Using Spectral Information to Precondition Saddle-Point Systems

Daniel Ruiz Annick Sartenaer Charlotte Tannier

IMA Department INPT - ENSEEIHT - IRIT

INP ENSEEIHT

Department of Mathematics University of Namur

Recent Advances on Optimization, Toulouse, July 2013

The target

Design efficient preconditioners to solve the system:

$$\mathcal{A}u = b \iff \begin{bmatrix} A & B \\ B^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

with
$$A = A^T \in \mathbb{R}^{n \times n}$$
 and $B \in \mathbb{R}^{n \times m}$ $(m \le n)$

Overall goal

Find \mathcal{P} such that $\mathcal{P}^{-1}\mathcal{A}$ has a better eigenvalue clustering and a reduced condition number

 \longrightarrow To reduce the number of MINRES iterations

"Ideal" block diagonal preconditioner

$$\mathcal{A}u = b \iff \begin{bmatrix} A & B \\ B^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

Murphy, Golub and Wathen (2000):

$$\mathcal{P} = \left[\begin{array}{cc} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{S} \end{array} \right]$$

where $S = B^T A^{-1} B$ is the Schur complement

Spectral properties

 $\mathcal{P}^{-1}\mathcal{A}$ has at most four distinct eigenvalues $0, 1, \frac{1\pm\sqrt{5}}{2}$

As much as possible:

- $\blacksquare \rightarrow \text{ when related to } A$
 - \rightarrow when related to *B*
- when related to S (or any combination of A and B)

*Except for the pictures

"Approximate" block diagonal preconditioners

$$\mathcal{P} = \left[\begin{array}{cc} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{S} \end{array} \right] \quad \rightarrow \quad \tilde{\mathcal{P}} = \left[\begin{array}{cc} \tilde{\mathbf{A}} & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{S}} \end{array} \right]$$

• Golub, Greif and Varah (2006):

$$\tilde{A} = A + BWB^T$$
 and $\tilde{S} = B^T (A + BWB^T)^{-1}B$

with W symmetric positive semidefinite

• Rees, Dollar and Wathen (2010):

$$\tilde{A} \approx A$$
 and $\tilde{S} \approx S$

adapted to PDE-constrained optimization

- Olshanskii and Simoncini (2010) for a spectral-based analysis
- Benzi, Golub and Liesen (2005) for a survey

Assumptions and framework

$$\mathcal{A}u = b \iff \left[\begin{array}{cc} A & B \\ B^T & 0 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} f \\ g \end{array}\right]$$

- A is symmetric positive definite
- B has full column rank

Additional assumptions

- A has few very small eigenvalues
- These eigenvalues and their associated eigenvectors are available (or good approximations)

How can we meet these additional assumptions?

- A has few very small eigenvalues
 - \rightarrow First-level preconditioner
- These eigenvalues and their associated eigenvectors are available (or good approximations)

 \rightarrow Krylov method with Chebyshev filters on Ax = f

Chebyshev-based Krylov method

 $\{\tilde{\lambda}_1, \cdots, \tilde{\lambda}_{10}\}$ and $[\tilde{u}_1 \cdots \tilde{u}_{10}]$:

obtained using a Conjugate Gradient method preconditioned by Chebyshev polynomials playing the role of spectral filter

SLRU-type spectral approximation of A^{-1}

Consider the low-rank spectral approximation*:

$$A_{\gamma}^{-1} = \frac{1}{\alpha} I_n + U_{\gamma} \Lambda_{\gamma}^{-1} U_{\gamma}^{T}$$

•
$$\lambda_{\min}(A) \leq \gamma \leq \lambda_{\max}(A)$$

- $\Lambda_{\gamma} = \operatorname{diag}\{\lambda_i\}_{i=1}^p$ with $\lambda_i \leq \gamma$
- $U_\gamma \in \mathbb{R}^{n imes p}$ is the set of associated orthonormal eigenvectors
- $\alpha > 0$ is a scaling parameter
- *Carpentieri, Duff and Giraud (2003)

Spectral properties of $A_{\gamma}^{-1}A$

$$A_{\gamma}^{-1} = \frac{1}{\alpha} I_n + U_{\gamma} \Lambda_{\gamma}^{-1} U_{\gamma}^{T}$$

The eigenvalues $\{\mu_i\}_{i=1}^n$ of $A_{\gamma}^{-1}A$ satisfy:

$$\left\{\begin{array}{ll} \mu_i = 1 + \frac{\lambda_i}{\alpha} & \text{if} \quad \lambda_i \leq \gamma \quad (p \text{ eigenvalues}) \\ \mu_i = \frac{\lambda_i}{\alpha} & \text{if} \quad \lambda_i > \gamma \quad (n - p \text{ eigenvalues}) \end{array}\right.$$

The eigenvalues $\{\mu_i\}_{i=1}^n$ of $A_{\gamma}^{-1}A$ are bounded within the interval $\left[\min\left(\frac{\alpha + \lambda_{\min}(A)}{\alpha}, \frac{\gamma}{\alpha}\right), \max\left(\frac{\alpha + \gamma}{\alpha}, \frac{\lambda_{\max}(A)}{\alpha}\right)\right]$

 \longrightarrow In terms of $\lambda_{\min}(A), \lambda_{\max}(A), \gamma$ and lpha

Illustration

$A \in \mathbb{R}^{300 imes 300}$, $\lambda_{\min}(A) pprox 1.7 \ 10^{-7}$, $\lambda_{\max}(A) pprox 3.8$

•
$$\gamma = \frac{\lambda_{\max}(A)}{100} \approx 3.8 \ 10^{-2}$$

• $\Lambda_{\gamma} = \operatorname{diag}\{\lambda_i\}_{i=1}^{42} \quad (\lambda_i \leq \gamma)$
• $U_{\gamma} \in \mathbb{R}^{300 \times 42}$
• $\alpha = \frac{\operatorname{tr}(A) - \operatorname{tr}(\Lambda_{\gamma})}{210} = 1.16$

258

Illustration (continued)

•
$$A \in \mathbb{R}^{300 \times 300}$$
, $\lambda_{\min}(A) \approx 1.7 \ 10^{-7}$, $\lambda_{\max}(A) \approx 3.8$
• $A_{\gamma} \in \mathbb{R}^{300 \times 300}$, $\lambda_{\min}(A_{\gamma}) \approx 1.7 \ 10^{-7}$, $\lambda_{\max}(A_{\gamma}) \approx 1.2$
• $A_{\gamma}^{-1}A \in \mathbb{R}^{300 \times 300}$, $\mu_{\min} \approx 4.3 \ 10^{-2}$, $\mu_{\max} \approx 3.3$

Approximation of the Schur complement and of its inverse

$$S_{\gamma} = B^{T} A_{\gamma}^{-1} B = B^{T} (\frac{1}{\alpha} I_{n} + U_{\gamma} \Lambda_{\gamma}^{-1} U_{\gamma}^{T}) B$$

whose inverse is given by (Sherman-Morrison-Woodbury formula):

$$S_{\gamma}^{-1} = \alpha (B^{T}B)^{-\frac{1}{2}} (I_{m} - \mathcal{K}(\frac{1}{\alpha}\Lambda_{\gamma} + \mathcal{K}^{T}\mathcal{K})^{-1}\mathcal{K}^{T})(B^{T}B)^{-\frac{1}{2}}$$

where $K = (B^T B)^{-\frac{1}{2}} B^T U_{\gamma} \in \mathbb{R}^{m \times p}$

Approximation of the Schur complement and of its inverse

$$S_{\gamma} = B^{T} A_{\gamma}^{-1} B = B^{T} (\frac{1}{\alpha} I_{n} + U_{\gamma} \Lambda_{\gamma}^{-1} U_{\gamma}^{T}) B$$

whose inverse is given by (Sherman-Morrison-Woodbury formula):

$$S_{\gamma}^{-1} = \alpha (B^{T}B)^{-\frac{1}{2}} (I_{m} - \mathcal{K}(\frac{1}{\alpha}\Lambda_{\gamma} + \mathcal{K}^{T}\mathcal{K})^{-1}\mathcal{K}^{T})(B^{T}B)^{-\frac{1}{2}}$$

where $K = (B^T B)^{-\frac{1}{2}} B^T U_{\gamma} \in \mathbb{R}^{m \times p}$ <u>Remark</u>: The singular values of K correspond to the cosines of the principal angles between $\mathcal{I}m(B)$ and $\mathcal{I}m(U_{\gamma})$

Spectral properties of $S_{\gamma}^{-1}S$

Main result

The eigenvalues $\{\nu_i\}_{i=1}^m$ of $S_{\gamma}^{-1}S$ are bounded within the interval

$$\frac{\alpha}{\alpha + \lambda_{\max}(\mathcal{A}) + \gamma}, \frac{\alpha + \gamma}{\gamma} \bigg]$$

• In terms of $\lambda_{\max}(A), \gamma$ and α

• $\kappa(S_{\gamma}^{-1}S)$ is fully controlled by the choice of α and γ :

e.g., if
$$\gamma = \frac{\lambda_{\max}(A)}{100}$$
 and $\alpha = \frac{\lambda_{\max}(A) + \gamma}{2}$, then
 $\nu_i \in \left[\frac{1}{3}, \frac{103}{2}\right]$ and $\kappa(S_{\gamma}^{-1}S) \le 154.5$

Illustration

$$A \in \mathbb{R}^{300 imes 300}$$
, $\lambda_{\min}(A) pprox 1.7 \ 10^{-7}$, $\lambda_{\max}(A) pprox 3.8$

• $\gamma = \frac{\lambda_{\max}(A)}{100} \approx 3.8 \ 10^{-2}$ • $\Lambda_{\gamma} = \operatorname{diag}\{\lambda_i\}_{i=1}^{42} \ (\lambda_i \leq \gamma)$ • $U_{\gamma} \in \mathbb{R}^{300 \times 42}$

•
$$\alpha = \frac{\operatorname{tr}(A) - \operatorname{tr}(\Lambda_{\gamma})}{258} = 1.16$$

The eigenvalues of $S_{\gamma}^{-1}S$ are guaranteed in

Illustration (continued)

•
$$S \in \mathbb{R}^{150 \times 150}$$
, $\lambda_{\min}(S) \approx 2.4 \ 10^{-6}$, $\lambda_{\max}(S) \approx 1.4 \ 10^{5}$
• $S_{\gamma} \in \mathbb{R}^{150 \times 150}$, $\lambda_{\min}(S_{\gamma}) \approx 2.1 \ 10^{-6}$, $\lambda_{\max}(S_{\gamma}) \approx 1.4 \ 10^{5}$
• $S_{\gamma}^{-1}S \in \mathbb{R}^{150 \times 150}$, $\nu_{\min} \approx 0.56$, $\nu_{\max} \approx 16.28$

Two alternatives for an efficient spectral preconditioner

$$\mathcal{P}_1 = \left[\begin{array}{cc} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & S_{\gamma} \end{array} \right]$$

$$\mathcal{P}_2 = \left[\begin{array}{cc} A_\gamma & 0\\ 0 & S_\gamma \end{array} \right]$$

with

$$A_{\gamma}^{-1} = \frac{1}{\alpha} I_n + U_{\gamma} \Lambda_{\gamma}^{-1} U_{\gamma}^T$$
$$S_{\gamma}^{-1} = \alpha (B^T B)^{-\frac{1}{2}} (I_m - K(\frac{1}{\alpha} \Lambda_{\gamma} + K^T K)^{-1} K^T) (B^T B)^{-\frac{1}{2}}$$

where $K = (B^T B)^{-\frac{1}{2}} B^T U_{\gamma}$

Spectral properties of \mathcal{A}

$$\mathcal{A} = \left[\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\mathsf{T}} & \mathbf{0} \end{array} \right]$$

- A is symmetric positive definite, with eigenvalues $\{\lambda_i\}_{i=1}^n$
- *B* has full column rank, with singular values $\{\sigma_i\}_{i=1}^m$

Rusten and Winther (1992)

The eigenvalues of A are bounded within $I^- \cup I^+$ with

$$I^{-} = \begin{bmatrix} \frac{\lambda_{\min} - \sqrt{\lambda_{\min}^2 + 4\sigma_{\max}^2}}{2}, \frac{\lambda_{\max} - \sqrt{\lambda_{\max}^2 + 4\sigma_{\min}^2}}{2} \end{bmatrix}$$
$$I^{+} = \begin{bmatrix} \lambda_{\min}, \frac{\lambda_{\max} + \sqrt{\lambda_{\max}^2 + 4\sigma_{\max}^2}}{2} \end{bmatrix}$$

For our illustration: Spec(A) in $[-2, -2.4 \, 10^{-7}] \cup [1.7 \, 10^{-7}, 4.7]$ and $\kappa(A) \leq 2.10^7$

Spectral properties of $\mathcal{P}_1^{-1}\mathcal{A}$

$$\mathcal{A} = \begin{bmatrix} \mathbf{A} & B\\ B^{T} & 0 \end{bmatrix} \text{ preconditioned by}$$

$$\mathcal{P}_1 = \left[\begin{array}{cc} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & S_{\gamma} \end{array} \right]$$

With Rusten and Winther, applied on

$$\mathcal{P}_1^{-1/2} \mathcal{A} \mathcal{P}_1^{-1/2} = \begin{bmatrix} I_n & Q_1 \\ Q_1^T & 0 \end{bmatrix},$$

where $Q_1 = \mathbf{A}^{-1/2} B S_{\gamma}^{-1/2}$ satisfies $Q_1^T Q_1 = S_{\gamma}^{-1/2} S S_{\gamma}^{-1/2} \sim S_{\gamma}^{-1} S$

$$\implies \lambda_i(I_n) = 1$$
 and $\sigma_i^2(Q_1) = \lambda_i(S_{\gamma}^{-1}S) = \nu_i$

Spectral properties of $\mathcal{P}_1^{-1}\mathcal{A}$ (Rusten and Winther)

The eigenvalues of $\mathcal{P}_1^{-1}\mathcal{A}$ are bounded within the intervals

$$\left[\frac{1-\sqrt{1+4\nu_{\mathsf{max}}}}{2},\frac{1-\sqrt{1+4\nu_{\mathsf{min}}}}{2}\right]\bigcup\left[1,\frac{1+\sqrt{1+4\nu_{\mathsf{max}}}}{2}\right]$$

where

$$u_{\min} \text{ and }
u_{\max} \in \left[\frac{\alpha}{\alpha + \lambda_{\max}(A) + \gamma}, \frac{\alpha + \gamma}{\gamma} \right]$$

(eigenvalues of $S_{\gamma}^{-1}S$)

 \longrightarrow In terms of $\lambda_{\max}(A), \gamma$ and α

Spectral properties of $\mathcal{P}_1^{-1}\mathcal{A}$ (direct proof)

The eigenvalues of $\mathcal{P}_1^{-1}\mathcal{A}$ are bounded within the (refined) intervals

$$\left[\frac{1-\sqrt{1+4\nu_{\max}}}{2}, \frac{1-\sqrt{1+4\nu_{\min}}}{2}\right] \bigcup \{1\} \bigcup \left[\frac{1+\sqrt{1+4\nu_{\min}}}{2}, \frac{1+\sqrt{1+4\nu_{\max}}}{2}\right]$$

where

$$u_{\min} \text{ and } \nu_{\max} \in \left[\frac{\alpha}{\alpha + \lambda_{\max}(A) + \gamma}, \frac{\alpha + \gamma}{\gamma} \right]$$

(eigenvalues of $S_{\gamma}^{-1}S$)

 \longrightarrow In terms of $\lambda_{\max}(A), \gamma$ and α

Spectral properties of $\mathcal{P}_2^{-1}\mathcal{A}$

$$\mathcal{A} = \begin{bmatrix} \mathbf{A} & B\\ B^{T} & 0 \end{bmatrix}$$
 preconditioned by

$$\mathcal{P}_2 = \left[\begin{array}{cc} \mathcal{A}_{\gamma} & 0\\ 0 & S_{\gamma} \end{array} \right]$$

With Rusten and Winther, applied on

$$\mathcal{P}_{2}^{-1/2} \mathcal{A} \mathcal{P}_{2}^{-1/2} = \begin{bmatrix} A_{\gamma}^{-1/2} \mathcal{A} A_{\gamma}^{-1/2} & Q_{2} \\ Q_{2}^{T} & 0 \end{bmatrix},$$

where $Q_{2} = A_{\gamma}^{-1/2} B S_{\gamma}^{-1/2}$ satisfies $Q_{2}^{T} Q_{2} = S_{\gamma}^{-1/2} S_{\gamma} S_{\gamma}^{-1/2} = I_{m}$

$$\implies \lambda_i(\mathcal{A}_{\gamma}^{-1/2}\mathcal{A}\mathcal{A}_{\gamma}^{-1/2}) = \lambda_i(\mathcal{A}_{\gamma}^{-1}\mathcal{A}) = \mu_i \quad \text{and} \quad \sigma_i^2(\mathcal{Q}_2) = 1$$

Spectral properties of $\mathcal{P}_2^{-1}\mathcal{A}$ (Rusten and Winther)

The eigenvalues of $\mathcal{P}_2^{-1}\mathcal{A}$ are bounded within the intervals

$$\left[\frac{\mu_{\min} - \sqrt{\mu_{\min}^2 + 4}}{2}, \frac{\mu_{\max} - \sqrt{\mu_{\max}^2 + 4}}{2}\right] \bigcup \left[\mu_{\min}, \frac{\mu_{\max} + \sqrt{\mu_{\max}^2 + 4}}{2}\right]$$

where

$$\mu_{\min} = \min\left(\frac{lpha + \lambda_{\min}(A)}{lpha}, \frac{\gamma}{lpha}
ight)$$
 and $\mu_{\max} = \max\left(\frac{lpha + \gamma}{lpha}, \frac{\lambda_{\max}(A)}{lpha}
ight)$

(eigenvalues of $A_{\gamma}^{-1}A$)

 \longrightarrow In terms of $\lambda_{\min}(A), \lambda_{\max}(A), \gamma$ and α

Motivation

 $\mathcal{P}_1^{-1}\mathcal{A}$ versus $\mathcal{P}_2^{-1}\mathcal{A}$ (Intervals in terms of $\lambda_{\max}(A), \lambda_{\min}(A), \gamma$ and α) $[-5.13, -0.19] \cup \{1\} \cup [1.19, 6.13]$ $[-0.98, -0.28] \cup [0.03, 3.56]$ -6 L 0 100 200 400 300 100 200 300 400 $\kappa(\mathcal{P}_1^{-1}\mathcal{A}) \leq 32.3$ $\kappa(\mathcal{P}_2^{-1}\mathcal{A}) \leq 119$ \rightarrow Reduced condition numbers in both cases

Varying γ ("True" intervals)

γ	$ \{\lambda_i \leq \gamma\} $	$Spec(\mathcal{P}_1^{-1}\mathcal{A})$	$\kappa(\mathcal{P}_1^{-1}\mathcal{A})$
$\frac{\lambda_{\max}(A)}{100}$	42	$[-3.57, -0.40] \cup [1, 4.57]$	11.43
$\frac{\lambda_{\max}(A)}{1000}$	33	$[-12.12, -0.39] \cup [1, 13.12]$	33.64
$\frac{\lambda_{\max}(A)}{10000}$	23	$[-27.20, -0.38] \cup [1, 28.20]$	74.21
γ	$ \{\lambda_i \le \gamma\} $	$Spec(\mathcal{P}_2^{-1}\mathcal{A})$	$\kappa(\mathcal{P}_2^{-1}\mathcal{A})$
$\frac{\lambda_{\max}(A)}{100}$	42	$[-0.90, -0.45] \cup [9.7 10^{-2}, 3.28]$	33.81
$\frac{\lambda_{\max}(A)}{1000}$	33	$[-0.98, -0.43] \cup [1.110^{-2}, 3.40]$	309.09
$\frac{\lambda_{\max}(A)}{10000}$	23	$[-0.99, -0.42] \cup [2.5 10^{-3}, 3.52]$	1408.00

Convergence bound of preconditioned MINRES

Assume that $\text{Spec}(\mathcal{P}^{-1}\mathcal{A}) \subset [-a, -b] \cup [c, d]$, with a, b, c, d > 0

The iteration residual $r^{2k} = b - Au^{2k}$ satisfies the bound $\frac{\|r^{2k}\|_{\mathcal{P}^{-1}}}{\|r^0\|_{\mathcal{P}^{-1}}} \le 2 \left(\underbrace{\frac{\sqrt{ad} - \sqrt{bc}}{\sqrt{ad} + \sqrt{bc}}}_{\sqrt{ad} + \sqrt{bc}}\right)^k$

 \rightarrow Illustration on our example for various γ 's

Stopping criterion in MINRES:
$$\frac{\|r^k\|_2}{\|r^0\|_2} \le 10^{-8}$$

MINRES for $\gamma = \frac{\lambda_{max}(A)}{100}$

Convergence curves (\mathcal{P}_1^{-1} -norm and \mathcal{P}_2^{-1} -norm of relative residuals)

Motivation

MINRES for
$$\gamma = \frac{\lambda_{max}(A)}{100}$$
, $\gamma = \frac{\lambda_{max}(A)}{1000}$ and $\gamma = \frac{\lambda_{max}(A)}{10000}$

Convergence curves (\mathcal{P}_1^{-1} -norm and \mathcal{P}_2^{-1} -norm of relative residuals)

Further comparisons ("True" intervals, $\gamma = \frac{\lambda_{max}(A)}{100}$)

$$\mathcal{P}_{1} = \begin{bmatrix} A & 0 \\ 0 & S_{\gamma} \end{bmatrix} \qquad \mathcal{P}_{IBB} = \begin{bmatrix} I_{n} & 0 \\ 0 & B^{T}B \end{bmatrix}$$
$$\mathcal{P}_{2} = \begin{bmatrix} A_{\gamma} & 0 \\ 0 & S_{\gamma} \end{bmatrix} \qquad \mathcal{P}_{ABB} = \begin{bmatrix} A & 0 \\ 0 & B^{T}B \end{bmatrix}$$

\mathcal{P}	Spec($\kappa(\mathcal{P}^{-1}\mathcal{A})$		
	$[-1.6, -2.4 10^{-6}]$	U	$[2.3 10^{-5}, 3.8]$	1.6 10 ⁶
\mathcal{P}_1	[-3.6, -0.4]	U	[1.0, 4.6]	11.4
\mathcal{P}_2	[-0.9, -0.5]	U	$[9.7 10^{-2}, 3.3]$	33.8
\mathcal{P}_{IBB}	[-1.0, -0.4]	U	$[3.010^{-5}, 3.8]$	1.3 10 ⁵
\mathcal{P}_{ABB}	$[-8.910^2, -0.4]$	U	$[1.0, 8.910^2]$	2.5 10 ³

MINRES for $\gamma = \frac{\lambda_{max}(A)}{100}$

Convergence curves (\mathcal{P}^{-1} -norm of relative residuals)

First-level preconditioner

A \mathcal{P}_2 -type preconditioner applied to $\mathcal{P}_{lnit}^{-1}\mathcal{A}$ amounts to

$$\mathcal{A} = \left[\begin{array}{cc} A & B \\ B^T & 0 \end{array} \right] \text{ preconditioned by}$$

$$\tilde{\mathcal{P}}_{2} = \left[\begin{array}{cc} \tilde{A}_{\gamma} & 0 \\ 0 & \tilde{S}_{\gamma} \end{array} \right]$$

Two levels of preconditioner in one

where

$$\tilde{A}_{\gamma}^{-1} = \frac{1}{\alpha} M^{-1} + U_{\gamma} \Lambda_{\gamma}^{-1} U_{\gamma}^{T}$$
$$\tilde{S}_{\gamma}^{-1} = \alpha (B^{T} M^{-1} B)^{-\frac{1}{2}} (I_{m} - K(\frac{1}{\alpha} \Lambda_{\gamma} + K^{T} K)^{-1} K^{T}) (B^{T} M^{-1} B)^{-\frac{1}{2}}$$
$$K = (B^{T} M^{-1} B)^{-\frac{1}{2}} B^{T} U_{\gamma}$$

and

- $\lambda_{\min}(M^{-1}A) \leq \gamma \leq \lambda_{\max}(M^{-1}A)$
- $\Lambda_{\gamma} = \text{diag}\{\lambda_i(M^{-1}A)\}_{i=1}^p \text{ with } \lambda_i \leq \gamma$
- $U_{\gamma} \in \mathbb{R}^{n \times p}$ is the set of associated orthonormal eigenvectors
- $\alpha > 0$ is a scaling parameter

Construction of \tilde{A}_{γ}^{-1} and \tilde{S}_{γ}^{-1}

$$\begin{split} \tilde{A}_{\gamma}^{-1} &= \frac{1}{\alpha} M^{-1} + U_{\gamma} \Lambda_{\gamma}^{-1} U_{\gamma}^{T} \\ \tilde{S}_{\gamma}^{-1} &= \alpha (B^{T} M^{-1} B)^{-\frac{1}{2}} (I_{m} - K (\frac{1}{\alpha} \Lambda_{\gamma} + K^{T} K)^{-1} K^{T}) (B^{T} M^{-1} B)^{-\frac{1}{2}} \\ K &= (B^{T} M^{-1} B)^{-\frac{1}{2}} B^{T} U_{\gamma} \end{split}$$

• Extract U_{γ} and Λ_{γ} :

• Chebyshev-based Krylov method on $AU_{\gamma} = MU_{\gamma}\Lambda_{\gamma}$

 $(B^T M^{-1} B)^{-1} v$

$$\hookrightarrow \left[\begin{array}{cc} M & B \\ B^T & 0 \end{array} \right] \quad \cdots$$

Recombination issue

$$S_{\gamma}^{-1} = \alpha (B^{T}B)^{-\frac{1}{2}} (I_{m} - K(\frac{1}{\alpha}\Lambda_{\gamma} + K^{T}K)^{-1}K^{T})(B^{T}B)^{-\frac{1}{2}}$$

Key part

where $K = (B^T B)^{-\frac{1}{2}} B^T U_{\gamma} = Q^T U_{\gamma}$, with

- Q: orthonormal basis of $\mathcal{I}m(B)$
- U_{γ} : orthonormal basis of $\mathcal{I}m(U_{\gamma})$
- \rightarrow The singular values of K correspond to the cosines of the principal angles between $\mathcal{I}m(B)$ and $\mathcal{I}m(U_{\gamma})$

Consider the Singular Value Decomposition of $K = Q^T U_{\gamma}$:

where

- $Y \in \mathbb{R}^{m \times m}$ and $Z \in \mathbb{R}^{p \times p}$ are orthogonal matrices
- $C_{\gamma} = \text{diag}\{\cos \theta_i\}_{i=1}^p$ (that we assume nonsingular)
- $\{\theta_i\}_{i=1}^p \in [0, \pi/2[$ are the principal angles

$$S_{\gamma}^{-1} = \alpha (B^{T}B)^{-\frac{1}{2}} (I_{m} - K(\frac{1}{\alpha}\Lambda_{\gamma} + K^{T}K)^{-1}K^{T})(B^{T}B)^{-\frac{1}{2}}$$

Key part

becomes, using $Y_{\gamma} = Y(:,1:p)$ and $V_{\gamma} = U_{\gamma}Z$ (princ. vec.),

$$S_{\gamma}^{-1} = \alpha (B^{T}B)^{-\frac{1}{2}} (I_{m} - Y_{\gamma} (\frac{1}{\alpha} C_{\gamma}^{-1} (V_{\gamma}^{T} A V_{\gamma}) C_{\gamma}^{-1} + I_{p})^{-1} Y_{\gamma}^{T}) (B^{T}B)^{-\frac{1}{2}}$$
Key part
where $V_{\gamma}^{T} A V_{\gamma} = Z^{T} U_{\gamma}^{T} A U_{\gamma} Z = Z^{T} \Lambda_{\gamma} Z$

$$S_{\gamma}^{-1} = \alpha (B^{T}B)^{-\frac{1}{2}} (I_{m} - Y_{\gamma} (\frac{1}{\alpha} C_{\gamma}^{-1} (V_{\gamma}^{T} A V_{\gamma}) C_{\gamma}^{-1} + I_{p})^{-1} Y_{\gamma}^{T}) (B^{T}B)^{-\frac{1}{2}}$$

$$\underbrace{\mathsf{Key part}}_{\mathsf{Key part}}$$
where $V_{\gamma}^{T} A V_{\gamma} = Z^{T} U_{\gamma}^{T} A U_{\gamma} Z = Z^{T} \Lambda_{\gamma} Z$

Observing that:

$$\begin{split} &\frac{1}{\alpha} \| C_{\gamma}^{-1} (V_{\gamma}^{T} A V_{\gamma}) C_{\gamma}^{-1} \|_{2} \leq \frac{1}{\alpha} \frac{\max{\{\lambda_{i}\}_{i=1}^{p}}}{\min{\{\cos^{2}\theta_{i}\}_{i=1}^{p}}} \leq \frac{1}{\alpha} \frac{\gamma}{\min{\{\cos^{2}\theta_{i}\}_{i=1}^{p}}},\\ &\text{roughly speaking, small eigenvalues "have an impact" on } S_{\gamma}^{-1} \text{ when:} \end{split}$$

$$\min{\{\cos^2{\theta_i}\}_{i=1}^p} \lesssim \mathcal{O}(\gamma/\alpha)$$

$$S_{\gamma}^{-1} = \alpha (B^{T}B)^{-\frac{1}{2}} (I_{m} - Y_{\gamma} (\frac{1}{\alpha} C_{\gamma}^{-1} (V_{\gamma}^{T} A V_{\gamma}) C_{\gamma}^{-1} + I_{p})^{-1} Y_{\gamma}^{T}) (B^{T}B)^{-\frac{1}{2}}$$

$$\underbrace{\mathsf{Key part}}_{\mathsf{Key part}}$$
with $\frac{1}{\alpha} \| C_{\gamma}^{-1} (V_{\gamma}^{T} A V_{\gamma}) C_{\gamma}^{-1} \|_{2} \leq \frac{1}{\alpha} \frac{\gamma}{\min \{\cos^{2} \theta_{i}\}_{i=1}^{p}}$

that is, if

$$\frac{1}{\alpha} \frac{\gamma}{\min\left\{\cos^2\theta_i\right\}_{i=1}^p} \ll 1, \quad \text{or equivalently,} \quad \min\left\{\cos^2\theta_i\right\}_{i=1}^p \gg \frac{\gamma}{\alpha},$$

the spectral information contained in $V_{\gamma}^{T}AV_{\gamma}$ is inhibited (\rightarrow problem dependent)

Illustration on a toy example

- $A \in \mathbb{R}^{500 \times 500}$ is a diagonal matrix with entries in]0,1] and s.t.:
 - $p=5~~(\gamma=10^{-1}~{
 m and}~lpha=1)$

•
$$\Lambda_{\gamma} = A(1:5,1:5)$$

•
$$U_{\gamma} = I_{500}(:,1:5)$$

•
$$B \in \mathbb{R}^{500 \times 200}$$
 is set to $B = \begin{bmatrix} C_{\gamma} & 0 \\ B_1 S_{\gamma} & B_2 \end{bmatrix}$, where

•
$$C_{\gamma} = \text{diag}\{\cos \theta_i\}_{i=1}^5 \text{ and } S_{\gamma} = \text{diag}\{\sin \theta_i\}_{i=1}^5$$

•
$$Q = \begin{bmatrix} B_1 & B_2 \end{bmatrix} \in \mathbb{R}^{495 \times 200}$$
 with $Q^T Q = I_{200}$

Ensuring that

• B has othonormal columns

•
$$(B^T B)^{-\frac{1}{2}} B^T U_{\gamma} = B^T U_{\gamma} =$$

Illustration on a toy example (continued)

Implies a one to one match

• Eigenvectors versus principal vectors:

$$V_{\gamma} = U_{\gamma}$$

• Eigenvalues versus cosines of principal angles:

Key part =
$$C_{\gamma}^{-1} \Lambda_{\gamma} C_{\gamma}^{-1} + I_5$$

Illustration on a toy example (continued)

 $\Lambda_{\gamma} = \text{diag}(10^{-8}, 10^{-6}, 10^{-4}, 10^{-2}, 10^{-1}) \text{ and } C_{\gamma} = \text{diag}\{\cos \theta_i\}_{i=1}^5, \text{ where:}$

Convergence curves (2-norm and \mathcal{P}_2^{-1} -norm of relative residuals)

From these observations, we can extrapolate (bet?) that:

The bad conditioning contained in the smallest eigenvalues of A (if any) will impact and spoil the convergence of MINRES if (some of) the principal angles between $\mathcal{I}m(B)$ and the associated invariant subspace $\mathcal{I}m(U_{\gamma})$, are close to $\pi/2$

because

the key part: $\frac{1}{\alpha}C_{\gamma}^{-1}(V_{\gamma}^{T}AV_{\gamma})C_{\gamma}^{-1} + I_{p}$ reveals that the square of the inverse of the cosines of these principal angles push the corresponding bad conditioning of Ato "show up" in the Schur complement inverse

45

Short recap

 $\Lambda_{\gamma} = \text{diag}\{\lambda_i \leq \gamma\}_{i=1}^p$ and U_{γ} contains the orthonormal eigenvectors (SLRU) $A_{\gamma}^{-1} = \frac{1}{2}I_n + U_{\gamma}\Lambda_{\gamma}^{-1}U_{\gamma}^T$ $S_{\gamma}^{-1} = B^{T} A_{\gamma}^{-1} B = \alpha (B^{T} B)^{-\frac{1}{2}} (I_{m} - K (\frac{1}{\alpha} \Lambda_{\gamma} + K^{T} K)^{-1} K^{T}) (B^{T} B)^{-\frac{1}{2}}$ Kev part where $K = (B^T B)^{-\frac{1}{2}} B^T U_{\gamma} = Q^T U_{\gamma}$ such that (SVD) $Y^T K Z = \underbrace{Y^T Q^T}_{0} \underbrace{U_{\gamma} Z}_{0} = \underbrace{U_{\gamma}}_{0}$ Princ. vec. Princ vec in $\mathcal{I}m(B)$ in $\mathcal{I}m(U_{\gamma})$ $C_{\gamma} = \text{diag}\{\cos \theta_i\}_{i=1}^p \quad (\{\theta_i\}_{i=1}^p \in [0, \pi/2] \text{ the principal angles})$

Short recap (continued) and a question

$$S_{\gamma}^{-1} = \alpha (B^{T}B)^{-\frac{1}{2}} (I_{m} - Y_{\gamma} (\frac{1}{\alpha} C_{\gamma}^{-1} (V_{\gamma}^{T} A V_{\gamma}) C_{\gamma}^{-1} + I_{p})^{-1} Y_{\gamma}^{T}) (B^{T}B)^{-\frac{1}{2}}$$
Key part
where $V_{\gamma} = U_{\gamma} Z$ are the principal vectors in $\mathcal{I}m(U_{\gamma})$ and where the

where $V_{\gamma} = U_{\gamma}Z$ are the principal vectors in $\mathcal{I}m(U_{\gamma})$ and where the smaller the associated cosines are, the "greater" the impact may be

A question:

Among the "available" information (Λ_{γ} , U_{γ} , V_{γ} and C_{γ}), which one is the most relevant to accelerate the convergence of MINRES between a subset of smallest eigenvalues and their associated eigenvectors and

a subset of smallest cosines and their associated principal vectors in $\mathcal{I}m(U_{\gamma})$?

"Smart" selection of principal vectors in $\mathcal{I}m(U_{\gamma})$

$$S_{\gamma}^{-1} = \alpha (B^{\mathsf{T}}B)^{-\frac{1}{2}} (I_{\mathsf{m}} - Y_{\gamma} (\frac{1}{\alpha} C_{\gamma}^{-1} (V_{\gamma}^{\mathsf{T}} A V_{\gamma}) C_{\gamma}^{-1} + I_{\rho})^{-1} Y_{\gamma}^{\mathsf{T}}) (B^{\mathsf{T}}B)^{-\frac{1}{2}}$$

Select the principal vectors $V_{\gamma} = U_{\gamma}Z$ whose associated principal angles satisfy (let ℓ be the number of such vectors):

$$\cos^2 heta_i \leq \mathsf{c} \, rac{\gamma}{lpha}, \qquad \mathsf{c} \in \left[rac{1}{4}, \, 4
ight]$$

i.e., select the appropriate columns in Z (yielding $Z_{\theta} \in \mathbb{R}^{p \times \ell}$), and "restrict" S_{γ}^{-1} accordingly:

$$S_{\theta}^{-1} = \alpha (B^{\mathsf{T}}B)^{-\frac{1}{2}} (I_m - Y_{\theta}(\frac{1}{\alpha}C_{\theta}^{-1}(V_{\theta}^{\mathsf{T}}AV_{\theta})C_{\theta}^{-1} + I_{\ell})^{-1}Y_{\theta}^{\mathsf{T}})(B^{\mathsf{T}}B)^{-\frac{1}{2}}$$

where $V_{\theta} = U_{\gamma} Z_{\theta} \in \mathbb{R}^{n \times \ell}$, $C_{\theta} \in \mathbb{R}^{\ell \times \ell}$ and $Y_{\theta} \in \mathbb{R}^{m \times \ell}$

47

A "smarter" \mathcal{P}_2

In practice, this amounts to use the preconditioner:

where

$$\begin{aligned} A_{\theta}^{-1} &= \frac{1}{\alpha} I_n + V_{\theta} (V_{\theta}^T A V_{\theta})^{-1} V_{\theta}^T \\ S_{\theta}^{-1} &= \alpha (B^T B)^{-\frac{1}{2}} \left(I_m - K_{\theta} (\frac{1}{\alpha} V_{\theta}^T A V_{\theta} + K_{\theta}^T K_{\theta})^{-1} K_{\theta}^T \right) (B^T B)^{-\frac{1}{2}} \end{aligned}$$

with $K_{\theta} = (B^T B)^{-\frac{1}{2}} B^T V_{\theta}$

\mathcal{P}_2 versus \mathcal{P}_{θ}

$$\mathcal{P}_2 = \left[egin{array}{cc} \mathcal{A}_\gamma & 0 \ 0 & \mathcal{S}_\gamma \end{array}
ight]$$

$$\mathcal{P}_{ heta} = \left[egin{array}{cc} oldsymbol{\mathcal{A}}_{ heta} & 0 \ 0 & S_{ heta} \end{array}
ight]$$

with

$$A_{\gamma}^{-1} = \frac{1}{\alpha} I_n + U_{\gamma} \Lambda_{\gamma}^{-1} U_{\gamma}^T$$
$$S_{\gamma}^{-1} = \alpha (B^T B)^{-\frac{1}{2}} (I_m - K(\frac{1}{\alpha} \Lambda_{\gamma} + K^T K)^{-1} K^T) (B^T B)^{-\frac{1}{2}}$$
$$K = (B^T B)^{-\frac{1}{2}} B^T U_{\gamma}$$

$$A_{\theta}^{-1} = \frac{1}{\alpha} I_n + V_{\theta} (V_{\theta}^T A V_{\theta})^{-1} V_{\theta}^T$$
$$S_{\theta}^{-1} = \alpha (B^T B)^{-\frac{1}{2}} (I_m - K_{\theta} (\frac{1}{\alpha} V_{\theta}^T A V_{\theta} + K_{\theta}^T K_{\theta})^{-1} K_{\theta}^T) (B^T B)^{-\frac{1}{2}}$$
$$K_{\theta} = (B^T B)^{-\frac{1}{2}} B^T V_{\theta}$$

\mathcal{P}_2 versus \mathcal{P}_{θ} on our example

•
$$\gamma = \frac{\lambda_{max}(A)}{100} \approx 3.8 \ 10^{-2} \longrightarrow p = 42$$

• $\cos^2 \theta_i \le 4 \frac{\gamma}{\alpha} \quad (c = 4) \longrightarrow \ell = 22$

Comparison on Minres preconditioned by:

 \mathcal{P}_2 built with $\ell = 22$ eigenvectors corresponding to the ℓ smallest eigenvalues λ_i 's (among the *p* ones below γ)

versus

 \mathcal{P}_{θ} built with $\ell = 22$ principal vectors corresponding to the ℓ smallest $\cos \theta_i$'s (among the *p* ones)

MINRES preconditioned using \mathcal{P}_2 versus \mathcal{P}_{θ} $(\ell = 22)$

Convergence curves ($\mathcal{P}_{\theta}^{-1}$ -norm and \mathcal{P}_{2}^{-1} -norm of relative residuals)

MINRES preconditioned using \mathcal{P}_2 versus \mathcal{P}_{θ} (for various ℓ)

Comparison on Minres preconditioned by:

 \mathcal{P}_2 built with ℓ eigenvectors corresponding to the ℓ smallest eigenvalues λ_i 's (among the p ones below γ)

versus

 $\mathcal{P}_{\theta} \text{ built with } \ell \text{ principal vectors} \\ \text{corresponding to the } \ell \text{ smallest } \cos \theta_i \text{'s} \\ \text{ (among the } p \text{ ones)}$

where

 $\ell = 1, 2, 7, 12, 17, 22, 27, 32, 37, 42$

MINRES preconditioned using \mathcal{P}_2 versus \mathcal{P}_{θ} (for $\ell = 1, 2, 7$)

Convergence curves ($\mathcal{P}_{\theta}^{-1}$ -norm and \mathcal{P}_{2}^{-1} -norm of relative residuals)

MINRES preconditioned using $\overline{\mathcal{P}}_2$ versus $\overline{\mathcal{P}}_{\theta}$ (for $\ell = 12, 17, 22$)

Convergence curves ($\mathcal{P}_{\theta}^{-1}$ -norm and \mathcal{P}_{2}^{-1} -norm of relative residuals)

MINRES preconditioned using \mathcal{P}_2 versus \mathcal{P}_{θ} (for $\ell = 27, 32, 37$)

Convergence curves ($\mathcal{P}_{\theta}^{-1}$ -norm and \mathcal{P}_{2}^{-1} -norm of relative residuals)

MINRES preconditioned using \mathcal{P}_2 versus \mathcal{P}_{θ} (for $\ell = 42$)

Convergence curves ($\mathcal{P}_{\theta}^{-1}$ -norm and \mathcal{P}_{2}^{-1} -norm of relative residuals)

MINRES preconditioned using \mathcal{P}_2 versus \mathcal{P}_{θ} (overall picture)

Conclusion

• Address the (bad) conditioning of A and that of B separately

 \rightarrow Using a low-rank spectral approximation

• Recombine this spectral information appropriately to build an efficient block diagonal preconditioner

 \rightarrow Through the Schur complement approximation

- Get some insight on the recombination issue between A and B
 - \rightarrow Through some analytic dissection $\odot\,$ and illustrations

- Look deeper into the recombination issue
- Use a similar spectral approach to address the bad conditioning of *B*
- Analyse the cost and the amortization (multiple r.h.s.)
- Derive practical and efficient implementations
- Perform numerical experiments on academic problems and applications

Thank you for your attention!

How to deal with
$$\begin{bmatrix} M & B \\ B^T & 0 \end{bmatrix}$$
?

- **1** Using Schilders' factorization, see Dollar and Wathen (2006)
- **2** Using a preconditioner of the form $\begin{bmatrix} D^{-1} & 0 \\ 0 & (B^T D^{-1} B)^{-1} \end{bmatrix}$ where *D* is diagonal, see Golub, Greif and Varah (2006)
- Output: Using a similar spectral approach on B^T M⁻¹B. How can we include efficiently spectral information in the Schur complement? ⇒ We work on it !

Motivation

Two spectral preconditioners

Recombination issue

MINRES for
$$\gamma = \frac{\lambda_{max}(A)}{100}$$
, $\gamma = \frac{\lambda_{max}(A)}{1000}$ and $\gamma = \frac{\lambda_{max}(A)}{10000}$

Convergence curves (\mathcal{P}^{-1} -norm of relative residuals)

Spectrum of \mathcal{P}_{IBB} and \mathcal{P}_{ABB}

