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Summary of the talk

• The Scotch project

• The multi-level framework and its parallelization

• Parallel static mapping

• Conclusion
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The Scotch project
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Graph partitioning (1)

• Graph partitioning is an ubiquitous technique which has 
proven useful in a wide number of application fields

• Used to model domain-dependent optimization 
problems

• “Good solutions” take the form of partitions which 
minimize vertex or edge cuts, while balancing the 
weight of graph parts

• NP-complete problem in the general case

• Many algorithms have been proposed in the literature :

• Graph algorithms, evolutionary algorithms, spectral 
methods, linear optimization methods, …
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Graph partitioning (2)

• Two main problems for our team :
• Sparse matrix ordering for direct methods
• Domain decomposition for iterative 

methods

• These problems can be modeled as graph 
partitioning problems on the adjacency graph 
of symmetric positive-definite matrices

• Edge separator problem for domain 
decomposition

• Vertex separator problem for sparse 
matrix ordering by nested dissection
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The Scotch roadmap

• Devise robust parallel graph partitioning methods
• Should handle graphs of more than a billion vertices 

distributed across one thousand processors

• Improve sequential graph partitioning methods if possible
• Multi-level FM-like algorithms are both fast and efficient 

on a very large class of graphs but FM algorithms are 
intrinsically sequential

• Investigate alternate graph models (meshes/hypergraphs)

• Provide a software toolbox for scientific applications
• Scotch sequential software tools

• PT-Scotch parallel software tools
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Design constraints

• Parallel algorithms have to be carefully designed
• Algorithms for distributed memory machines
• Preserve independence between the number of parts 

k and the number of processing elements P on which 
algorithms are to be executed

• Algorithms must be “quasi-linear” in |V| and / or |E|
• Constants should be kept small !

– Theory is not likely to help much...

• Data structures must be scalable :
• In |V| and/or |E| : graph data must not be duplicated

• In P and k : arrays in k|V| , k2, kP, P|V| or P2 are 
forbidden
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The multi-level framework and its parallelization
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From k-partitioning to recursive bipartitioning

• K-way graph partitioning can be approximated by a 
sequence of recursive bipartitionings

• Bipartitioning is easier to implement than k-way 
partitioning

– No need to choose the destination part of vertices

• It is only an approximation, but a rather good one [Simon & 
Teng, 1993]
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Recursive bipartitioning in parallel

• After a separator has been computed, the two separated 
subgraphs are folded and redistributed each on a half of 
the available processors

• All subgraphs at a same level are processed 
concurrently on separate subsets of processors

• Ability to fold a graph on any number of processors    
(not only a power of 2)
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Multi-level framework

• Principle [Hendrickson & Leland, 1994]
• Create a family of topologically equivalent coarser 

graphs by clustering groups of vertices
• Compute an initial partition of the smallest graph
• Propagate back the result, with local refinement
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Coarsening in parallel

• The coarsened graph can either be:
• Kept on the same number of processors: decreases 

memory and processing cost
• Folded and duplicated on two subsets of processors: 

increases quality but also cost



13

Parallel matching

• Parallel coarsening bases on parallel matching
• These matchings do not need to be maximal

• Synchronization between non-local neighbors is critical
• Dependency chains or loops between mating requests 

can stall the whole algorithm because of sequential 
constraints

• Some distributed tie-breaking is required

• Too many requests decrease matching probability
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Parallel probabilistic matching

• Principle [Chevalier, 2007]
• Do not discriminate between local and non-local 

neighbors when selecting a neighbor for mating
• Vertices request for matings with their neighbors 

(whether local or remote) with a prescribed probability

• Reduces topological biases and converges quickly
• 5 collective passes are 

enough to match 80 % 
of the vertices on 
average 
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Band graphs

• Principle [Chevalier & Pellegrini, 2006]
• Only local improvements along the projected cut are 

necessary, so work only on a small band around the 
cut

• Reduce problem space dramatically
• Allow one to use expensive algorithms, such as 

genetic algorithms
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Band graphs in parallel

• Anchor vertices may have very high degrees compared to 
sequential band graphs

• Two anchor vertices per process
• Remote anchor vertices for each part form a clique

– Will soon be a hypercube to accommodate for large 
numbers of processes
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Jug of the Danaides (1)

• Principle [Pellegrini, 2007]
• Analogous to “bubble growing” algorithms but natively 

integrates the load balancing constraint

• The graph is modeled as a set of leaking barrels and pipes

• Two antagonistic liquids flow from two source vertices

• Liquids vanish when 
they meet
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Jug of the Danaides (2)

• Using JotD as the refinement algorithm in the multi-level 
process :
• Yields mooth interfaces
• Is slower than sequential FM (20 times for 500 

iterations, but only 3 times for 40 iterations)

• Band graph anchor vertices used as source vertices
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Runtime and sparse matrix ordering quality
Test Number o f processes
case 2 4 8 16 32 64
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Runtime and partition quality (1)
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Runtime and partition quality (2)

                                              
                                 

• Partition quality of 
ParMeTiS is irregular for 
small numbers of parts

• Gets worse when 
number of parts 
increases as recursive 
bipartitioning prevents 
performing global 
optimization
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Runtime and partition quality (3)

• For most of the cases, PTS shows better partition quality
• About 20% better in the bipartitioning cases for graph 

82MILLIONS

• For the highest numbers of partitions, ParMeTiS shows 
slight better quality for AUDIKW1, THREAD, and BRGM

• The graphs have high average degree 
• Greedy nature of recursive bipartitioning scheme 

emphasized for these graphs
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• Extension to k parts of the multilevel framework used for 
recursive bipartitioning

• Straightforward for the multi-level framework itself
• Relies on distributed k-way band graphs

 

 

 

 
• Stability problems with our diffusion-based algorithms

• Artifacts when there are too few vertices per part

Parallel direct k-way graph partitioning
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Parallel static mapping
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Architectural considerations matter

• Upcoming machines will comprise very large numbers of 
processing units, and will possess NUMA / heterogeneous 
architectures

• More than a million processing elements on the Blue 
Waters machine to be built at UIUC (joint lab with 
INRIA)

• Impacts on our research :

• Topology of target architecture has to be taken into 
account

– Static mapping and not only graph partitioning
• Dynamic repartitioning capabilities are mandatory
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Parallel static mapping (1)

• • Compute a mapping of V(S) and E(S) of source graph S to 
V(T) and E(T) of target architecture graph T, respectively

• Communication cost function accounts for distance

S

T

• Static mapping features 
are already present in the 
sequential Scotch library

• We have to go parallel
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Parallel static mapping (2)

• Partial cost function in the context of recursive bipartitioning

• Decision making depends on available mapping information
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Parallel static mapping (3)

• Recursive bi-mapping cannot be transposed in parallel
• All subgraphs at some level are supposed to be processed 

simultaneously for parallel efficiency

• Yet, ignoring decisions in neighboring subgraphs can lead to 
“twists”

• Only sequential processing works!

1

2

4

3
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Parallel static mapping (4)

• Parallel multilevel framework for static mapping
• Parallel coarsening and k-way mapping refinement

• Initial mapping by sequential recursive bi-mapping
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Parallel static mapping (5)

• If the number of parts gets bigger than the size of the biggest 
graph to be stored on a single node, the sequential initial 
mapping phase cannot take place

– Above 1 million parts (that is, cores)

• New roadmap : be able to map graphs of about a trillion vertices 
spread across a million processing elements

• Focus on scalability problems related to the number of 
processors
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Conclusion
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• Some users have experimented with Scotch up to the 
symbolic frontiers that we had defined

• Katie Lewis at LLNL : graphs up to 800 Mvertices and 
2 Gedges partitioned on 4096 procs

• Scalability in terms of memory and runtime
• Load imbalance increases along with the number of 

processes

• We are stuck by MPI interface limitations
• All displacement and count values are expressed as 

ints (32 bits)
• We must have full 64-bit MPI implementations

Solstice goals achieved !
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The Scotch software package

• All of the algorithms are available to the community
• Scientific reproducibility
• Freely available from the INRIA Gforge
• Modular and documented code (≈100k lines of C)

• Upgrades on a regular basis
• Version 4.0 : February 2004 : 2500+ direct downloads

• About one major release per year (5.2 almost ready)

• Usage by third-party software
• Emilio (CEA/CESTA), Code_Aster (EDF), Dolfin/Fenics 

(Simula), MUMPS (ENSEEITH, LIP & LaBRI), PaStiX 
(LaBRI), SuperLU (U. C. Berkeley), Zoltan (Sandia), ...
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• Parallel matrix computations
• Block decomposition with overlap

• Several application domains
• Quantum chemistry
• Schur complement techniques for linear system solving

K-way vertex partitioning with overlap (1)
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K-way vertex partitioning with overlap (2)

• Compute k vertex-separated parts

• Balance part loads according to inner vertices as well as 
neighboring separator vertices

• Separator vertices may contribute to several parts
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Dynamic remeshing and repartitioning

• Move upwards from the production of general-purpose 
tools to more specific application domains

• Motivation for joining the Bacchus team
• Parallel adaptive remeshing

• Take into account the numerical stability of the problem 
being studied

• Take advantage of the work done in PT-Scotch on 
distributed graphs

• Dynamically repartition the remeshed graphs
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• To all the past and present “Scotch-men” :
• Cédric Chevalier
• Charles-Edmond Bichot
• Jun-Ho Her
• Sébastien Fourestier

• Cédric Lachat

• The journey is going on...

Thanks !
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