e-1 18 3.01e+40 6.51e-1
16 18 3.03e+0 6.57e-1 25 2.15e-1 9.19%e-1
17 34 3.05e4+0 1.24e+4+0 | 106 5.76e-1 3.78e+4-0
232 4.92e+1 8.41e+0 | 530 1.84e+1 1.88e+1

5.76e+1 3.72e+1

k = PRQP iteration, nit = # SQMR iterations
blue: prec. refresh, red: column sum
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Numerical experiments

STCQP2 (n = 20000, m = 10000): details

exact constr. prec. P.pd (9=50)
k nit Tprec Tsolve nit Tprec Tsolve
1 13 1.08e-2 8.78e-2 13 1.08e-2  8.78e-2
2 11 1.0le-2 5.88e-2 13 3.83e-3  7.05e-2
3 11 1.0le-2  5.89e-2 12 3.78e-3  6.44e-2
4 11 1.02e-2  6.00e-2 10 3.86e-3  5.40e-2
5 11 1.01e-2  6.00e-2 13  3.84e-3 6.76e-2
6 15 1.00e-2  7.68e-2 15 1.00e-2  7.68e-2
7 19 1.0le-2 9.73e-2 | 22 4.07e-3 1.20e-1
8 22 1.01e-2 9.48e-2 | 25 4.10e-3  1.38e-1
9 24  1.01e-2 1.19e-1 | 33 4.10e-3 1.8le-1
10 | 24 1.00e-2 1.17e-1 | 34 3.94e-3 1.82e-1

k = PRQP iteration, nit = # SQMR iterations
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Work in progress and open issues

@ Experiments for the case ©() =£ 0 are in progress.

@ Adaptive strategies for choosing between the CP and the updated Inexact
CP.

@ Further analysis of the convergence of optimal Krylov solver with P,pq4.

@ Proposal of alternative strategies for defining an updated approximate Schur
complement S,p4.

@ Study of updating techniques for the Bunch-Parlett factorization.
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