
1

PT-Scotch in Solstice and
beyond: where to go now

17/06/2010

Sparse Day’10

François Pellegrini

2

Summary of the talk

• The Scotch project

• The multi-level framework and its parallelization

• Parallel static mapping

• Conclusion

3

The Scotch project

4

Graph partitioning (1)

• Graph partitioning is an ubiquitous technique which has
proven useful in a wide number of application fields

• Used to model domain-dependent optimization
problems

• “Good solutions” take the form of partitions which
minimize vertex or edge cuts, while balancing the
weight of graph parts

• NP-complete problem in the general case

• Many algorithms have been proposed in the literature :

• Graph algorithms, evolutionary algorithms, spectral
methods, linear optimization methods, …

5

Graph partitioning (2)

• Two main problems for our team :
• Sparse matrix ordering for direct methods
• Domain decomposition for iterative

methods

• These problems can be modeled as graph
partitioning problems on the adjacency graph
of symmetric positive-definite matrices

• Edge separator problem for domain
decomposition

• Vertex separator problem for sparse
matrix ordering by nested dissection

6

The Scotch roadmap

• Devise robust parallel graph partitioning methods
• Should handle graphs of more than a billion vertices

distributed across one thousand processors

• Improve sequential graph partitioning methods if possible
• Multi-level FM-like algorithms are both fast and efficient

on a very large class of graphs but FM algorithms are
intrinsically sequential

• Investigate alternate graph models (meshes/hypergraphs)

• Provide a software toolbox for scientific applications
• Scotch sequential software tools

• PT-Scotch parallel software tools

7

Design constraints

• Parallel algorithms have to be carefully designed
• Algorithms for distributed memory machines
• Preserve independence between the number of parts

k and the number of processing elements P on which
algorithms are to be executed

• Algorithms must be “quasi-linear” in |V| and / or |E|
• Constants should be kept small !

– Theory is not likely to help much...

• Data structures must be scalable :
• In |V| and/or |E| : graph data must not be duplicated

• In P and k : arrays in k|V| , k2, kP, P|V| or P2 are
forbidden

8

The multi-level framework and its parallelization

9

From k-partitioning to recursive bipartitioning

• K-way graph partitioning can be approximated by a
sequence of recursive bipartitionings

• Bipartitioning is easier to implement than k-way
partitioning

– No need to choose the destination part of vertices

• It is only an approximation, but a rather good one [Simon &
Teng, 1993]

10

Recursive bipartitioning in parallel

• After a separator has been computed, the two separated
subgraphs are folded and redistributed each on a half of
the available processors

• All subgraphs at a same level are processed
concurrently on separate subsets of processors

• Ability to fold a graph on any number of processors
(not only a power of 2)

11

Multi-level framework

• Principle [Hendrickson & Leland, 1994]
• Create a family of topologically equivalent coarser

graphs by clustering groups of vertices
• Compute an initial partition of the smallest graph
• Propagate back the result, with local refinement

12

Coarsening in parallel

• The coarsened graph can either be:
• Kept on the same number of processors: decreases

memory and processing cost
• Folded and duplicated on two subsets of processors:

increases quality but also cost

13

Parallel matching

• Parallel coarsening bases on parallel matching
• These matchings do not need to be maximal

• Synchronization between non-local neighbors is critical
• Dependency chains or loops between mating requests

can stall the whole algorithm because of sequential
constraints

• Some distributed tie-breaking is required

• Too many requests decrease matching probability

14

Parallel probabilistic matching

• Principle [Chevalier, 2007]
• Do not discriminate between local and non-local

neighbors when selecting a neighbor for mating
• Vertices request for matings with their neighbors

(whether local or remote) with a prescribed probability

• Reduces topological biases and converges quickly
• 5 collective passes are

enough to match 80 %
of the vertices on
average

15

Band graphs

• Principle [Chevalier & Pellegrini, 2006]
• Only local improvements along the projected cut are

necessary, so work only on a small band around the
cut

• Reduce problem space dramatically
• Allow one to use expensive algorithms, such as

genetic algorithms

16

Band graphs in parallel

• Anchor vertices may have very high degrees compared to
sequential band graphs

• Two anchor vertices per process
• Remote anchor vertices for each part form a clique

– Will soon be a hypercube to accommodate for large
numbers of processes

17

Jug of the Danaides (1)

• Principle [Pellegrini, 2007]
• Analogous to “bubble growing” algorithms but natively

integrates the load balancing constraint

• The graph is modeled as a set of leaking barrels and pipes

• Two antagonistic liquids flow from two source vertices

• Liquids vanish when
they meet

18

Jug of the Danaides (2)

• Using JotD as the refinement algorithm in the multi-level
process :
• Yields mooth interfaces
• Is slower than sequential FM (20 times for 500

iterations, but only 3 times for 40 iterations)

• Band graph anchor vertices used as source vertices

19

Runtime and sparse matrix ordering quality
Test Number o f processes
case 2 4 8 16 32 64

audikw1

5.73E+12 5.65E+12 5.54E+12 5.45E+12 5.45E+12 5.45E+12

5.82E+12 6.37E+12 7.78E+12 8.88E+12 8.91E+12 1.07E+13

64.14 43.72 31.25 20.66 13.86 9.83

32.69 23.09 17.15 9.80 5.65 3.82

O
PT S

O
PM

t
PT S

t
PM

20

Runtime and partition quality (1)

1 10 100 1000

10

100

1000

PT-Scotch

45MILLIONS

2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

of Proc [log]

T
im

e
 (

s
e

c.
)

[lo
g

]

1 10 100 1000

0

2000000

4000000

6000000

8 000000

10000000

12000000

PT-Scotch

45MILLIONS

2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

of Proc [log]

C
u

t
s

iz
e

21

Runtime and partition quality (2)

• Partition quality of
ParMeTiS is irregular for
small numbers of parts

• Gets worse when
number of parts
increases as recursive
bipartitioning prevents
performing global
optimization

1 10
0 .70

0 .75

0 .80

0 .85

0 .90

0 .95

1.00

1.05

2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

• Cut size ratio is most often in favor of PT-Scotch vs.
ParMeTiS up to 2048 parts

 82MILLIONS

22

Runtime and partition quality (3)

• For most of the cases, PTS shows better partition quality
• About 20% better in the bipartitioning cases for graph

82MILLIONS

• For the highest numbers of partitions, ParMeTiS shows
slight better quality for AUDIKW1, THREAD, and BRGM

• The graphs have high average degree
• Greedy nature of recursive bipartitioning scheme

emphasized for these graphs

23

• Extension to k parts of the multilevel framework used for
recursive bipartitioning

• Straightforward for the multi-level framework itself
• Relies on distributed k-way band graphs

• Stability problems with our diffusion-based algorithms

• Artifacts when there are too few vertices per part

Parallel direct k-way graph partitioning

24

Parallel static mapping

25

Architectural considerations matter

• Upcoming machines will comprise very large numbers of
processing units, and will possess NUMA / heterogeneous
architectures

• More than a million processing elements on the Blue
Waters machine to be built at UIUC (joint lab with
INRIA)

• Impacts on our research :

• Topology of target architecture has to be taken into
account

– Static mapping and not only graph partitioning
• Dynamic repartitioning capabilities are mandatory

26

Parallel static mapping (1)

• • Compute a mapping of V(S) and E(S) of source graph S to
V(T) and E(T) of target architecture graph T, respectively

• Communication cost function accounts for distance

S

T

• Static mapping features
are already present in the
sequential Scotch library

• We have to go parallel

27

Parallel static mapping (2)

• Partial cost function in the context of recursive bipartitioning

• Decision making depends on available mapping information

28

Parallel static mapping (3)

• Recursive bi-mapping cannot be transposed in parallel
• All subgraphs at some level are supposed to be processed

simultaneously for parallel efficiency

• Yet, ignoring decisions in neighboring subgraphs can lead to
“twists”

• Only sequential processing works!

1

2

4

3

29

Parallel static mapping (4)

• Parallel multilevel framework for static mapping
• Parallel coarsening and k-way mapping refinement

• Initial mapping by sequential recursive bi-mapping

30

Parallel static mapping (5)

• If the number of parts gets bigger than the size of the biggest
graph to be stored on a single node, the sequential initial
mapping phase cannot take place

– Above 1 million parts (that is, cores)

• New roadmap : be able to map graphs of about a trillion vertices
spread across a million processing elements

• Focus on scalability problems related to the number of
processors

31

Conclusion

32

• Some users have experimented with Scotch up to the
symbolic frontiers that we had defined

• Katie Lewis at LLNL : graphs up to 800 Mvertices and
2 Gedges partitioned on 4096 procs

• Scalability in terms of memory and runtime
• Load imbalance increases along with the number of

processes

• We are stuck by MPI interface limitations
• All displacement and count values are expressed as

ints (32 bits)
• We must have full 64-bit MPI implementations

Solstice goals achieved !

33

The Scotch software package

• All of the algorithms are available to the community
• Scientific reproducibility
• Freely available from the INRIA Gforge
• Modular and documented code (≈100k lines of C)

• Upgrades on a regular basis
• Version 4.0 : February 2004 : 2500+ direct downloads

• About one major release per year (5.2 almost ready)

• Usage by third-party software
• Emilio (CEA/CESTA), Code_Aster (EDF), Dolfin/Fenics

(Simula), MUMPS (ENSEEITH, LIP & LaBRI), PaStiX
(LaBRI), SuperLU (U. C. Berkeley), Zoltan (Sandia), ...

34

• Parallel matrix computations
• Block decomposition with overlap

• Several application domains
• Quantum chemistry
• Schur complement techniques for linear system solving

K-way vertex partitioning with overlap (1)

35

K-way vertex partitioning with overlap (2)

• Compute k vertex-separated parts

• Balance part loads according to inner vertices as well as
neighboring separator vertices

• Separator vertices may contribute to several parts

36

Dynamic remeshing and repartitioning

• Move upwards from the production of general-purpose
tools to more specific application domains

• Motivation for joining the Bacchus team
• Parallel adaptive remeshing

• Take into account the numerical stability of the problem
being studied

• Take advantage of the work done in PT-Scotch on
distributed graphs

• Dynamically repartition the remeshed graphs

37

• To all the past and present “Scotch-men” :
• Cédric Chevalier
• Charles-Edmond Bichot
• Jun-Ho Her
• Sébastien Fourestier

• Cédric Lachat

• The journey is going on...

Thanks !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

