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1 Session I

Augmented backward stability of Lanczos’s symmetric matrix tridiagonalization process
C. Paige (School of Computer Science, McGill University, Canada). It has been found that
any good implementation of Lanczos’s symmetric matrix tridiagonalization process [C. Lanczos,
J. Res. Nat. Bur. Standards, 45 (1950), pp. 255-282] produces a tridiagonal matrix that is
numerically backward stable for a strange augmented problem. This will be referred to as the
”augmented backward stability” of the process. Since the process is not stable in the standard
sense, this augmented stability result cannot be transformed to prove standard stability. However
it is hoped that it will lead to an increased understanding of the Lanczos tridiagonalization
process, and eventually be used to analyze many applications of the process to large sparse
matrix problems such as the solution of the eigenproblem, compatible linear systems, least
squares, and the singular value decomposition. If this is so, then it might eventually provide
standard results on the convergence and accuracy of the many applications of the Lanczos
process. This augmented backward stability result appears to be an important resource for
future use. Research supported by NSERC of Canada grant OGP0009236.

Mixing direct and iterative methods for the solution of large linear systems
D. Nuentsa Wakam (INRIA Centre de Rennes – Bretagne Atlantique) joint work with J. Erhel
(INRIA Centre de Rennes – Bretagne Atlantique) and E. Canot (INRIA Centre de Rennes –
Bretagne Atlantique). We consider the solution of a set of large systems arising from fluid
dynamics simulation. The linearized form can be written as:

Ax = b (1)

where A ∈ Rn×n is a real and unsymmetric sparse matrix, x, b ∈ Rn are respectively solution
and right hand side vectors. Although the solvers suitable for the system (1) are based either on
sparse direct or iterative methods, the separation between these two classes is tight. Presently,
techniques from the first class are used as preconditioners into the second class. Even in the
second class, there are a variety of techniques based on Krylov subspace methods or multilevel
methods (Multigrid, Domain decomposition).

We first consider the solution with two distributed direct solvers, namely SuperLU DIST [1]
and MUMPS [2]. Even with an out-of-core factorization available in MUMPS, we see that the
price to pay, in terms of memory requirements is still too high. In SuperLU DIST, the accuracy
in the final solution of some systems is not guaranteed probably due to the static pivoting used
to enhance the scalability. Then, we consider domain decomposition preconditioners based on
Schwarz methods in which direct methods are used to solve the local systems. We give a short
comparative study between additive Schwarz preconditioner available in PETSc and the recently
proposed multiplicative Schwarz preconditioner [3].

References

[1] X. S. Li and J. W. Demmel. SuperLU DIST : A Scalable Distributed-Memory Sparse Direct
Solver for Unsymmetric Linear Systems ACM Trans. Mathematical Software, 29(2):110-140,
2003.
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ing distributed dynamic scheduling, SIAM J. on Matrix Analysis and Applications, 23(1):15-
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[3] G.-A. Atenekeng Kahou, E. Kamgnia, B. Philippe. An explicit formulation of the multiplica-
tive Schwarz preconditioner. Applied Numerical Mathematics, 57:1197-1213, 2007.



A DAG-based sparse Cholesky solver for multicore architecture
J. Scott (Rutherford Appleton Laboratory (RAL, UK)) joint work with J. Hogg (RAL, UK) and
J. Reid (RAL, UK). Recent research by Buttari et al. [1, 2] and Hogg [3] into efficiently solving
dense linear systems of equations on multicore architectures has shown that directed acyclic
graphs (DAGs) can be used to obtain significant parallel speedups. We explain how the DAG
approach may be adapted for sparse linear systems. In particular, we describe the design and
development of a new sparse Cholesky code HSL MA87 [4]. Using problems arising from a range of
practical applications, we demonstrate that HSL MA87 obtains good serial and parallel times on
an 8-core machine and its performance compares very favourably with other well-known parallel
sparse symmetric solvers, notably MUMPS and the Intel MKL version of PARDISO.
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The impact of multicore on math software, in Proceedings of Workshop on State-of-the-art
in Scientific and Parallel Computing (Para06), 2006.

[2] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, A class of parallel tiled linear
algebra algorithms for multicore architectures, Technical Report UT-CS-07-600, ICL, 2007.
Also LAPACK Working Note 191.

[3] J. Hogg, A DAG-based parallel Cholesky factorization for multicore systems, Technical
Report RAL-TR-2008-029, Rutherford Appleton Laboratory, 2008.

[4] J. Hogg, J. Reid and J. Scott, A DAG-based sparse Cholesky solver for multicore ar-
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Efficient and scalable parallel graph partitioning and static mapping
J-H Her (INRIA Bordeaux - Sud-Ouest- LaBRI) joint work with F. Pellegrini (INRIA Bordeaux
- Sud-Ouest- LaBRI). Graph partitioning is the combinatorial problem aiming at finding a small
vertex separator or edge cut in a given (possibly weighted) graph such that the separator or
cut can disconnect the graph into a prescribed number of parts of roughly equivalent sizes or
weights. In the scientific computing field, such graph partitioning tools are commonly used to
compute domain decompositions for parallel iterative linear system solvers. However, as recent
parallel computing architectures are characterized by ever increasing numbers of processors and
heavily heterogeneous communication subsystems, taking into account the underlying topology
of the target machine is essential to effective minimization of running time. Static mapping is the
corresponding combinatorial problem, which aims at assigning statically parallel processes onto
physical processors so as to reduce realistic message congestion. In this talk, we will describe
the current parallel graph partitioning features of PT-Scotch, and present some experimental
results, including a comparison with ParMeTiS. We will also introduce ongoing work on parallel
static mapping, to be included in the forthcoming version of PT-Scotch.



2 Session II

Stopping criteria for the iterative solution of linear least squares problems
D. Titley-Peloquin (School of Computer Science, McGill University, Canada) joint work with
Xiao-Wen Chang (School of Computer Science, McGill University, Canada) and Chris Paige
(School of Computer Science, McGill University, Canada). Given A ∈ Rm×n and b ∈ Rm, the
linear least squares (LS) problem is

min
x
‖b−Ax‖2.

Iterative methods for the solution of large sparse LS problems produce a sequence of iterates
xk ∈ Rn (for k = 1, 2, . . . ) which hopefully converge to the true LS solution. One important
question to ask when using an iterative method is when to stop the iteration, in other words for
which k is the approximate solution xk “good enough”?

We first define what we mean by an acceptable LS solution and a backward stable LS solution.
We then explain an interesting property of minimum residual iterative methods for the solution
of LS problems. Our analysis demonstrates that the stopping criteria commonly used with these
methods can in some situations be too conservative, causing any chosen method to perform too
many iterations or even fail to detect that an acceptable iterate has been obtained. We propose
a less conservative criterion to determine if a given iterate is an acceptable LS solution. This is
merely a sufficient condition, but it approaches a necessary condition in the limit as the given
iterate approaches the exact LS solution. We also propose a necessary and sufficient condition
to determine if a given approximate LS solution is an acceptable LS solution, based on recent
results on backward perturbation analysis of the LS problem. Although both of the above new
conditions use quantities that are too expensive to compute directly in practical situations, we
suggest potential approaches for estimating some of these quantities efficiently. We illustrate
our results with several numerical examples. Research supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

Statistical stopping criteria for regression problems
Mario Arioli (Rutherford Appleton Laboratory (RAL, UK)) joint work with Serge Gratton (CNES-
CERFACS). The Preconditioned Conjugate Gradient method can be successfully used in solving
the normal equations obtained from least-squares problems in linear estimation. Taking into
account recent results, which make it possible to approximate the energy norm of the error
during the conjugate gradient iterative process, we adapt an existing stopping criterion intro-
duced in the framework of partial differential equations. We show how the energy norm of
the error is related to statistical properties of the least-squares problem and to the χ2 and the
Fisher-Snedecor distributions. Finally, we present the results of several numerical tests that
experimentally validate the effectiveness of our stopping criteria.

A parallel hybrid multigrid/direct method for large systems arising from finite element
discretization of high frequency Maxwell problems
M. Chanaud (INRIA Bordeaux Sud-Ouest and LaBRI) joint work with D. Goudin and J.J.
Pesqué (CEA/DAM/CESTA) and J. Roman (INRIA Bordeaux Sud-Ouest and LaBRI, Univer-
sité de Bordeaux). We propose a methodology based on a multigrid method driven by a direct
solver to solve large linear systems arising from Maxwell equations discretized with first-order
Nédélec elements. From this idea, a new parallel solver is developed. This solver combines the
PaStiX parallel direct solver and full-multigrid cycles. The goal of the proposed method is to
compute a solution on fine irregular meshes given an unique coarse input mesh. The considered
problem is the electromagnetic behaviour simulation of 3D objects in the frequency domain.
This method allows us to perform multiple solves, each one involving a different frequency, on
an object using an unique input mesh describing the geometry. The usual Maxwell problem



wavelength restriction is automatically met by the method’s successive refinements.
The particularity of that solver is that it is totally driven by direct solve : the data dis-

tribution is computed once (during the first solve), and then is conserved during the whole
process. Given that the refinement involved in multigrid is homogeneous, both load balancing
and communication scheme are preserved.

The method can be divided in three main phases leading to the following algorithm : direct
factorization and solve on the coarse level, solution interpolation over the automatically refined
mesh, multigrid V-cycles to improve interpolated result. Once the fine mesh solution is com-
puted, it can be interpolated on an even finer mesh using the prolongation operator, and so
on.

As a remainder, the 2 grid multigrid V-cycle involving fine mesh h and coarse mesh 2h and
solving A.x = b is described in following algorithm :

xh ← smooth(Ah, xh, bh),
rh ← bh − (Ah.xh),

r2h ← R2h
h .rh (restriction),

e2h ← A−1
2h .r2h,

eh ← P h
2h.e2h (prolongation),

xh ← xh + eh,

xh ← smooth(Ah, xh, bh).

In a n grid multigrid V-cycle (n > 2), computing eh is either another multigrid V-cycle or a
classical solve. In our case we rely on a multigrid V-cycle until coarsest level is reached, where
a direct solve is performed. As the coarse system has already been factorized, it only requires a
forward-backward solve phase (O(nnz) complexity), leading to a good error approximation.

As a smoother, we use a matrix-free Jacobi solver for three reasons : it is an easily paralleliz-
able method, got a good smoothing factor and doesn’t consume much memory as fine systems
are never assembled.

Preliminary results obtained from a sequential version of the solver show that fine grid
smoothing and inter-grid correction are quite efficient, leading to an accurate result compared
to the exact solution.



3 Session III

Acyclic and star colorings of joins of graphs and an algorithm for cographs
A. Lyons (Argonne National Laboratory, USA). We discuss some graphs coloring problems that
are related to the efficient evaluation of sparse derivative matrices. In particular, we consider the
problems of finding optimal acyclic and star colorings, which model two different methods for
the evaluation of Hessians. Both of these problems are known to be intractable even in severely
restricted cases. We present a formula that describes the acyclic and star chromatic numbers
of graphs that are decomposable with respect to the join operation, which builds a new graph
from a collection of two or more disjoint graphs by adding all possible edges between them. We
also show that our results lead to linear time algorithms for finding optimal acyclic and star
colorings of cographs, which have the unique property that they are recursively decomposable
with respect to the join and disjoint union operations.

Load flow with FDLF preconditioned GMRES
R. Idema (TU Delft, The Netherlands). A power system is the hardware that provides for the
generation and transmission of electrical power. The load flow problem, or power flow problem,
is the problem of calculating the AC voltages in the entire power system, given the amount
of power generated and consumed. The solution of this problem is vital for the planning of
construction and operation of power systems. The load flow problem gives rise to a system
of non-linear equations, which is generally solved either by Newton-Raphson iterations with a
direct solve on the Jacobian system, or by an approximation to the Newton-Raphson method
known as the Fast Decoupled Load Flow (FDLF [2]). We focus on deploying Krylov subspace
methods to solve load flow problems, to gain efficiency for large problems, and flexibility for
the application of load flow calculations as part of more complex power system simulations. We
use the Newton-Raphson method to linearise the problem, but also use the knowledge from the
FDLF method to aid our goal. The variables solved for, can be split into voltage magnitudes
(per unit) and voltage angles. Due to practical restrictions, the magnitudes should generally
be between 0.8 and 1.2 p.u., whereas the angles should be between -20 and 20 degrees. As
such, from a reasonable starting point, the solution will not vary too much through the Newton-
Raphson iterations. Thus if we chose a good preconditioner for our iterative method in the first
iteration, it should remain a strong preconditioner throughout all iterations. This motivates the
choice of GMRES as iterative method, as the number of iterations needed should remain small,
and the minimal residual property outweighs the algorithmic complexity of GMRES. A standard
candidate preconditioner for GMRES within a Newton-Raphson method, is the incomplete LU-
decomposition (ILU) of the initial Jacobian matrix. However, power system theory also hands
us a very interesting canditate through the FDLF method, as was also observed in [1]. For
our test cases, GMRES convergence, and spectrum analysis of the preconditioned coefficient
matrices, show that FDLF is indeed a very powerful preconditioner, rivalling the performance
of direct solves even at small problem sizes. Most current test cases are of such a size, that
it is no problem to do a complete LU-decomposition. For larger cases it may be beneficial to
use an ILU factorization of the FDLF matrix as preconditioner. Thinking ahead to truely large
problems, combining Newton-Rapshon with preconditioned GMRES even gives us the flexibility
to use Algebraic Multigrid on FDLF as a preconditioner.

References

[1] A.J. Flueck and H.D. Chiang Solving the nonlinear power flow equations with an inexact
Newton method using GMRES IEEE Transactions on Power Systems, 13(2):267-273, 1998.
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The optimization test environment
M. Fuchs (CERFACS, Parallel Algorithms). The Test Environment is an interface to solve
optimization problems efficiently using different solver routines. It is designed as a tool for both
developers of solver software and practitioners who just look for the best solver for their specific
problem class. The Test Environment is free to use for research purposes and enables users
to:

• Choose and compare diverse solver routines;

• Organize and solve large test problem sets;

• Select interactively subsets of test problem sets;

• Perform exhaustive analysis of the results.



4 Session IV

On the semidefinite B-Arnoldi method
G. W. Stewart (University of Maryland at College Park, USA). The B-Arnoldi method is a
variant of the ordinary Arnoldi method in which orthogonalization is done with respect to
the inner product generated by a positive definite matrix B. It arises in connection with the
generalized eigenvalue problem Ax = λBx, where A is symmetric. When B is semidefinite, the
algorithm can proceed formally, with “orthogonalization” taking place in the semi-inner product
generated by B. However, it has been observed that components of the Arnoldi vectors lying in
the null space of B can grow rapidly. In this talk we examine the source and consequences of
this growth.

Dynamic scheduling for sparse direct solver on NUMA and multicores architectures
M. Faverge (INRIA Bordeaux Sud-Ouest and LaBRI) joint work with Pierre Ramet (INRIA
Bordeaux Sud-Ouest and LaBRI). Over the past few years, parallel sparse direct solvers have
made significant progress. They are now able to solve efficiently real-life three-dimensional prob-
lems with several millions of equations. Nevertheless, the need of a large amount of memory is
often a bottleneck in these methods. The authors have proposed an hybrid MPI-thread imple-
mentation of a direct solver that is well suited for SMP nodes or modern multi-core architectures.
Modern multi-processing architectures are commonly based on shared memory systems with a
NUMA behavior. These computers are composed of several chip-sets including one or several
cores associated to a memory bank. Such an architecture implies hierarchical memory access
times from a given core to the different memory banks which do not exist on SMP nodes. Thus,
the main data structure of our targeted application have been modified to be more suitable for
NUMA architectures. We also introduce a simple way of dynamically schedule an application
based on a dependency tree while taking into account NUMA effects. Results obtained with
these modifications are illustrated by showing performances of the PaStiX1 solver on different
platforms and matrices. Moreover large problems need a 2D distribution scheme to balance the
data over the nodes which increases the preprocessing time. We suggest to use the dynamic
scheduler inside a shared memory to create more tasks without having the overcost of a full-2D
distribution during the preprocessing step. We will present some recent results on large test
cases with more than ten millions of unknowns.



5 Session V

Proper Generalized Decomposition within the LATIN domain decomposition method
J.C. Passieux (ENS Cachan/CNRS/UPMC/PRES UniverSud Paris) joint work with P. Ladevèze
(ENS Cachan/CNRS/UPMC/PRES UniverSud Paris and EADS Foundation Chair ”Advanced
Computational Structural Mechanics”) and D. Néron (ENS Cachan/CNRS/UPMC/PRES Uni-
verSud Paris). The simulation of the evolution of complex structures, for instance the study
of large structures with local cracking or local buckling, leads to the resolution of large size
systems for which parallel computing is required. In [1, 2], a multiscale computational strategy
has been proposed for the analysis of structures which are described at a fine scale, both in
time and space, compared to the scale of the structure. This strategy, based on the LATIN
method [3], can be seen as a non-linear, mixed and multilevel domain decomposition method,
including automatic space and time homogenization. An original feature of the LATIN is that
the solver operates over the entire time interval at each iteration. As a result, the local problems
are time-dependant and the cost of their resolution can become prohibitive.

In this work, a spectral decomposition technique is used to solve these problems. This tech-
nique called “radial approximation” belongs to the Proper Generalized Decomposition (PGD
[4]) algorithms. It consists in seeking the solution of the coupled space-time problem as a finite
sum of products of functions of each variables ; where the families of functions are unknown a
priori. It can be seen as a a priori model reduction method. To solve this kind of approxima-
tion, we use techniques inspired from generalized eigenvalue problems, which only involve the
resolution of a few time-independant space problems as long as scalar ODE in time.

In practice, one can notice that the construction of the space functions is by far the most
expensive. Therefore an adaptive reduced order model is build. In the context of the LATIN
method, it consists in storing and reusing the base of space functions from an iteration to
another. Each local problem begins by a preliminary phase which consists in updating the time
functions corresponding to the base of space functions [4]. Then, if the approximation is not
satisfying, the base is enriched automatically.

The capabilities of the method are discussed through 3D numerical illustrations.
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[2] P. Ladevèze, D. Néron, and J.-C. Passieux (2009). On multiscale computational mechanics
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Engineering. Oxford University Press. Ed. J. Fish.

[3] P. Ladevèze (1999). Nonlinear Computationnal Structural Mechanics - New Approaches
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Comparison of algorithms to build an efficient Schur complement preconditioner in HIPS
J. Gaidamour (INRIA Bordeaux - Sud-Ouest- LaBRI) joint work with P. Hénon (INRIA Bor-
deaux - Sud-Ouest- LaBRI). Nowadays, three dimensional numerical simulations often require
a tremendous amount of resources. On one hand, direct methods can be mandatory to solve
very ill-conditioned systems. But for large 3D simulations, they are constrained by prohibitive
memory requirements and they also need a high amount of floating point operations. Iterative
methods on the other hand require much less memory and are more scalable in general.



Hybrid methods based on a Schur complement approach try to combine the assets of the
two class of methods. An usual method is to use a decomposition of the matrix graph into
sub-domains. The matrix part corresponding to the interior unknowns is treated using a direct
method and the resolution of the global system is then reduced to the resolution of the Schur
complement system. The Schur complement can then be solved using an iterative method.

In the HIPS library (http://hips.gforge.inria.fr/), we have developed such an approach. In
our case, we reordered the matrix according to the Hierarchical Interface Decomposition (HID)
: it consists in partitioning the set of unknowns of the interface into graph components named
“connectors” that are grouped in “levels”. A level of connectors plays the role of separators
for the immediate inferior level. Based on this ordering, one can construct a robust parallel
incomplete factorization of the Schur complement.

In this talk, we will present and compare two ways to compute the incomplete factorization
of the Schur complement (apart from the possible choices of fill-in pattern): - The first one
consists in building the factorization based on an approximation of the Schur complement. This
method aims at reducing the memory needed to store the exact Schur complement. - The second
one uses the exact Schur complement to compute the incomplete factorization. This method
requires more temporary memory but can dramatically decrease the number of iterations.

We will give the main algorithmic differences and also compare the memory and convergence
impact of these methods on large test cases.

Parallel preconditioning of linear systems based on ILUPACK for multithreaded architectures
A. F. Mart́ın (Universidad Jaume I, Spain) joint work with J. I. Aliaga (Universidad Jaume
I, Spain), M. Bollhöfer (Institute of Computational Mathematics, TU-Braunschweig, Germany)
and E. S. Quintana-Ort́ı (Universidad Jaume I, Spain). ILUPACK is a numerical serial library
for the solution of large-scale sparse linear systems via multilevel inverse-based ILU precondi-
tioned Krylov subspace solvers. In this talk we will review the main design issues which are
involved in the development of the parallel version of the ILUPACK library for shared-memory
multiprocessors. The approach to parallelization is based on multilevel nested dissection graph
partitioning algorithms to split the computation into concurrent tasks, which are then mapped
to the processors for the parallel numerical solution steps of the solver. Experimental results
for several PDE-based academic applications on a ccNUMA platform with up to 16 proces-
sors will reveal that our approach delivers a high degree of concurrence for a moderate number
of processors, while inherently preserving the semantics of the preconditioning techniques in
ILUPACK.



6 Session VI

On the efficiency of Spectral Clustering : interpretation and results
S. Mouysset (IRIT-ENSEEIHT, University of Toulouse) joint work with J. Noailles (IRIT-
ENSEEIHT, University of Toulouse) and D. Ruiz (IRIT-ENSEEIHT, University of Toulouse).
Clustering aims to partition a data set by grouping similar elements into subsets. Main problems
are, from one hand the choice of similarity criterion and, from the other hand, how to separate
clusters one from the other. For many methods based on optimization problems, such as K-
means, considering non-convex shapes as clusters becomes out of range. A contrario [1], spectral
methods, specially spectral clustering, give better results in many cases including pattern recog-
nition or machine learning fields. Spectral clustering consists in defining a low-dimensional data
space in which data points are clustered by selecting dominant eigenvectors of a matrix called
affinity matrix in order to define. However, this method involves a free parameter in Gaussian
affinity matrix, respectively noted t and A, which has to be properly defined. Numerical exper-
iments [2] show how difficulty and crucial this choice is. For further investigations, we propose
an interpretation on how spectral clustering method works. From a sampling of connected com-
ponents, we want to draw back to original shapes. This leads to formulate spectral clustering
algorithm as an eigenvalues problem by assuming data points to nodes of some finite elements
discretization and considering A as a representation of Heat kernel. Thus identifying connected
component appears to be linked to these eigenfunctions. Then we prove that this property
is preserved asymptotically on t when looking at eigenvectors of spectral clustering algorithm.
With numerical experiments, we show the efficiency of the spectral clustering method on re-
trieving groups from several geometrical examples and with various refinements. More precisely,
we focus on the behaviour of the method with respect to this new theoretical material.

References
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Massively parallel linear solver for large 3D problems
A. Haidar (University of Toulouse, INPT-ENSEEIHT). The main topic of this research work
was the study of a numerical technique that had attractive features for an efficient solution of
large scale linear systems on large parallel platforms. The goal is to develop a high performance
hybrid direct/iterative approach for solving large 3D problems. We focus specifically on the
associated domain decomposition techniques for the parallel solution of large linear systems.
We have investigated several algebraic preconditioning techniques. The robustness and parallel
numerical performance of the solver is reported on large challenging linear systems.

A stable variant of Simpler GMRES and GCR
P. Jiranek (CERFACS, Parallel Algorithms) joint work with M. Rozloznik (Institute of Computer
Science, Academy of Sciences of the Czech Republic, Czech Republic). Minimum residual
Krylov subspace methods form a popular class of iterative methods for solving large and sparse
nonsymmetric systems of linear algebraic equations. Besides the GMRES method [5], other
mathematically equivalent implementations like Simpler GMRES [6] and especially GCR [1] are
used sometimes in practice. As shown in [6, 4, 3] their numerical behavior depends strongly on



the conditioning of the basis of the generated Krylov subspace, which appears to be directly
linked to the convergence of the residual norms. While the basis used in Simpler GMRES is
growing with decreasing relative residual norms, fast convergence of the residual norms results
in the well-conditioned residual basis of GCR. We propose a stable variant of Simpler GMRES
and GCR [2], which is based on the adaptive choice of the Krylov subspace basis at a given
iteration step using the intermediate residual norm decrease criterion. The new direction vector
is chosen as in the original implementation of Simpler GMRES or it is equal the normalized
residual vector as in the GCR method. Such an adaptive strategy leads to a well-conditioned
basis of the Krylov subspace, which provides a numerically stable and more robust variant of
Simpler GMRES or GCR.
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