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Motivation
The target

Design efficient preconditioners to solve the system:

with A= AT € R™" and B € R™™ (m < n)

Overall goal

Find P such that P~ A has a better eigenvalue clustering
and a reduced condition number

—— To reduce the number of MINRES iterations




Motivation
“Ideal” block diagonal preconditioner

ween [ 421100

Murphy, Golub and Wathen (2000):

P=[o 3]

where S = BT A=!B is the Schur complement

1++v/5

Spectral properties
P~1 A has at most four distinct eigenvalues 0,1, > J




Motivation

Color code*

As much as possible:

B — when related to A
B — when related to B

B — when related to S (or any combination of A and B)

*Except for the pictures



Motivation
“Approximate” block diagonal preconditioners

SHEES

@ Golub, Greif and Varah (2006):

O
n o
| I

A=A+BWBT and S5=BT(A+BWB') !B

with W symmetric positive semidefinite
@ Rees, Dollar and Wathen (2010):

A~A and S~5S

adapted to PDE-constrained optimization
@ Olshanskii and Simoncini (2010) for a spectral-based analysis

@ Benzi, Golub and Liesen (2005) for a survey



Motivation

Assumptions and framework

wese [ 421001

@ A is symmetric positive definite

@ B has full column rank

Additional assumptions

@ A has few very small eigenvalues

@ These eigenvalues and their associated eigenvectors are
available (or good approximations)



Motivation

In practice

’ How can we meet these additional assumptions?

@ A has few very small eigenvalues

— First-level preconditioner

@ These eigenvalues and their associated eigenvectors are
available (or good approximations)

— Krylov method with Chebyshev filters on Ax = f



Chebyshev-based Krylov method

{:\1,-" ,:\10} and [L~11 s L~110]Z

obtained using a Conjugate Gradient method preconditioned by
Chebyshev polynomials playing the role of spectral filter

2 fis
10 eigs. b o
15 ¢4 (Ay100)
-

“ % “‘ 10110
05 !
10 10 10" 10 10 0 2 4 6 8 10

Ai (in blue) AL — Nitii]
|Ail

Golub, Ruiz and Touhami (2007) 10



Two spectral preconditioners

SLRU-type spectral approximation of A~}

A0 . A0
p— p— ~?
P [05]%7: [05].

Consider the low-rank spectral approximation™:

-1 _ 1 —1T
AT =11, U AU

° )\min(A) <~ < )\max(A)
o A\, =diag{\;}7_; with \; <~
e U, € R"™P is the set of associated orthonormal eigenvectors

@ « > 0 is a scaling parameter

*Carpentieri, Duff and Giraud (2003) 1



Two spectral preconditioners
Spectral properties of A;,lA

— 1T —1T
AT =11, U AU

The eigenvalues {y;}7_; of AT LA satisfy:

Ai

pi =1+ % if A\ <~v (peigenvalues)
Hi =" if Ai>7v (n— p eigenvalues)

The eigenvalues {y;}7_; of AZ LA are bounded within the interval

o (4288 2) s (22,00

— In terms of Apin(A), Amax(A), v and «
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Two spectral preconditioners

[[lustration

A € R300x300 3 - (A) ~ 1.7 1077, Amax(A) ~ 3.8

o 42 eigs. below the threshold « )\max A —

160 w:}\mu“m) : ] ’y = 710(() ) ~ 38 10 2
A Lo =zt o<
Z:’ ° U’y c R300><42

Z: ... e | B tr(A)_tr(/\ ) B

D ‘ | | 0o o= "5 =116

Spectrum of A
13



Two spectral preconditioners

lllustration (continued)

o A g R300x300 A - (A)~1.71077, Amax(A) ~ 3.8
o A € [R300x300 Amin(A,) ~ 1.7 10~7, Amax(Ay) ~ 1.2
o A;lA € R300%300 ) -~ 4.31072, fimax & 3.3

10

s Apa (A sy {
. . (f““f— B —
The eigenvalues of A_ A 4

are guaranteed to be .
in the interval .

[3.31072,3.3] i

min (i;m‘“@,%):o.og

. . 1
Eigenvalue dist. of AZ-A 14



Two spectral preconditioners

Approximation of the Schur complement and of its inverse

S, =BTA'B=BT(zl,+ U,A;TU])B

whose inverse is given by (Sherman-Morrison-Woodbury formula):

S = o(BTB) 2(I — K(AA, + KTK)"1KT)(BTB)"z

)4

N —
pxp

where K = (BTB)"2BT U, € R™<P

15



Two spectral preconditioners

Approximation of the Schur complement and of its inverse

S, =BTAZ'B=BT(ZI,+ U,A;TU])B

whose inverse is given by (Sherman-Morrison-Woodbury formula):

S;t = a(BTB) 2 (Im — K(AN\, + KTK)IKT)(BTB) 2

—_——
pxp

where K = (BTB)_%BTUV € Rm*p
Remark: The singular values of K correspond to the cosines of

the principal angles between Zm(B) and Zm(U.,) 15



Two spectral preconditioners
Spectral properties of 5{15

Main result

The eigenvalues {1}/, of 5SS are bounded within the interval

[ a a+’y]
@ + Amax(A) i

@ In terms of \ax(A),y and «

o x(S;1S) is fully controlled by the choice of o and ~:

Amax(A) and o = Amax(A) + v

h
100 2 , then

eg., ifv=

11
Vi € [3, 23] and /47(5;15) < 1545

16



Two spectral preconditioners
lllustration

A€ R300x300 3 L (A) &~ 1.7 1077, Amax(A) ~ 3.8

o v = 2maxld) 351072

100
2r — di 142 .
I o Ny =diag{Ai}iZ; (Ai <)
42 eigs. below the threshold —
AP ISR S s T e ° U’y c R300><42
et _ u(A)-tr(Ay) _

The eigenvalues of 57_15
are guaranteed in

Spectrum of A [0.2,31.5]

17




Two spectral preconditioners

lllustration (continued)

0 S ¢ RIOXIS0 A L (S)~2.4107° Anax(S) =~ 1.4 10°
0 S, € RIOXIS0 X 1(5y) & 2.1 1078, Amax(Sy) & 1.4 10°
o SIS e RIPOM0 i & 0.56, Umax & 16.28

2
PPN JE PP P RN 10

Spectrum of S Eigenvalue dist. of 57_15
18



Two spectral preconditioners

Two alternatives for an efficient spectral preconditioner

with

-1 _ 1 -1yT
AL = Lh 4 U AU

1 1
St =a(BTB) 2(lm— K(2A + KTK)tKT)(BTB) 2

where K = (BTB)"2BT U,

19



Two spectral preconditioners

Spectral properties of A

A B
A=[er o]
@ Ais symmetric positive definite, with eigenvalues {\;}7_;
@ B has full column rank, with singular values {o;}",
Rusten and Winther (1992)

The eigenvalues of A are bounded within /= U /™ with

- [A—\/AT A—W}
- : ,

2

/+ _ )\ )\max+ >‘r2nax+402max
min 2

For our illustration: Spec(.A) in [-2,—2.41077] U [1.71077,4.7] and x(A) < 2.107
20



Two spectral preconditioners
: -1
Spectral properties of P; A

A= [ BAT I(B) ] preconditioned by

With Rusten and Winther, applied on

- - I Q
Pl 1/2./4731 1/2 = |: QIT 01 :| s

where Q; = A_1/285;1/2 satisfies Q; Q1 = 551/255;1/2~ S;ts

— )\;(/,,) =1 and 0‘,2(Q1) = )\,‘(S,Y_IS) =

21



Two spectral preconditioners

Spectral properties of P; *.A (Rusten and Winther)

The eigenvalues of P; ' A are bounded within the intervals

where

[e] o+
a+>\max(A) +A/7 Y

Vmin and Vmax € |:

(eigenvalues of 5.15)

— In terms of Apax(A), v and «

22



Two spectral preconditioners

Spectral properties of P; 1A (direct proof)

The eigenvalues of 7, ' A are bounded within the (refined) intervals

where

«a a—l—’y]

Vmin and Vmax € )
mn me |:O£ aF )\max(A) + Y

(eigenvalues of 5. 15)

— In terms of Anax(A),~y and o
23



Two spectral preconditioners
: -1
Spectral properties of P, " A

A B " 0
A= [ BT o ] preconditioned by | P> = [ 0 s, }

With Rusten and Winther, applied on

A;1/2AA;1/2 Q,
Qf 0 |’

1/2 1/2 _

AP,

where Q, = A;Y/?BS; /7 satisfies QF @, = S, /25,57 = I,

— N(ATPAATY?) = N(ATTA) = i and 02(Q2) =

24



Two spectral preconditioners

Spectral properties of P, *.A (Rusten and Winther)

The are bounded within the intervals

Mmax + vV ,U‘gnax + 4
’ 2

min

R
2 ’ 2

where

. (a—l—)\min(A) 1) q _ (a—&—w )\maX(A)>
Hmin =mMin | ——, and  fimax = max | ——, ———
«a for ot ot

(eigenvalues of AJ1A)

— In terms of Apin(A), Amax(A), v and «
25



Two spectral preconditioners

Pfl.A VErsus P{lA (Intervals in terms of Amax(A), Amin(A), 7 and «)

[-5.13,—0.19] U {1} U [1.19,6.13] [—0.98, —0.28] U [0.03, 3.56]

= AT

| — Reduced condition numbers in both cases |

26



Two spectral preconditioners

Varying Y (“True” intervals)

v A <A Spec(P; " A) w(PA)
max(gA) 42 [-3.57,—0.40] U [1,4.57] 11.43
TSBPA) 33 [-12.12,-0.39] U [1,13.12] | 33.64
Ames(4) 23 [-27.20,—-0.38] U [1, 28.20] 74.21

vy H{Ai <7}

ATTX((()A) 42 [—0.90, —0.45] U | ,3.28]
2mex(4) 33 [-0.98, —0.43] U ,3.40]
emac ) 23 [-0.99, —0.42] U | ,3.52]

27



Two spectral preconditioners

Convergence bound of preconditioned MINRES

Assume that Spec(P~1A) C [~a, —b] U[c, d], with a,b,c,d >0

The iteration residual r2 = b — Au?* satisfies the bound

k
Hr2k|!7>—1<2 Vad — Vbe
[P0llp—r = | Vad + Vbe
|
— slope

— Illustration on our example for various v's

Ir ]

171l

<Stopping criterion in MINRES: 2 < 10_8>

2 28



MINRES for v = 2

Two spectral preconditioners

max(A)
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Two spectral preconditioners

MINRES for y = 2medA) o — dmsld) 5y ) — Anadd)

1000 10000

Convergence curves (P; *-norm and P, *-norm of relative residuals)

30



Two spectral preconditioners

Further comparisons  (“True” intervals, y = 2mex(4)

100

P Spec(P1A) k(P LA)
[-1.6,-24107° U [2310°>,3.8] | 1.610°
Py [-3.6, —0.4] U [1.0,4.6] 11.4
P, [-0.9, —0.5] U [9.71072,3.3] 33.8
Piss [-1.0,—0.4] U [3.0107°,3.8] | 1.310°
Pags | [-8.910%,-0.4] U [1.0,8.9107] 25103

31



Two spectral preconditioners

MINRES for v = Mf+g)/\)

i i i i
0 400 600 1200 1600 2000

Convergence curves (P~ 1-norm of relative residuals)
32



Two spectral preconditioners

First-level preconditioner

Preconditioner on A: Preconditioner on B:
M=RTR N=WTw

M 0
PlnitZ[ 0 N]

A P>-type preconditioner applied to P,;,-lt/l amounts to

[ A B . = [A, 0
A[BT 0]precondltloned by ’Pz—[ 0 Nv}

33



Two spectral preconditioners
Two levels of preconditioner in one

where

2

A-1 — 1p-1 —1yT
ATt = M7+ UASHU
51 = a(BTM1B) %Iy — K(AA, + KTK)IKT)(BTM1B)~2

K=(BTM-1B)"2BTU,

and

° Amin(/\/lilA) <~ < )\max(MilA)
o A, =diag{\i(M7A)}_ with \; <~
e U, € R™P is the set of associated orthonormal eigenvectors

@ « > 0 is a scaling parameter
34



Two spectral preconditioners

Construction of ’2\51 and 351

At = 1Mt 4 U AStUT

S =a(BTMB) 2 (I — K(2A, + KTK)1KT)(BTM~1B) >

K=(BTM~1B)2BTU,

@ Extract Uy and A;:
o Chebyshev-based Krylov method on AU, = MU, A,

@ (BTM-1B) 1y

[ M B
BT 0
35



Recombination issue

Interaction between Zm(B) and Zm(U,)

’ Recombination issue‘

S = a(BTB) 2(In — K(AA, + KTK)"1KT)(BTB) 2

Y

————
Key part

where K = (BTB) 2B U, = Q7 U, with
@ Q: orthonormal basis of Zm(B)

@ U,: orthonormal basis of Zm(U,)

— The singular values of K correspond to the cosines of the

principal angles between Zm(B) and Zm(U,)
36



Recombination issue

Interaction between Zm(B) and Zm(U,) (continued)

Consider the Singular Value Decomposition of K = QTUV:

YTKZ = Y'QT U,Z = &
S~ N~~~ 0
Princ. vec. Princ. vec.

in Zm(B) in Zm
(pnfirs,tnlines) Zm(Uy)

where

@ Y e R™™ and Z € RP*P are orthogonal matrices
o C, =diag{cosf;}”_, (that we assume nonsingular)

o {0;}7_, € [0,7/2[ are the principal angles
37



Recombination issue

Interaction between Zm(B) and Zm(U,) (continued)

S;1 = a(BTB) "2 (ln — K(3A, + KTK)KT)(BTB) "2

!

~—_———
Key part

becomes, using Y, = Y(:,1:p) and V, = U,Z (princ. vec.),

571 = a(BTB) 3(In— V(A C UV AV,) G + 1)V )(BTB)

[\

Key part

where V.TAV, = ZTUTAU,Z = ZT\, Z

38



Recombination issue

Interaction between Zm(B) and Zm(U,) (continued)

S =a(BTB) 2(Im— Yo (2L C NV AV,)C L + 1) LY )(BTB) 2

Key part

where VAV, = ZTUTAU,Z = ZT\, Z

Observing that:

1 max{\}F_; 1 Y
a min{cos?0;}7_; — « min{cos? 0;}"_,

1
aHC{l(V«,TAVy)CJle <

9

roughly speaking, small eigenvalues “have an impact” on S;! when:

min {cos? 0;}7_;, < O(v/a)

39



Recombination issue

Interaction between Zm(B) and Zm(U,) (continued)

S =a(BTB) 2(Im— Yo (LGN VT AV,)C L + 1) LY )(BTB) 2

Key part

- 1 1 Y
th =[|C MV AL)C 2 < =
with NG (VAN < ez,

that is, if

1 gl
a min {cos? 6, }_,

<1, orequivalently, min{cos’;}7 > X
a

the spectral information contained in V,YTAVW is inhibited
(— problem dependent)
40



Recombination issue
lllustration on a toy example

o A € R300x500 i 5 diagonal matrix with entries in |0, 1] and s.t.:
ep=5 (y=10"tand a =1)
o A\, = A(1:5,1:5)
o U, = Isoo(:,1:5)

@ B e R500%200 jg et to B = [ G 0 } , where

BiS, B>
o C, =diag{cos;}>_; and S, = diag{sin6;}>_,
o Q=[ B By ] € R¥20 with QT Q = hoo

@ B has othonormal columns

o (B"B) :BTU,=BTU, =

ol N

41



Recombination issue

lllustration on a toy example (continued)

’ Implies a one to one match ‘

@ Eigenvectors versus principal vectors:

e Eigenvalues versus cosines of principal angles:
Key part = Cfl/\7 C{l +I5

42



Recombination issue

lllustration on a toy example (continued)

A, = diag(1078,107°,107%,1072,107") and C, = diag{cos0;};_,, where:

cosf, = 0.3 cosf; = 0.3 cosf; =107
cosf = 0.3 cosf, = 1073 cosf, = 1072
cosfz = 0.3 cosfz = 0.3 cosfs = 107*
cosfy =0.3 cosfs = 0.3 cosf, = 1073
cosfs = 0.3 cosfs = 0.3 cosfs = 0.3

Convergence curves (2-norm and P, *-norm of relative residuals) 43



Recombination issue

Interaction between Zm(B) and Zm(U,) (continued)

From these observations, we can extrapolate (bet?) that:

The bad conditioning contained in the smallest eigenvalues of A (if any)
will impact and spoil the convergence of MINRES
if (some of) the principal angles between Zm(B)
and the associated invariant subspace Zm(U,), are close to /2

because

the key part: £C 1V AV,)C ! + I, reveals that
the square of the inverse of the cosines of these principal angles
push the corresponding bad conditioning of A
to “show up” in the Schur complement inverse

44



Recombination issue
Short recap

Ay = diag{\; < v}?_, and U, contains the orthonormal eigenvectors

(SLRU) Ajl=1/+ UAtUT
S;1=BTA1B = a(BTB) 2 (lm — K(AA, + KTK)IKT)(BTB) 2

| S —
Key part

where K = (BTB)f%BTUq, = QTU, such that

(VD) YTKZ = YTQT Uz = |2
—— ~—~— 0
Princ. vec.  Princ. vec.
inZm(B)  in Zm(U,)

C, = diag{cos0;}7_ 0; € [0, 7/2[ the principal angles
g i=1 =il




Recombination issue

Short recap (continued) and a question

St = a(BTB) 2 (Im— Y4 (LY (VT AV Gl + 1) LY. )(BT B)

Key part

where V., = U, Z are the principal vectors in Zm(U,) and where the
smaller the associated cosines are, the “greater” the impact may be

A question:

Among the “available” information (A, U,, V and C,),
which one is the most relevant to accelerate the convergence of MINRES
between
a subset of smallest eigenvalues and their associated eigenvectors and
a subset of smallest cosines and their associated principal vectors in Zm(U,)?

46



Recombination issue

“Smart” selection of principal vectors in Zm(U.)

S;1 = a(BTB) 2 (lm— Yy (L C; Y (VT AV,)C L + 1)1 Y.T)(BTB) 2

Select the principal vectors V., = U, Z whose associated principal
angles satisfy (let ¢ be the number of such vectors):

1
coszﬁ,-gcl, ceE [4,4]

Q

i.e., select the appropriate columns in Z (yielding Z, € RP*?), and
“restrict” 57*1 accordingly:

S, = a(BTB) 2 (Im — Yo(2 G, 1 (VT AVR)C, L + 1)~ YT )(BTB) 2

where Vp = U, 2 € R™¢, Cy € RE¥ and Yy € R™*¢




Recombination issue
A “smarter’” P,

In practice, this amounts to use the preconditioner:

where

At =L+ (VT AVy) YT

5;1 = a(BTB)_% (/m — Kg(é VQTAVQ + KQTKG)_lKgT) (BTB)_%

with Ky = (BTB)2BT
48



Recombination issue
— A'Y 0

with

-1_1 -1T
ATt =S+ Uy ASTU

St = a(BTB) % (In— K(2A, + KTK)IKT) (BTB) 3

K=(BTB)2BTU,

At =L+ (VT AVy)tYT

5;1 = Q(BTB)_% (Im - K@(éVGTAVQ —+ KQTKH)_IKGT) (BTB)—%

Ky = (BTB) 2BTV,

49




Recombination issue

P> versus Py on our example

Amax(A —
o y=2mxA) 38102 — p=42

oc0520;§41 (c=4) — (=22
a

Comparison on Minres preconditioned by:

built with
corresponding to the
(among the p ones below )

versus
built with

corresponding to the
(among the p ones)

50



Recombination issue

MINRES preconditioned using P, versus Py (¢ = 22)

Minres+P, with 22 eigenvec.

¢
10 \

‘ \
.

Convergence curves (P, *-norm and 7, '-norm of relative residuals)
51



Recombination issue

MINRES preconditioned using P, versus Py (for various /)

Comparison on Minres preconditioned by:

built with
corresponding to the
(among the p ones below )

VEersus
built with

corresponding to the
(among the p ones)

where

(=1,2,7,12, 17, 22, 27, 32, 37, 42

52



Recombination issue

MINRES preconditioned using P, versus Py (for £ =1,2,7)

Convergence curves (P, *-norm and 7, '-norm of relative residuals)

53



Recombination issue

MINRES preconditioned using P, versus Py (for £ = 12,17,22)

Convergence curves (P, '-norm and 7, '-norm of relative residuals)

54



Recombination issue

MINRES preconditioned using P, versus Py (for ¢ = 27,32,37)

Convergence curves (P, '-norm and 7, '-norm of relative residuals)

55



Recombination issue

MINRES preconditioned using P, versus Py (for ¢ = 42)

Minres+P, with 42 p

Minres+P, wih 42 eigenvec,

Convergence curves (P;l—norm and P, '-norm of relative residuals)
56



Recombination issue

MINRES preconditioned using P, versus Py (overall picture)

500

1'us # it Minres+P, with | princ. vec

a0t I us #it Minres+P, with | eigenvec. |

400

as0 -

aon -

250

200

150

100

#MINRES +7P; it.
#MINRES +Pg it. 57

¢ versus # MINRES it. { versus



Recombination issue

Conclusion

o Address the (bad) conditioning of A and that of B separately

— Using a low-rank spectral approximation

@ Recombine this spectral information appropriately to build an
efficient block diagonal preconditioner

— Through the Schur complement approximation

o Get some insight on the recombination issue between A and B

— Through some analytic dissection ® and illustrations

58



Recombination issue

Perspectives

Look deeper into the recombination issue

Use a similar spectral approach to address the bad
conditioning of B

Analyse the cost and the amortization (multiple r.h.s.)

Derive practical and efficient implementations

@ Perform numerical experiments on academic problems and
applications

59



Recombination issue

Thank you for your attention!

60



Recombination issue
Construction of S;l

How to deal with [ wiE }?

BT 0

© Using Schilders’ factorization, see Dollar and Wathen (2006)

. iy D 0
@ Using a preconditioner of the form [ 0 (BTD-1B)! ]

where D is diagonal, see Golub, Greif and Varah (2006)

@ Using a similar spectral approach on B M~1B. How can we
include efficiently spectral information in the Schur

complement? = We work on it !
61



Recombination issue

MINRES for y = 2medA) o — dmsld) 5y ) — Anadd)

1

Convergence curves (P~ "-norm of relative residuals)

62



Recombination issue

Spectrum of Pigg and Pags

Eigenvalue distribution of matrix eigenvalues of PIBB Eigervalue distribution of matrix eigenvalues of PABB

2r 2
18 18

16 I
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