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Motivation: HPC
■ Increasing computing power today requires increasing the

number of processors (or cores) at work.
■ The algorithms capable of running efficiently on

supercomputers should possess a high degree of
parallelism. Parallel scientific computing is mandatory.
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Motivation: Computational methods

■ It has been observed two source of problems:

1. A strong communication among the large number of processors
reduces the effective performance.

2. The chance to get a failure in one or several processors during

the computation time increases with the number of processors
involved.

■ To exploit efficiently the increasingly available power, the numerical

methods are required to be
1. SCALABLE .

◆ Strong scalability: More processors at work, less computational
time;

◆ Weak scalability: Larger problem size spending the same time.

2. FAULT-TOLERANT .
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Motivation: Computational methods

■ It has been observed in large-scale simulations a wasted of resources, making in

some cases impossible to exploit fully the computational resources at hand.
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Motivation: Computational methods

■ Source of problems for solving numerically PDEs:

1. “The tyrany of the computational mesh” (FD,FEM).

2. “Linear algebra is everywhere”, Ax = b.

■ Investigating about new numerical methods, and designing new
powerful algorithms capable to fully exploit the best available

machines, is of paramount importance.
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Background: Domain decomposition

■ Solving PDEs using Domain decomposition methods has been

considered one of the most natural ways to take advantage of
parallel computer architectures, allowing for high-performance

scientific computing of large-scale problems.

■ IDEA: A physical domain is partitioned into several subdomains and
the global solution is constructed from the “non independent”

subproblems associated with the subdomains.
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Background: Domain decomposition

■ Two important issues arises:
1. A major problem is represented by the need of having the

solution on the interfaces which divide the domain into
subdomains (Strong intercommunication overhead)

2. Globally a computational grid should be deployed to solve
numerically the problem.(Large memory resources)

■ Is the DD method suited for a large number of processors?
Maybe!, but for sure not in a “classical” way.
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Some maths, and thoughts about PDEs

■ The heat equation

∂u

∂t
=

∂2u

∂x2
in R u(x, 0) = f(x),

■ How can we solve numerically?
1. A finite difference approach:

ti = i∆t, xj = j∆x, i = 0, . . . , N, j = −M, . . . , M ,
ui

j = u(ti, xj).

ui+1
j − ui

j

∆t
=

ui
j+1 − 2ui

j + ui
j−1

∆x2
, u0

j = f(xj)

2. An integral approach,

u(x, t) =

∫

R

dyf(y)G(x, y, t, 0),

∂G

∂t
=

∂2G

∂x2
in R G(x, y, 0, 0) = δ(x − y)
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Some maths, and thoughts about PDEs

■ Important facts: If f(x) = 1, then u(x, t) = 1, therefore
∫

R
dyG(x, y, t, 0) = 1.

G is a density probability, so can we compute u(x, t) “tossing
a coin”?

u(x, t) = E[f(y)],

where y is distributed according to G(x, y, t, 0).

■ For the heat equation G(x, y, t, 0) = e−(x−y)2/4t/
√

4πt
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Some maths, and thoughts about PDEs

■ A “probabilistic” algorithm for solving the heat equation at a single point (x, t):
1. Generate a random number y picked up from the density probability

G(x, y, t, 0). Note that the “pseudo”random numbers obtained with a
computer often are distributed uniformly between (0, 1). Therefore, some
transformations are required (Box-Muller method,probability integral
transform,etc)

2. Compute f(y)

3. Repeat N times and take the average

u(x, t) ≈ uN (x, t) =
1

N

N
∑

i=1

f(yi)

■ The error |u − uN | is purely statistical and of order of O(N−1/2).
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Monte Carlo simulations: Random numbers

■ A reliable source of uniform random numbers is an essential
building block for any sort of stochastic modeling or Monte
Carlo computer work

■ (Pseudo)- random numbers. Linear congruential generators.
■ Quasi-random (low discrepancy) sequences are

deterministic alternative to random sequences based on
pseudorandom numbers.

■ The error in uniformity for a sequence of N points in the
s-dimensional unit cube is measured by its discrepancy

■ The discrepancy is of size (logN)s/N for large N, as
opposed to discrepancy N−1/2 for a pseudorandom
sequence.
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Monte Carlo simulations: Random numbers
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Linear parabolic PDEs

■ Let suppose the path between (x, 0) and (y, t) is divided in several pieces of
length ∆t. What is the density probability?

G(x2, x, 2∆t, 0) =

∫

R

dx1G(x2, x1, 2∆t, ∆t)G(x1, x, ∆t, 0),

G(x3, x, 3∆t, 0) =

∫

R

dx2G(x3, x2, 3∆t, 2∆t, 0)G(x2, x, 2∆t, ∆t, 0) =

∫

R

dx2

∫

R

dx1G(x3, x2, 3∆t, 2∆t, 0)G(x2, x1, 2∆t, ∆t)G(x1, x, ∆t, 0),

and in general

G(y, x, n∆t, 0) =

∫

R

dxn−1

∫

R

dxn−2 . . .

∫

R

dx1G(y, xn−1, t, (n − 1)∆t)

×G(xn−1, xn−2, (n − 1)∆t, (n − 2)∆t) · · ·G(x1, x, ∆t, 0),
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Linear parabolic PDEs

■ Mathematically, it is equivalent to the following SDE (Stochastic Differential
Equation) equation in discrete form,

xn+1 = xn + Wn − Wn−1, x0 = x

where Wi is the so-called Brownian motion, which satisfies W0=0, and
Wn − Wn−1 has independent increments with probability distribution
e−y2/4∆t/

√
4π∆t

■ In continuous form is written formally as dx(t) = dW (t).

0 1 2 3
time t

−4

−2

0

2

x(
t)



Sparse Days 2012, CERFACS (Toulouse), June 26, 2012 15

Linear parabolic PDEs

■ Let the BV problem for a linear parabolic PDE,

∂u

∂t
= Lu − c(x, t)u, u(x, 0) = f(x), u(x, t)|x∈∂Ω = g(x, t)

L is a linear elliptic operator L = a(x, t)∂xx/2 + b(x, t)∂x, with continuous bounded
coefficients, c(x, t) ≥ 0 and continuous bounded, continuous initial condition, f .

■ The probabilistic representation of the solution u through the Feynman-Kac formula is

u(x, t) = E
h

f(β(t))e−
R

t
0 c(β(s),t−s)ds1[τ∂Ω>t]

i

+E
h

g(β(τ∂Ω), t − τ∂Ω)e−
R τ∂Ω
0 c(β(s),t−s)ds1[τ∂Ω<t]

i

.

dβ = b(β, t) dt + σ(β, t) dW (t).

β(·) is the stochastic process starting at (x, 0), associated to L; τ∂Ω denotes the first

exit time, and the expected values are taken with respect to the corresponding
measure.
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Numerical analysis

■ Referring to the numerical simulation of interfacial values, internal

to Ω, with N MC or quasi-MC samples), there are three sources of
numerical errors:

1. Statistical error.
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Numerical analysis

■ Referring to the numerical simulation of interfacial values, internal

to Ω, with N MC or quasi-MC samples), there are three sources of
numerical errors:

1. Statistical error.

2. Truncation error of the SDE.
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Numerical analysis

■ Referring to the numerical simulation of interfacial values, internal

to Ω, with N MC or quasi-MC samples), there are three sources of
numerical errors:

1. Statistical error.

2. Truncation error of the SDE.

3. For boundary-value problems: Precise evaluation of the first exit
point and time.
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Nonlinear PDEs

It has been proposed so far several probabilistic methods for
dealing with nonlinear PDEs (eliptic,parabolic, and hyperbolic):
■ Linearization.
■ Branching diffusion processes. They are specially suited for

solving a class of semilinear PDEs, being the nonlinearity a
polynomial function of the solution.They provide higher order
numerical methods.

■ Forward-backward stochastic differential equations (FBSDEs).They are
well suited for any nonlinear PDE, even fully nonlinear. Only
first-order numerical methods are known.
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Semilinear parabolic PDEs

■ A probabilistic representation does exist also for semilinear parabolic
equations. Such a representation is based on generating branching diffusion
processes, associated with the elliptic operator, and governed by an
exponential random time, S, with density probability p(S) = c exp(−cS).

■ H.P. McKean (’75) derived the representation

u(x, t) = E[

k(ω)
∏

i=1

f(xi(ω, t))]

for the KPP equation

ut = uxx + u(u − 1), −∞ < x < +∞, t > 0,

subject to the initial value u(x, 0) = f(x), for −∞ < x < +∞. Here the point
xi(ω, t) is the position of the ith stochastic process surviving at time t, and
k(ω) is the random number of branches at time t.
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Solving PDEs with “random trees”

∂u

∂t
=

∂2u

∂x2
− cu, a < x < b, t > 0

u(a, t) = 0, u(b, t) = 0

u(x, 0) = f(x).

∂u

∂t
=

∂2u

∂x2
− cu + u

2
, −∞ < x < +∞, t > 0

u(x, 0) = f(x).
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General semilinear parabolic PDEs

∂u

∂t
= Lu +

m
∑

j=2

cj(x, t)uj , x ∈ Rn, t > 0

u(x, 0) = g(x),

■ Generalizes the previous representation, since it accounts
for the following aspects:
1. A constant potential term such as −cu is not required

anymore;
2. The coefficients multiplying the nonlinear terms, cj(x, t),

can be now chosen arbitrarily

3. The initial data g(x) may now be chosen negative, or
greater than 1

■ The set of all branches of a given “tree” play the role of the
single path (or realization) of the stochastic processes used
in the linear case. An average is now taken over all trees
whose “root” is the space point x.
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New Strategies: FBSDEs

■ The forward-backward differential stochastic differential equations and its
connection with PDEs was recently proposed by Pardoux (’90) as a kind of
generalization of the Feynman-Kac formula for nonlinear parabolic PDEs.

■ Assume the function u is sufficiently regular and solves,






ut(t, x) + Lu(t, x) + f
(

t, x, u(t, x), (σ∇u)(t, x)
)

= 0

u(T, x) = g(x),
(1)

the solution can be obtained through the following forward-backward
stochastic differential equation for 0 ≤ t ≤ s ≤ T







Xt,x
s = x +

∫ s

t
b(r, Xt,x

r )dr +
∫ s

t
σ(r, Xt,x

r )dWr

Y t,x
s = g(Xt,x

T ) −
∫ T

s
Zt,x

r dWr +
∫ T

s
f(r, Xt,x

r , Y t,x
r , Zt,x

r )dr.
(2)

in the following way:

u(t, x) = Y t,x
t , t ∈ [0, T ], x ∈ Rd. (3)
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Numerical solution of PDEs probabilistically

■ Advantages:
◆ gridless method;
◆ solution obtained through an average of independent

calculations;
◆ suited for Parallel computing
◆ naturally fault-tolerant

■ Disadvantages: The idea of representing and even computing
solutions to PDEs via a probabilistic method is old. The latter
has been considered rather inefficient (Monte Carlo), at least
in low dimension.

■ Key idea : Implement a “Probabilistically [or quasi-prob] Domain
Decomposition method (PDD)".
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The algorithm PDD

Ω
Ω Ω

Ω Ω
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Ω Ω
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3 4

■ Compute only few interfacial values by standard Monte Carlo
or quasi–Monte Carlo
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The algorithm PDD

Ω
Ω Ω

Ω Ω
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Ω Ω

Ω Ω
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■ Compute only few interfacial values by standard Monte Carlo
or quasi–Monte Carlo

■ Interpolate on the corresponding nodes to obtain BVs for the
subdomains
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The algorithm PDD

Ω
Ω Ω

Ω Ω

1 2

3 4

Ω Ω

Ω Ω

1 2

3 4

■ Compute only few interfacial values by standard Monte Carlo
or quasi–Monte Carlo

■ Interpolate on the corresponding nodes to obtain BVs for the
subdomains

■ Compute the solution to the original problem in each
subdomain, by standard methods (finite differences, or finite
elements)
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Plasma dynamics

■ A plasma is a gas in which an important fraction of the atoms is ionized (the electrons

and ions are separately free), because the temperature is hot enough.

■ The dynamics of a thermonuclear plasma can be correctly described by the Vlasov

equation. This is a transport equation describing time evolution of the distribution
function of plasma consisting of charged particles with long-range (for example,

Coulomb) interaction, and where the collisions have been neglected.

■ Ignoring the magnetic field, the Vlasov equation should be coupled with the Poisson
equation.

∂f

∂t
+ v̄ · ∇x̄f −∇φ · ∇v̄f = 0, △x̄φ = −

»

Z

fdv̄ − 1

–

,
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Plasma dynamics: Numerical methods

■ Nowadays, there are basically two type of methods for solving the
Vlasov-Poisson equation
1. Particle-in-Cell (PIC) simulations. The simulation particles can be regarded as

Lagrangian markers embedded randomly in the Vlasov fluid moving with it
through phase space, and are simulated using a Monte-Carlo method.

Advantages: It uses only 3D spatial grids for charge calculation, which is
convenient for massively parallel computation.

Disadvantages: To avoid large statistical error and be able to “see” the
physics behind the phenomenon, many particles may be required.

2. Vlasov continum simulation. Direct numerical integration of the system
equations.

Advantages: It has no statistical error.
Disadvantages: It uses 3D spatial grids + 3D velocity space grids, which

is harder for massively parallel computation. Since the dynamics of the
plasma generates “ripples” in the phase-space for long times, very fine
grids are required.
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Plasma dynamics: Computational cost

■ ITER is a large-scale scientific experiment intended to prove the viability of
fusion as an energy source, and to collect the data necessary for the design
and subsequent operation of the first electricity-producing fusion power plant.
Currently, it is being built in Cadarache (France).

■ To simulate the dynamics of ITER for a typical experimental over scales of
interest with the most commonly used algorithmic technologies would require
approximately 1024 floating-point operations (108 times higher than the most
powerful supercomputer today)

■ With the best forecast in performance, we should wait until 50 years (very
optimistic estimation) to be able to simulate globally ITER (It should be
operational in 10 years).
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Computational complexity-probabilistic part

■ The branching stochastic process associated to the
nonlinear term uj , requires creating j branches every time a
splitting event occurs.

■ The computational time spent to generate any given branch,
is a function of the final time, t, time step, ∆t, chosen to
solve numerically the associated SDE, and the random times
∆ts responsible for branching.

■ It is measured, typically, in terms of the number of iterations
in time, required to fully generate a random tree with k
branches up to the final time, t. Defining tc as the time spent
per iteration, such computational time can be estimated as
ktc t/∆ts

■ In case of N random trees, it holds that

tb = N
∞
∑

k=1

ktc
t

∆ts
P (k, m),
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Computational complexity-probabilistic part

■ Known the probability funcion P (k, m), it follows that

tb ≤ Ntc
t

∆ts
〈k〉P (k,m) ,

where 〈k〉P (k,m) denotes the mean number of leaves, that is
∑∞

k=1 kP (k, m).

tb ≤ Ntc
t

∆ts

q

1 − m(1 − q)
.
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Computational complexity-probabilistic part

■ Note that the computational time exhibits a linear growth on t,
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Numerical examples

■ Some examples were runned on the MareNostrum
supercomputer located at the Barcelona Supercomputing
Center (BSC).

■ Simple domains were used, and a finite difference scheme
adopted.

■ ScaLAPACK were used for comparison, which is considered
reasonably efficient for the parallel solution of banded linear
systems.

■ The PDD algorithm was implemented in MPI environment.
Local solver for each subdomain was a LU decomposition
based on LAPACK.
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Examples in 1D

ut = uxx − u + u2, u(x, 0) = 1 − 1
(

1 + exp x√
6

)2

on the line. This problem is known to possess the traveling
wave solution u(x, t) = 1 − 1

 

1+exp
x− 5√

6
t

√
6

!2 .

Comparison of the computational times (measured in units of t0) for both methods, PDD and SCALAPACK.
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Examples in 2D

ut = uxx + uyy − (1 + a)u2 − u3, (x, y) ∈ R
2,

u(x, y, 0) = −2 cos2(
π x

2Ax
) cos2(

π y

2Ay
).

Procs. TMC TINT Memory TPDD TScaLAPACK

128 902” <1” 0.86 GBs 5572” 29881”

256 998” <1” 0.19 GBs 2086” 23953”

512 1018” <1” 0.06 GBs 1327” 23334”
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Examples in 2D

∂u

∂t
= (1 + x2)

∂2u

∂x2
+ (1 + y3)

∂2u

∂y2

+(sin x ey + 2)
∂u

∂x
+ (sin x cos y + 2)

∂u

∂y
− u +

1

2
u2 +

1

2
u3,

in Ω = [−L, L] × [−L, L], t > 0,

with L = 1 and BV conditions u(x, y, t)|∂Ω = 0, u(x, y, 0) = cos2
`

πx
2L

´

cos2
`

πy
2L

´

.

PDD
Number of processors

TMC TINT ERP TTOTAL

128 1’ 05” <1” 209’ 44”

256 1’ 05” <1” 53’ 10”

512 1’ 06” <1” 12’ 13”

1024 1’ 08” <1” 3’ 59”
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Solving Vlasov-Poisson with “random trees”

■ Consider the adimensional Vlasov-Poisson equation in R
d,

∂f

∂t
+ v̄ · ∇x̄f −∇φ · ∇v̄f = 0, △x̄φ = −

»

Z

fdv̄ − 1

–

,

with initial data,f(x̄, v̄, 0), and periodic boundary conditions in x̄. A stochastic

representation for the Fourier-transformed equation is given by

χ(ξ̄1, ξ̄2, τ) = e−λτ χ(ξ̄1, ξ̄2 − τ
ξ̄1

γ(|ξ̄2|)
, 0) +

|ξ̄′1|
−1h ∗ h(ξ̄1)

λh(ξ̄1)

×

Z τ

0

dsλe−λs
X

j

dξ̄1
′
(j)p(ξ̄1, ξ̄1

′
(j))

ξ̄1
′
(j) · (ξ̄2 − s ξ̄1

γ(|ξ̄2|)
)

γ(|ξ̄2 − s ξ̄1
γ(|ξ̄2|)

|)|ξ̄1
′
(j)|

×[(2π)d/2eλ(τ−s)χ(ξ̄1
′
(j),0, τ − s) −

ρ̂B(ξ̄1
′
(j))

h(ξ̄1
′
(j))

]χ(ξ̄1 − ξ̄1
′
(j), ξ̄2 − s

ξ̄1

γ(|ξ̄2|)
, τ − s),

with χ = F e−λτ/h(ξ̄1), |ξ̄1
′
|−1h ∗ h(ξ̄1) =

R

dξ̄1
′
|ξ̄1

′
|−1h(ξ̄1 − ξ̄1

′
)h(ξ̄1

′
), and

p(ξ̄1, ξ̄1
′
) =

|ξ̄1
′
|−1h(ξ̄1 − ξ̄1

′
)h(ξ̄1

′
)

|ξ̄1
′
|−1h ∗ h(ξ̄1)

.
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Vlasov-Poisson equation

■ There exists a probabilistic interpretation of the eq. above as an exponential random

process along with a branching process governed by p(ξ̄1, ξ̄1
′
).

■ χ(ξ̄1, ξ̄2, τ) can be computed as the expectation value of a multiplicative functional
associated to the processes.

■ Convergence of the multiplicative functional requires:

(A)

˛

˛

˛

˛

F (ξ̄1, ξ̄2, 0)

h(ξ̄1)

˛

˛

˛

˛

≤ 1

(B)

˛

˛

˛

˛

ρ(ξ̄1)

(2π)d/2h(ξ̄1)

˛

˛

˛

˛

≤ 1

(C) |ξ̄1
′
|−1h ∗ h(ξ̄1) ≤ h(ξ̄1)

■ The condition (C) for d = 2, 3 can be satisfied choosing as kernel

h(ξ̄1) =
c

(1 + |ξ̄1|2)2
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Vlasov-Poisson equations

Let consider the 1-dimensional Vlasov-Poisson system of equations

∂tf + v · ∂xf + E(x, t) · ∂vf = 0,

∂xE(x, t) = −∂xxφ(x, t) =

∫

R

f dv − 1 (4)

Let assume periodic boundary conditions in the space dimension, and f → 0
as |v| → ∞.

f̂(k, ξ, t) = f̂(k, ξ + t
2π

L
k, 0)

−
∫ t

0

ds
∞
∑

k′=−∞
k′ 6=0

p(k′)
(π2/3) k′ (ξ + (t − s) 2π

L k)

2π/L

× f̂(k − k′, ξ + (t − s)
2π

L
k, s)

[

f̂(k′, 0, t) − δ(k′)
]

(5)
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Vlasov-Poisson equations

Strong landau damping: Only one species is considered, boundary conditions
are 2π-periodic in x̄, and the initial condition is

f(x̄, v̄, 0) = (1/2π)d/2 exp (−v̄2/2)[1 + A cos(k1x)]

0 10 20 30 40 50 60
t

-14

-12

-10

-8

-6

-4

-2

0

lo
g 

| F
1(ξ

, t
) 

- 
F

1* (ξ
, t

) 
|

∆ ξ = 10−1

∆ ξ = 10−2

∆ ξ = 10−3

0 10 20 30 40 50 60
t

-5

-4

-3

-2

-1

0

lo
g 

| E
 |

Classical numerical scheme

PDD

Numerical error and solution. Parameters: A = 0.5.
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Vlasov-Poisson equations

Linear landau damping ( A = 0.01).

0 0.5 1 1.5 2 2.5 3 3.5 4

β
-2

-1.5

-1

-0.5

0

γ

Numerical
Linear theory

0 0.5 1 1.5 2 2.5 3 3.5 4

β
1

1.5

2

2.5

3

ω

Numerical
Linear theory

Comparison with linear theory, as a function of the temperature β.
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Vlasov-Poisson equations
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Vlasov-Poisson equations
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Vlasov-Poisson equations

Figure 1: Computational domain
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Vlasov-Poisson equations

Figure 2: Computational domain
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Vlasov-Poisson equations

Figure 3: Computational domain
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Numerical examples

■ Numerical simulations for Vlasov-Poisson in 1D were runned
on the Matrix supercomputer located at the Rome
Supercomputing Center (CASPUR). The supercomputer is
equipped with 2, 048 processors linked among them by an
infiniband interconnection network.

■ Comparison is done with a parallelized upwind numerical
scheme.

■ Only one species is considered, boundary conditions are
2π-periodic in x̄, and the initial condition is

f(x̄, v̄, 0) = (1/2π)d/2 exp (−v̄2/2)[1 + A cos(k1x)]
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Vlasov-Poisson in 1D

Procs. TPDD

1 3115”

2 1581”

4 775”

8 368”

16 180”

32 92”

64 46”

128 24”

256 13”

512 7”
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Conclusions

■ Monte Carlo and Domain Decomposition allow for a “double”
parallelization.
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Conclusions

■ Monte Carlo and Domain Decomposition allow for a “double”
parallelization.

■ Stochastic differential equations can be efficiently computed
resorting to sequences of quasi-random numbers
(low-discrepancy sequences).
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Conclusions

■ Monte Carlo and Domain Decomposition allow for a “double”
parallelization.

■ Stochastic differential equations can be efficiently computed
resorting to sequences of quasi-random numbers
(low-discrepancy sequences).

■ The PDD method is fully scalable in contrast with the
classical DD.
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Conclusions

■ Monte Carlo and Domain Decomposition allow for a “double”
parallelization.

■ Stochastic differential equations can be efficiently computed
resorting to sequences of quasi-random numbers
(low-discrepancy sequences).

■ The PDD method is fully scalable in contrast with the
classical DD.

■ In addition, it appears that the algorithm is also naturally fault
tolerant .
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Conclusions

■ Monte Carlo and Domain Decomposition allow for a “double”
parallelization.

■ Stochastic differential equations can be efficiently computed
resorting to sequences of quasi-random numbers
(low-discrepancy sequences).

■ The PDD method is fully scalable in contrast with the
classical DD.

■ In addition, it appears that the algorithm is also naturally fault
tolerant .

■ Nowadays, it is becoming not only important to design and
exploit parallel algorithms, but also to be able to handle
possible failure of a certain number of processors. In some
case, even the failure of a single processor might stop or
ruine the entire computation.
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Conclusions

■ Monte Carlo and Domain Decomposition allow for a “double”
parallelization.

■ Stochastic differential equations can be efficiently computed
resorting to sequences of quasi-random numbers
(low-discrepancy sequences).

■ The PDD method is fully scalable in contrast with the
classical DD.

■ In addition, it appears that the algorithm is also naturally fault
tolerant .

■ Nowadays, it is becoming not only important to design and
exploit parallel algorithms, but also to be able to handle
possible failure of a certain number of processors. In some
case, even the failure of a single processor might stop or
ruine the entire computation.

■ This algorithm is fully exempt from such disease, and the
failure of a percentage of the in-use processors only affects
the error, but does neither imply any stop of the entire
process, nor produce false results.
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Future work

■ Monte Carlo for large scale linear algebra problems?
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Future work

■ Monte Carlo for large scale linear algebra problems?
■ Of course, but again, hybrid ideas !
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