
Esmond G. Ng 
Lawrence Berkeley National Laboratory 

June 16, 2010 



!! The U.S. Department of Energy (DOE) is one of several federal agencies 
that fund basic and applied scientific research. 

!! DOE supports a large variety of research and development in modeling, 
simulation, and computation, particularly in National Nuclear Security 
Administration (NNSA) and the Office of Science. 

!! DOE also funds large-scale computing facilities that provide high 
performance computing resources. 
"! Examples: 
•! NERSC – National Energy Research Scientific Computing Center (Lawrence Berkeley 

National Laboratory) 
•! LCF – Leadership Computing Facility (Oak Ridge National Laboratory) 
•! ALCF – Argonne Leadership Computing Facility (Argonne National Laboratory) 
•! ESnet – Energy Sciences Network (Lawrence Berkeley National Laboratory) 
•! Terascale Simulation Facility (Lawrence Livermore National Laboratory) 
•! … 



IBM Cluster (Roadrunner) @ LANL 
NNSA ; #1 on TOP500 
6,120 AMD dual-core Opterons 
12,240 IBM Cell processors 
Theoretical peak (Cell) = 1.33 PFlop/sec 
Total physical memory = 98 TB 

Cray XT-4/XT-5 (Jaguar) @ ORNL 
Office of Science ; #2 on TOP500 
Two partitions (XT-4 and XT-5) 
XT-5 partition 
No. of nodes = 18,688 
Processor cores per node = 8 
No. of compute processor cores = 149,504 
Theoretical peak = 1.38 PFlop/sec 
Physical memory per compute node = 16 GB 

Blue Gene/P (Intrepid) @ ANL 
Office of Science ; #7 on TOP500 
No. of nodes = 40,960 
Processor cores per node = 4 
No. of compute processor cores = 163,840 
Theoretical peak = 557 TFlop/sec 
Total physical memory = 80 TB 

Cray XT-4 (Franklin) @ Berkeley Lab 
Office of Science ; #11 on TOP500 
No. of nodes = 9,572 
Processor cores per node = 4 
No. of compute processor cores = 38,288 
Theoretical peak = 352 TFlop/sec 
Physical memory per compute node = 8 GB 

The next machine to be installed in 2010 will be a Cray XT-5, with 24 processor cores per node and 
a peak performance of 1.17 PFlop/sec 



!! Strong emphasis on high-end computational sciences at DOE – many are 
large, multi-institutional projects. 
"! Accelerators, astrophysics, nuclear physics 
"! Chemistry 
"! Fusion 
"! Bioremediation, groundwater flows 
"! Climate 
"! … 

!! DOE also funds large projects in applied mathematics and computer 
science. 
"! The main goal is the development of new high-performance scalable 

algorithms/tools for core components of scientific simulation, and the 
distribution of those algorithms/tools through portable high-performance 
libraries. 

"! Also help scientific applications to effectively utilize the massively parallel 
computers. 



!! Most of the scientific applications are PDE-based. 
"! The innermost kernels are often linear algebra problems. 
"! The majority of the linear algebra problems are 
•! Large sparse linear systems 
•! Large sparse eigenvalue calculations 

!! Consider 2 examples … 
"! Nuclear structure calculations 
"! Accelerator modeling 



!! Determine the microscopic structure of nuclei, 
and the strong interactions among protons and 
neutrons. 
"! Original of the 12C formation in stars. 
"! Foundation for nuclear reaction theory. 

!! The quantum many-body problem is described 
by the nuclear Schrödinger equation 

"! ! – nuclear Hamiltonian describes kinetic energy, 
as well as 2-body and 3-body potentials; 

"! ! – nuclear wavefunction; |!(r1,r2,…,rk)|2 – probability 
density of finding nucleons 1, 2, …, k at r1, r2, …, rk; 

"! ! – quantized energy level.  Often interested in the ground 
state (!1) and a few (10-100) low excited states 
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!! Solving the many-body problem directly is not feasible. 
!! Using “ab initio” no-core shell model and full configuration interaction 

methods: 
"! Calderon, Ng, Sternberg, Yang + Sosonkina, Maris, Vary 

"! Expand the wavefunctions using some chosen basis. 
•! Typically a harmonic oscillator basis. 

"! The problem reduces to a symmetric eigenvalue 
problem Hx = !x. 

"! Dimension of H, which depends in part on the 
size of the basis space, can be very large but quite sparse. 

"! Sparsity depends on NN or NN + NNN interactions. 

"! For example, 16O, Nmax = 8, 2-body & 3-body potentials: 
•! Dimension " 108 

•! # of nonzero entries " 8#1011 







!! Using the Lanczos algorithm … 
"! Fully parallel, running on significant portion of Jaguar 
"! Balanced workload 

!! Bottlenecks 
"! Construction of the Hamiltonian matrix 
•! Matrix depends on choice Nmax. 

•! Sparsity structure is determined on the fly. 

"! Performance of matrix-vector multiplications 
•! Choice of indexing and data structure. 



!! Rows/columns indexed by many-body states 

!! si’s are single-particle states. 

!! Physics excludes most of the                        many-body states. 

!! If s and t are many-body states that differ by more than two single-
particle states (with 2-body potentials), the matrix element indexed by 
s and t is exactly zero. 

!! If not, we call s and t an interacting pair.   
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!! Example - Consider 3 many-body states. 

   a = { 2 , 3 , 4 , 7 , 9 , 12 } 
   b = { 1 , 2 , 4 , 7 , 8 , 12 } 
   c = { 1 , 4 , 5 , 7 , 8 , 9 } 

  ( a , c ) is not an interacting pair 
  ( a , b ) is an interacting pair 
  ( b , c ) is an interacting pair 
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!! Exhaustive pairwise comparison is prohibitively expensive. 

!! Use clustering to identify large zero blocks [Sternberg]. 
!! Partition the single-particle states into bins, then cluster the many-

body states based on how many single-particle states are in each bin. 



Example:  Partition 
   { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 } into 

  { [1$4] , [5$8] , [9$12] } 

!! Let S and T be cluster identifiers for many-body states s and t, 
respectively.  If  || S ! T ||1 > 4, then Hs,t = 0. 

Many-body states Cluster identifiers 

(2,3,4,7,9,12) (3,1,2) 

(1,2,4,7,8,12) (3,2,1) 

(1,4,5,7,8,9) (2,3,1) 

(1,2,9,10,11,12) (2,0,4) 



{ [1-2],[3-4],[5-6],[7-8],[9-10] } 



6He: 
  no blocking:       ~ 43 minutes 
  one level:    180 seconds 
  multiple levels:  90 seconds 

Zero blocks 

Nonzero blocks 

Potentially nonzero blocks 

coarse fine 

Potentially nonzero blocks in fine partitioning 

fine on top of coarse 



!! Time to compute sparsity: 

!! In addition to reducing the time to determine the sparsity structure of 
H, the block structure has the potential of improving the performance 
of sparse matrix-vector multiplications. 

No Blocking One Level Multiple Levels 
6He ~ 43 minutes 180 seconds 90 seconds 
12C > 100 hours (?) ~ 1 hour ~ 13 minutes 
16O > 100 hours (?) ~ 2 hours ~ 20 minutes 



Dimension                                38x106 
# nonzero matrix elements      56x1010 
Input NNN matrix elements      3 Gbytes 



!! Particle accelerators are important for high-energy and nuclear physics 
research. 

cryomodule 

cavity 

International Linear 
Collider (ILC) 

Compact Linear Collider (CLIC) - 
Two-Beam Accelerator 



!E 
Closed 
Cavity 

!M Nedelec-type element 

=> find frequency and field vector of normal modes: 

Solving Maxwell’s Equations in the frequency domain 



!! Vector wave equation with waveguide boundary conditions leads to a 
complex non-linear eigenvalue problem 

Open 
Cavity 

Waveguide BC 
Waveguide BC 

Waveguide BC 

where 



!! Gao, Husbands, Li, Ng, Yamazaki, Yang + Bai + Ko, Lee, Ng 

!! Linear Eigenvalue Problem (LEP) 
"! Shift-and-Invert Lancos/Arnoldi 
"! For shifted linear system 
•! Sparse direct solvers (MUMPS, SuperLU, WSMP) 
•! CG/GMRES with spectral multilevel preconditioner 

!! Quadratic Eigenvalue Problem (QEP) 
"! NEP can be converted to a QEP for single waveguide mode 
"! Second Order Arnoldi with Shift-and-Invert 

!! Nonlinear Eigenvalue Problem (NEP) 
"! Nonlinear Jacobi-Davidson 
"! Self consistent iterations 



!! Li, Yamazaki 

!! Compute a partitioning of the graph of A (using, e.g., PT-SCOTCH and 
ParMETIS). 
"! The domains are balanced in size. 
"! The separator is small. 
"! Order the domains before the separator. 



!
Block elimination 



!! The diagonal blocks Dl can be eliminated in parallel. 
"! Each diagonal block can be factorized either serially or in parallel, using, 

e.g., SuperLU, SuperLU_DIST, MUMPS, ... 

!! Then the Schur complement is given by 

!! The subsystem Sy = c can be solved in a number of ways. 
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!! ILC cavity problem: 
"! Dimension = 17,799,228 

(real symmetric, highly 
indefinite) 

!! Experimental setup: 
"! PT-SCOTCH to extract 64 

domains, each of size ~277K 
"! SuperLU_DIST to factor each 

domain. 
"! SuperLU_DIST to compute 

LU(S’), with S’ " S of size 
57K, using 64 processors. 

"! BICGStab from PETSc to 
solve Sy = c until rel residual 
< 10-12 (converged in ~10 
iterations). (on NERSC Cray XT-4) 



!! Suppose Dl = LlUl.  Then 

!! Since El and Fl are generally sparse, we have to deal with the solution 
of sparse triangular systems with many sparse right-hand sides. 
"! Both Wl and Vl may be sparse too. 
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!! Desirable to organize the computation so that 
"! Sparsity of Wl and Vl is exploited, 
"! Sparisty of Ll and Ul is exploited, and 
"! Communication is optimized. 
•! Sending empty messages (corresponding to zero blocks) is avoided. 

"! Padding with zeros is minimized. 

!! Performance can be affected by ordering the right-hand sides. 
"! Li, Yamazaki, Rouet, Uçar. 
"! Order the right-hand sides according so that the row indices of the first 

nonzero entries are in ascending order. 
"! Minimize the number of padded zeros by using a hypergraph model, which 

captures how the columns interact through their row structures. 
•! A somewhat global view. 



!! Postorder greatly improves upon natural ordering. 
!! Hypergraph further improves upon postorder (though the improvements 

seem to be small). 



!! Much of the linear algebra work at DOE labs is driven by applications. 

"! Stability, sparsity, dimension 

!! Algorithmic and software development is influenced by the hardware 
capabilities available. 

!! Only talked about nuclear physics and accelerator modeling. 
"! But there are many other applications in which linear algebra plays a 

significant role … 
•! Chemistry 
•! Materials/nano sciece 
•! Fusion 
•! Environmental issues 
•! … 


