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The target

Design efficient preconditioners to solve the system:

Au = b ⇔
[

A B
BT 0

] [
x
y

]
=

[
f
g

]

with A = AT ∈ Rn×n and B ∈ Rn×m (m ≤ n)

Overall goal

Find P such that P−1A has a better eigenvalue clustering
and a reduced condition number

−→ To reduce the number of MINRES iterations
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“Ideal” block diagonal preconditioner

Au = b ⇔
[

A B
BT 0

] [
x
y

]
=

[
f
g

]
Murphy, Golub and Wathen (2000):

P =

[
A 0
0 S

]

where S = BTA−1B is the Schur complement

Spectral properties

P−1A has at most four distinct eigenvalues 0, 1, 1±
√
5

2
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Color code∗

As much as possible:

� → when related to A

� → when related to B

� → when related to S (or any combination of A and B)

∗Except for the pictures
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“Approximate” block diagonal preconditioners

P =

[
A 0
0 S

]
→ P̃ =

[
Ã 0
0 S̃

]
Golub, Greif and Varah (2006):

Ã = A + BWBT and S̃ = BT (A + BWBT )−1B

with W symmetric positive semidefinite

Rees, Dollar and Wathen (2010):

Ã ≈ A and S̃ ≈ S

adapted to PDE-constrained optimization

Olshanskii and Simoncini (2010) for a spectral-based analysis

Benzi, Golub and Liesen (2005) for a survey
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Assumptions and framework

Au = b ⇔
[

A B
BT 0

] [
x
y

]
=

[
f
g

]

A is symmetric positive definite

B has full column rank

Additional assumptions

A has few very small eigenvalues

These eigenvalues and their associated eigenvectors are
available (or good approximations)
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In practice

How can we meet these additional assumptions?

A has few very small eigenvalues

→ First-level preconditioner

These eigenvalues and their associated eigenvectors are
available (or good approximations)

→ Krylov method with Chebyshev filters on Ax = f
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Chebyshev-based Krylov method

{λ̃1, · · · , λ̃10} and [ũ1 · · · ũ10]:

obtained using a Conjugate Gradient method preconditioned by
Chebyshev polynomials playing the role of spectral filter

λ̃i (in blue) ‖Aũi − λ̃i ũi‖
|λ̃i |

Golub, Ruiz and Touhami (2007)
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SLRU-type spectral approximation of A−1

P =

[
A 0
0 S

]
→ P̃ =

[
Ã 0
0 S̃

]
?

Consider the low-rank spectral approximation∗:

A−1γ = 1
α In + UγΛ−1γ UT

γ

λmin(A) ≤ γ ≤ λmax(A)

Λγ = diag{λi}pi=1 with λi ≤ γ
Uγ ∈ Rn×p is the set of associated orthonormal eigenvectors

α > 0 is a scaling parameter

∗Carpentieri, Duff and Giraud (2003)
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Spectral properties of A−1γ A

A−1γ = 1
α In + UγΛ−1γ UT

γ

The eigenvalues {µi}ni=1 of A−1γ A satisfy:{
µi = 1 + λi

α if λi ≤ γ (p eigenvalues)
µi = λi

α if λi > γ (n − p eigenvalues)

The eigenvalues {µi}ni=1 of A−1γ A are bounded within the interval[
min

(
α + λmin(A)

α
,
γ

α

)
,max

(
α + γ

α
,
λmax(A)

α

)]

−→ In terms of λmin(A), λmax(A), γ and α
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Illustration

A ∈ R300×300, λmin(A) ≈ 1.7 10−7, λmax(A) ≈ 3.8

Spectrum of A

γ = λmax(A)
100 ≈ 3.8 10−2

Λγ = diag{λi}42i=1 (λi ≤ γ)

Uγ ∈ R300×42

α =
tr(A)−tr(Λγ)

258 = 1.16
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Illustration (continued)

A ∈ R300×300, λmin(A) ≈ 1.7 10−7, λmax(A) ≈ 3.8
Aγ ∈ R300×300, λmin(Aγ) ≈ 1.7 10−7, λmax(Aγ) ≈ 1.2
A−1γ A ∈ R300×300, µmin ≈ 4.3 10−2, µmax ≈ 3.3

The eigenvalues of A−1γ A
are guaranteed to be

in the interval[
3.3 10−2, 3.3

]

Eigenvalue dist. of A−1γ A
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Approximation of the Schur complement and of its inverse

Sγ = BTA−1γ B = BT ( 1
α In + UγΛ−1γ UT

γ )B

whose inverse is given by (Sherman-Morrison-Woodbury formula):

S−1γ = α(BTB)−
1
2 (Im − K ( 1

αΛγ + KTK )−1KT )(BTB)−
1
2︸ ︷︷ ︸

p×p

where K = (BTB)−
1
2 BTUγ ∈ Rm×p
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Approximation of the Schur complement and of its inverse

Sγ = BTA−1γ B = BT ( 1
α In + UγΛ−1γ UT

γ )B

whose inverse is given by (Sherman-Morrison-Woodbury formula):

S−1γ = α(BTB)−
1
2 (Im − K ( 1

αΛγ + KTK )−1KT )(BTB)−
1
2︸ ︷︷ ︸

p×p

where K = (BTB)−
1
2 BTUγ ∈ Rm×p

Remark: The singular values of K correspond to the cosines of
the principal angles between Im(B) and Im(Uγ)
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Spectral properties of S−1γ S

Main result

The eigenvalues {νi}mi=1 of S−1γ S are bounded within the interval[
α

α + λmax(A) + γ
,
α + γ

γ

]

In terms of λmax(A), γ and α

κ(S−1γ S) is fully controlled by the choice of α and γ:

e.g., if γ =
λmax(A)

100
and α =

λmax(A) + γ

2
, then

νi ∈
[
1
3
,
103
2

]
and κ(S−1γ S) ≤ 154.5
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Illustration

A ∈ R300×300, λmin(A) ≈ 1.7 10−7, λmax(A) ≈ 3.8

Spectrum of A

γ = λmax(A)
100 ≈ 3.8 10−2

Λγ = diag{λi}42i=1 (λi ≤ γ)

Uγ ∈ R300×42

α =
tr(A)−tr(Λγ)

258 = 1.16

The eigenvalues of S−1γ S
are guaranteed in

[0.2, 31.5]
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Illustration (continued)

S ∈ R150×150, λmin(S) ≈ 2.4 10−6, λmax(S) ≈ 1.4 105

Sγ ∈ R150×150, λmin(Sγ) ≈ 2.1 10−6, λmax(Sγ) ≈ 1.4 105

S−1γ S ∈ R150×150, νmin ≈ 0.56, νmax ≈ 16.28

Spectrum of S Eigenvalue dist. of S−1γ S
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Two alternatives for an efficient spectral preconditioner

P1 =

[
A 0
0 Sγ

]
P2 =

[
Aγ 0
0 Sγ

]

with

A−1γ = 1
α In + UγΛ−1γ UT

γ

S−1γ = α(BTB)−
1
2 (Im − K ( 1

αΛγ + KTK )−1KT )(BTB)−
1
2

where K = (BTB)−
1
2 BTUγ
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Spectral properties of A

A =

[
A B

BT 0

]

A is symmetric positive definite, with eigenvalues {λi}ni=1

B has full column rank, with singular values {σi}mi=1

Rusten and Winther (1992)

The eigenvalues of A are bounded within I− ∪ I + with

I− =

[
λmin−

√
λ2

min+4σ2
max

2 ,
λmax−

√
λ2

max+4σ2
min

2

]
I + =

[
λmin,

λmax+
√
λ2

max+4σ2
max

2

]
For our illustration: Spec(A) in [−2,−2.4 10−7] ∪ [1.7 10−7, 4.7] and κ(A) ≤ 2. 107
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Spectral properties of P−11 A

A =

[
A B

BT 0

]
preconditioned by P1 =

[
A 0
0 Sγ

]

With Rusten and Winther, applied on

P−1/21 AP−1/21 =

[
In Q1

QT
1 0

]
,

where Q1 = A−1/2BS−1/2γ satisfies QT
1 Q1 = S−1/2γ SS−1/2γ ∼ S−1γ S

=⇒ λi (In) = 1 and σ2i (Q1) = λi (S−1γ S) = νi
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Spectral properties of P−11 A (Rusten and Winther)

The eigenvalues of P−11 A are bounded within the intervals

[
1−
√
1 + 4νmax

2
,
1−
√
1 + 4νmin

2

]⋃[
1,

1 +
√
1 + 4νmax

2

]

where

νmin and νmax ∈
[

α

α+ λmax(A) + γ
,
α+ γ

γ

]

(eigenvalues of S−1γ S)

−→ In terms of λmax(A), γ and α
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Spectral properties of P−11 A (direct proof)

The eigenvalues of P−11 A are bounded within the (refined) intervals

[
1−
√
1 + 4νmax

2
,
1−
√
1 + 4νmin

2

]⋃
{1}

⋃[
1 +
√
1 + 4νmin

2
,
1 +
√
1 + 4νmax

2

]

where

νmin and νmax ∈
[

α

α+ λmax(A) + γ
,
α+ γ

γ

]

(eigenvalues of S−1γ S)

−→ In terms of λmax(A), γ and α
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Spectral properties of P−12 A

A =

[
A B

BT 0

]
preconditioned by P2 =

[
Aγ 0
0 Sγ

]

With Rusten and Winther, applied on

P−1/22 AP−1/22 =

[
A−1/2γ AA−1/2γ Q2

QT
2 0

]
,

where Q2 = A−1/2γ BS−1/2γ satisfies QT
2 Q2 = S−1/2γ SγS

−1/2
γ = Im

=⇒ λi (A
−1/2
γ AA−1/2γ ) = λi (A−1γ A) = µi and σ2i (Q2) = 1
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Spectral properties of P−12 A (Rusten and Winther)

The eigenvalues of P−12 A are bounded within the intervals

µmin −
√
µ2

min + 4

2
,
µmax −

√
µ2

max + 4
2

⋃[
µmin,

µmax +
√
µ2

max + 4
2

]

where

µmin = min
(
α+ λmin(A)

α
,
γ

α

)
and µmax = max

(
α+ γ

α
,
λmax(A)

α

)

(eigenvalues of A−1γ A)

−→ In terms of λmin(A), λmax(A), γ and α



26

Motivation Two spectral preconditioners Recombination issue

P−11 A versus P−12 A (Intervals in terms of λmax(A), λmin(A), γ and α)

[−5.13,−0.19] ∪ {1} ∪ [1.19, 6.13] [−0.98,−0.28] ∪ [0.03, 3.56]

κ(P−11 A) ≤ 32.3 κ(P−12 A) ≤ 119

−→ Reduced condition numbers in both cases
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Varying γ (“True” intervals)

γ |{λi ≤ γ}| Spec(P−1
1 A) κ(P−1

1 A)

λmax(A)
100 42 [−3.57,−0.40] ∪ [1, 4.57] 11.43

λmax(A)
1000 33 [−12.12,−0.39] ∪ [1, 13.12] 33.64

λmax(A)
10000 23 [−27.20,−0.38] ∪ [1, 28.20] 74.21

γ |{λi ≤ γ}| Spec(P−1
2 A) κ(P−1

2 A)

λmax(A)
100 42 [−0.90,−0.45] ∪ [9.7 10−2, 3.28] 33.81

λmax(A)
1000 33 [−0.98,−0.43] ∪ [1.1 10−2, 3.40] 309.09

λmax(A)
10000 23 [−0.99,−0.42] ∪ [2.5 10−3, 3.52] 1408.00



28

Motivation Two spectral preconditioners Recombination issue

Convergence bound of preconditioned MINRES

Assume that Spec(P−1A) ⊂ [−a,−b] ∪ [c , d ], with a, b, c , d > 0

The iteration residual r2k = b −Au2k satisfies the bound

‖r2k‖P−1

‖r0‖P−1
≤ 2


√

ad −
√

bc√
ad +

√
bc︸ ︷︷ ︸

→ slope


k

→ Illustration on our example for various γ’s(
Stopping criterion in MINRES:

‖rk‖2
‖r0‖2

≤ 10−8
)
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MINRES for γ = λmax(A)
100

Convergence curves (P−11 -norm and P−12 -norm of relative residuals)
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MINRES for γ = λmax(A)
100 , γ = λmax(A)

1000 and γ = λmax(A)
10000

Convergence curves (P−11 -norm and P−12 -norm of relative residuals)
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Further comparisons (“True” intervals, γ = λmax (A)
100 )

P1 =

[
A 0
0 Sγ

]
PIBB =

[
In 0
0 BTB

]

P2 =

[
Aγ 0
0 Sγ

]
PABB =

[
A 0
0 BTB

]

P Spec(P−1A) κ(P−1A)

[−1.6,−2.4 10−6] ∪ [2.3 10−5, 3.8] 1.6 106

P1 [−3.6,−0.4] ∪ [1.0, 4.6] 11.4
P2 [−0.9,−0.5] ∪ [9.7 10−2, 3.3] 33.8
PIBB [−1.0,−0.4] ∪ [3.0 10−5, 3.8] 1.3 105

PABB [−8.9 102,−0.4] ∪ [1.0, 8.9 102] 2.5 103
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MINRES for γ = λmax(A)
100

Convergence curves (P−1-norm of relative residuals)



33

Motivation Two spectral preconditioners Recombination issue

First-level preconditioner

Preconditioner on A:
M = RTR

Preconditioner on B :
N = W TW

⇓

PInit =

[
M 0
0 N

]

A P2-type preconditioner applied to P−1InitA amounts to

A =

[
A B

BT 0

]
preconditioned by P̃2 =

[
Ãγ 0
0 S̃γ

]
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Two levels of preconditioner in one

where

Ã−1γ = 1
αM−1 + UγΛ−1γ UT

γ

S̃−1γ = α(BTM−1B)−
1
2 (Im − K ( 1

αΛγ + KTK )−1KT )(BTM−1B)−
1
2

K = (BTM−1B)−
1
2 BTUγ

and

λmin(M−1A) ≤ γ ≤ λmax(M−1A)

Λγ = diag{λi (M−1A)}pi=1 with λi ≤ γ
Uγ ∈ Rn×p is the set of associated orthonormal eigenvectors

α > 0 is a scaling parameter
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Construction of Ã−1γ and S̃−1γ

Ã−1γ = 1
αM−1 + UγΛ−1γ UT

γ

S̃−1γ = α(BTM−1B)−
1
2 (Im − K ( 1

αΛγ + KTK )−1KT )(BTM−1B)−
1
2

K = (BTM−1B)−
1
2 BTUγ

1 Extract Uγ and Λγ :

Chebyshev-based Krylov method on AUγ = MUγΛγ

2 (BTM−1B)−1v

↪→
[

M B
BT 0

]
. . .
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Interaction between Im(B) and Im(Uγ)

Recombination issue

S−1γ = α(BTB)−
1
2 (Im − K ( 1

αΛγ + KTK )−1KT )(BTB)−
1
2︸ ︷︷ ︸

Key part

where K = (BTB)−
1
2 BTUγ = QTUγ , with

Q: orthonormal basis of Im(B)

Uγ : orthonormal basis of Im(Uγ)

−→ The singular values of K correspond to the cosines of the
principal angles between Im(B) and Im(Uγ)
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Interaction between Im(B) and Im(Uγ) (continued)

Consider the Singular Value Decomposition of K = QTUγ :

Y TKZ = Y TQT︸ ︷︷ ︸
Princ. vec.
in Im(B)

(p first lines)

UγZ︸︷︷︸
Princ. vec.
in Im(Uγ)

=
Cγ
0

where

Y ∈ Rm×m and Z ∈ Rp×p are orthogonal matrices

Cγ = diag{cos θi}pi=1 (that we assume nonsingular)

{θi}pi=1 ∈ [0, π/2[ are the principal angles
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Interaction between Im(B) and Im(Uγ) (continued)

S−1γ = α(BTB)−
1
2 (Im − K ( 1

αΛγ + KTK )−1KT )(BTB)−
1
2︸ ︷︷ ︸

Key part

becomes, using Yγ = Y (:,1:p) and Vγ = UγZ (princ. vec.),

S−1γ = α(BTB)−
1
2 (Im − Yγ( 1

αC−1γ (V T
γ AVγ)C−1γ + Ip)−1Y T

γ )(BTB)−
1
2︸ ︷︷ ︸

Key part

where V T
γ AVγ = ZTUT

γ AUγZ = ZT ΛγZ
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Interaction between Im(B) and Im(Uγ) (continued)

S−1γ = α(BTB)−
1
2 (Im − Yγ( 1

αC−1γ (V T
γ AVγ)C−1γ + Ip)−1Y T

γ )(BTB)−
1
2︸ ︷︷ ︸

Key part

where V T
γ AVγ = ZTUT

γ AUγZ = ZT ΛγZ

Observing that:

1
α
‖C−1γ (V T

γ AVγ)C−1γ ‖2 ≤
1
α

max {λi}pi=1
min {cos2 θi}pi=1

≤ 1
α

γ

min {cos2 θi}pi=1
,

roughly speaking, small eigenvalues “have an impact” on S−1γ when:

min {cos2 θi}pi=1 . O(γ/α)
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Interaction between Im(B) and Im(Uγ) (continued)

S−1γ = α(BTB)−
1
2 (Im − Yγ( 1

αC−1γ (V T
γ AVγ)C−1γ + Ip)−1Y T

γ )(BTB)−
1
2︸ ︷︷ ︸

Key part

with
1
α
‖C−1γ (V T

γ AVγ)C−1γ ‖2 ≤
1
α

γ

min {cos2 θi}pi=1

that is, if

1
α

γ

min {cos2 θi}pi=1
� 1, or equivalently, min {cos2 θi}pi=1 �

γ

α
,

the spectral information contained in V T
γ AVγ is inhibited

(→ problem dependent)
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Illustration on a toy example

A ∈ R500×500 is a diagonal matrix with entries in ]0, 1] and s.t.:

p = 5 (γ = 10−1 and α = 1)

Λγ = A(1:5,1:5)

Uγ = I500(:,1:5)

B ∈ R500×200 is set to B =

[
Cγ 0

B1Sγ B2

]
, where

Cγ = diag{cos θi}5i=1 and Sγ = diag{sin θi}5i=1

Q =
[

B1 B2
]
∈ R495×200 with QTQ = I200

Ensuring that

B has othonormal columns

(BTB)−
1
2 BTUγ = BTUγ =

Cγ
0
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Illustration on a toy example (continued)

Implies a one to one match

Eigenvectors versus principal vectors:

Vγ = Uγ

Eigenvalues versus cosines of principal angles:

Key part = C−1γ ΛγC−1γ + I5
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Illustration on a toy example (continued)

Λγ = diag(10−8, 10−6, 10−4, 10−2, 10−1) and Cγ = diag{cos θi}5
i=1, where:

cos θ1 = 0.3
cos θ2 = 0.3
cos θ3 = 0.3
cos θ4 = 0.3
cos θ5 = 0.3


cos θ1 = 0.3
cos θ2 = 10−3

cos θ3 = 0.3
cos θ4 = 0.3
cos θ5 = 0.3


cos θ1 = 10−6

cos θ2 = 10−5

cos θ3 = 10−4

cos θ4 = 10−3

cos θ5 = 0.3

Convergence curves (2-norm and P−12 -norm of relative residuals)
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Interaction between Im(B) and Im(Uγ) (continued)

From these observations, we can extrapolate (bet?) that:

The bad conditioning contained in the smallest eigenvalues of A (if any)
will impact and spoil the convergence of MINRES
if (some of) the principal angles between Im(B)

and the associated invariant subspace Im(Uγ), are close to π/2

because

the key part: 1
αC−1γ (V T

γ AVγ)C−1γ + Ip reveals that
the square of the inverse of the cosines of these principal angles

push the corresponding bad conditioning of A
to “show up” in the Schur complement inverse
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Short recap

Λγ = diag{λi ≤ γ}pi=1 and Uγ contains the orthonormal eigenvectors

(SLRU) A−1γ = 1
α In + UγΛ−1γ UT

γ

S−1γ = BTA−1γ B = α(BTB)−
1
2 (Im − K ( 1

αΛγ + KTK )−1KT )(BTB)−
1
2︸ ︷︷ ︸

Key part

where K = (BTB)−
1
2 BTUγ = QTUγ such that

(SVD) Y TKZ = Y TQT︸ ︷︷ ︸
Princ. vec.
in Im(B)

UγZ︸︷︷︸
Princ. vec.
in Im(Uγ)

=
Cγ
0

Cγ = diag{cos θi}pi=1 ({θi}pi=1 ∈ [0, π/2[ the principal angles)
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Short recap (continued) and a question

S−1γ = α(BTB)−
1
2 (Im − Yγ( 1

αC−1γ (V T
γ AVγ)C−1γ + Ip)−1Y T

γ )(BTB)−
1
2︸ ︷︷ ︸

Key part

where Vγ = UγZ are the principal vectors in Im(Uγ) and where the
smaller the associated cosines are, the “greater” the impact may be

A question:

Among the “available” information (Λγ , Uγ , Vγ and Cγ),
which one is the most relevant to accelerate the convergence of MINRES

between
a subset of smallest eigenvalues and their associated eigenvectors and

a subset of smallest cosines and their associated principal vectors in Im(Uγ)?
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“Smart” selection of principal vectors in Im(Uγ)

S−1γ = α(BTB)−
1
2 (Im − Yγ( 1

αC−1γ (V T
γ AVγ)C−1γ + Ip)−1Y T

γ )(BTB)−
1
2

Select the principal vectors Vγ = UγZ whose associated principal
angles satisfy (let ` be the number of such vectors):

cos2 θi ≤ c
γ

α
, c ∈

[
1
4
, 4
]

i.e., select the appropriate columns in Z (yielding Zθ ∈ Rp×`), and
“restrict” S−1γ accordingly:

S−1θ = α(BTB)−
1
2 (Im − Yθ( 1

αC−1θ (V T
θ AVθ)C−1θ + I`)−1Y T

θ )(BTB)−
1
2

where Vθ = UγZθ ∈ Rn×`, Cθ ∈ R`×` and Yθ ∈ Rm×`
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A “smarter” P2

In practice, this amounts to use the preconditioner:

Pθ =

[
Aθ 0
0 Sθ

]

where

A−1θ = 1
α In + Vθ(V T

θ AVθ)−1V T
θ

S−1θ = α(BTB)−
1
2
(
Im − Kθ( 1

αV T
θ AVθ + KT

θ Kθ)−1KT
θ

)
(BTB)−

1
2

with Kθ = (BTB)−
1
2 BTVθ
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P2 versus Pθ

P2 =

[
Aγ 0
0 Sγ

]
Pθ =

[
Aθ 0
0 Sθ

]
with

A−1γ = 1
α In + UγΛ−1γ UT

γ

S−1γ = α(BTB)−
1
2
(
Im − K ( 1

αΛγ + KTK )−1KT ) (BTB)−
1
2

K = (BTB)−
1
2 BTUγ

A−1θ = 1
α In + Vθ(V T

θ AVθ)−1V T
θ

S−1θ = α(BTB)−
1
2
(
Im − Kθ( 1

αV T
θ AVθ + KT

θ Kθ)−1KT
θ

)
(BTB)−

1
2

Kθ = (BTB)−
1
2 BTVθ
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P2 versus Pθ on our example

γ = λmax (A)
100 ≈ 3.8 10−2 −→ p = 42

cos2 θi ≤ 4
γ

α
(c = 4) −→ ` = 22

Comparison on Minres preconditioned by:

P2 built with ` = 22 eigenvectors
corresponding to the ` smallest eigenvalues λi ’s

(among the p ones below γ)

versus

Pθ built with ` = 22 principal vectors
corresponding to the ` smallest cos θi ’s

(among the p ones)
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MINRES preconditioned using P2 versus Pθ (` = 22)

Convergence curves (P−1θ -norm and P−12 -norm of relative residuals)
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MINRES preconditioned using P2 versus Pθ (for various `)

Comparison on Minres preconditioned by:

P2 built with ` eigenvectors
corresponding to the ` smallest eigenvalues λi ’s

(among the p ones below γ)

versus

Pθ built with ` principal vectors
corresponding to the ` smallest cos θi ’s

(among the p ones)

where

` = 1, 2, 7, 12, 17, 22, 27, 32, 37, 42
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MINRES preconditioned using P2 versus Pθ (for ` = 1, 2, 7)

Convergence curves (P−1θ -norm and P−12 -norm of relative residuals)
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MINRES preconditioned using P2 versus Pθ (for ` = 12, 17, 22)

Convergence curves (P−1θ -norm and P−12 -norm of relative residuals)
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MINRES preconditioned using P2 versus Pθ (for ` = 27, 32, 37)

Convergence curves (P−1θ -norm and P−12 -norm of relative residuals)
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MINRES preconditioned using P2 versus Pθ (for ` = 42)

Convergence curves (P−1θ -norm and P−12 -norm of relative residuals)
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MINRES preconditioned using P2 versus Pθ (overall picture)

` versus # MINRES it. ` versus
#MINRES +P2 it.
#MINRES +Pθ it.
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Conclusion

Address the (bad) conditioning of A and that of B separately

→ Using a low-rank spectral approximation

Recombine this spectral information appropriately to build an
efficient block diagonal preconditioner

→ Through the Schur complement approximation

Get some insight on the recombination issue between A and B

→ Through some analytic dissection , and illustrations
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Perspectives

Look deeper into the recombination issue

Use a similar spectral approach to address the bad
conditioning of B

Analyse the cost and the amortization (multiple r.h.s.)

Derive practical and efficient implementations

Perform numerical experiments on academic problems and
applications
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Thank you for your attention!
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Construction of S̃−1γ

How to deal with
[

M B
BT 0

]
?

1 Using Schilders’ factorization, see Dollar and Wathen (2006)

2 Using a preconditioner of the form
[

D−1 0
0 (BTD−1B)−1

]
where D is diagonal, see Golub, Greif and Varah (2006)

3 Using a similar spectral approach on BTM−1B . How can we
include efficiently spectral information in the Schur
complement? ⇒ We work on it !
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MINRES for γ = λmax(A)
100 , γ = λmax(A)

1000 and γ = λmax(A)
10000

Convergence curves (P−1-norm of relative residuals)
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Spectrum of PIBB and PABB
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