School of Engineering

CG versus MINRES on Positive Definite Systems

Michael Saunders SOL and ICME, Stanford University Joint work with David Fong

Recent Advances on Optimization In honor of Philippe Toint Toulouse, France, July 24–26, 2013

Meeting for Philippe

OG and MINRES

The Lanczos Process Properties Backward Errors

- **3** Why does $||r_k||$ for CG lag behind MINRES?
- Posdef systems and Least squares

S LSQR and LSMR Backward Errors

Summary

Meeting for Philippe

First thought: The trust-region subproblem

 $||x_k|| \nearrow$ for CG

The trust-region subproblem

$$\min g^T p + \frac{1}{2} p^T H p \text{ st } \|p\|_M \leq \Delta$$

Apply PCG to Hp = -gExit if $d^THd < 0$ or $||p||_M > \Delta$ The trust-region subproblem

$$\min g^T p + \frac{1}{2} p^T H p \text{ st } \|p\|_M \leq \Delta$$

Apply PCG to Hp = -gExit if $d^{T}Hd < 0$ or $||p||_{M} > \Delta$

Focus on $Ax = b, A \succ 0, M = I$ Backward errors Stopping early

Part I: CG and MINRES

Iterative algorithms for Ax = b, $A = A^T$ based on the Lanczos process

Krylov-subspace methods: $x_k = V_k y_k$

Lanczos process (summary)

$$\beta_1 v_1 = b \qquad AV_k = V_{k+1}H_k$$

$$V_{k} = \begin{pmatrix} v_{1} & v_{2} & \dots & v_{k} \end{pmatrix}$$
$$T_{k} = \begin{pmatrix} \alpha_{1} & \beta_{2} & & \\ \beta_{2} & \alpha_{2} & \ddots & \\ & \ddots & \ddots & \beta_{k} \\ & & \beta_{k} & \alpha_{k} \end{pmatrix}$$
$$H_{k} = \begin{pmatrix} T_{k} \\ 0 & \dots & 0 & x \end{pmatrix}$$

Lanczos process (summary)

$$\beta_1 v_1 = b \qquad AV_k = V_{k+1}H_k$$

$$V_{k} = \begin{pmatrix} v_{1} & v_{2} & \dots & v_{k} \end{pmatrix}$$
$$T_{k} = \begin{pmatrix} \alpha_{1} & \beta_{2} & & \\ \beta_{2} & \alpha_{2} & \ddots & \\ & \ddots & \ddots & \beta_{k} \\ & & \beta_{k} & \alpha_{k} \end{pmatrix}$$
$$H_{k} = \begin{pmatrix} T_{k} \\ 0 & \dots & 0 & x \end{pmatrix}$$

 $r_k = b - Ax_k$ = $\beta_1 v_1 - AV_k y_k$ = $V_{k+1}(\beta_1 e_1 - H_k y_k),$

Aim:

 $\beta_1 e_1 \approx H_k y_k$

Lanczos process (summary)

$$\beta_1 v_1 = b \qquad AV_k = V_{k+1}H_k$$

$$V_{k} = \begin{pmatrix} v_{1} & v_{2} & \dots & v_{k} \end{pmatrix}$$
$$T_{k} = \begin{pmatrix} \alpha_{1} & \beta_{2} & & \\ \beta_{2} & \alpha_{2} & \ddots & \\ & \ddots & \ddots & \beta_{k} \\ & & \beta_{k} & \alpha_{k} \end{pmatrix}$$
$$H_{k} = \begin{pmatrix} T_{k} \\ 0 & \dots & 0 \end{pmatrix}$$

$$r_k = b - Ax_k$$

= $\beta_1 v_1 - AV_k y_k$
= $V_{k+1}(\beta_1 e_1 - H_k y_k),$

Aim: $\beta_1 e_1 \approx H_k y_k$

Two subproblems

CG $T_k y_k = \beta_1 e_1$ $x_k = V_k y_k$ MINRES $\min \|H_k y_k - \beta_1 e_1\|$ $x_k = V_k y_k$

$$Ax = b, \quad A = A^T$$

$$Ax = b, \quad A = A^T$$

$$Ax = b, \quad A = A^T$$

Experiment: CG vs MINRES on $A \succ 0$

$$Ax = b, \quad A = A^T$$

Experiment: CG vs MINRES on $A \succ 0$

- Hestenes and Stiefel (1952) proposed both CG and CR for $A \succ 0$ and proved many properties
- CR \equiv MINRES when $A \succ 0$ They both minimize $||r_k|| = ||b - Ax_k||$ in the Krylov subspace

Theoretical properties for Ax = b, $A \succ 0$

		CG	CR (MINRES)
$ x^* - x_k $	\mathbf{Y}	HS 1952	HS 1952
$ x^* - x_k _A$	\searrow	HS 1952	HS 1952
$ x_k $	\nearrow	Steihaug 1983	Fong 2011

Theoretical properties for Ax = b, $A \succ 0$

		CG	CR (MINRES)
$ x^* - x_k $	\searrow	HS 1952	HS 1952
$ x^* - x_k _A$	\searrow	HS 1952	HS 1952
$ x_k $	\nearrow	Steihaug 1983	Fong 2011

		CR (MINRES)
$\ r_k\ $ $\ r_k\ /\ x_k\ $	\searrow	HS 1952 Fong 2011

Backward error for square systems Ax = b

Stopping tolerances α , β

 x_k is an acceptable solution iff there exist E, f st

$$(A+E)x_k = b+f$$
 $\frac{\|E\|}{\|A\|} \le \alpha$ $\frac{\|f\|}{\|b\|} \le \beta$

Backward error for square systems Ax = b

Stopping tolerances α , β x_k is an acceptable solution iff there exist E, f st

$$(A+E)x_k = b+f$$
 $\frac{\|E\|}{\|A\|} \le \alpha$ $\frac{\|f\|}{\|b\|} \le \beta$

Smallest perturbations E, f: (Titley-Peloquin 2010)

$$E = -\frac{\alpha ||A||}{\psi ||x_k||} r_k x_k^T$$
$$f = -\frac{\beta ||b||}{\psi} r_k$$

$$\frac{\|E\|}{\|A\|} = \alpha \frac{\|r_k\|}{\Psi}$$
$$\frac{\|f\|}{\|b\|} = \beta \frac{\|r_k\|}{\Psi}$$

Backward error for square systems Ax = b

Stopping tolerances α , β x_k is an acceptable solution iff there exist E, f st

$$(A+E)x_k = b+f$$
 $\frac{\|E\|}{\|A\|} \le \alpha$ $\frac{\|f\|}{\|b\|} \le \beta$

Smallest perturbations E, f: (Titley-Peloquin 2010)

$$E = \frac{\alpha \|A\|}{\Psi \|x_k\|} r_k x_k^T \qquad \qquad \frac{\|E\|}{\|A\|} = \alpha \frac{\|r_k\|}{\Psi}$$
$$f = -\frac{\beta \|b\|}{\Psi} r_k \qquad \qquad \frac{\|f\|}{\|b\|} = \beta \frac{\|r_k\|}{\Psi}$$

Backward error: $||r_k||/\psi$ Stopping rule: $||r_k|| \le \psi \equiv \alpha ||A|| ||x_k|| + \beta ||b||$

Backward error for square systems, $\beta = 0$

$$(A + E_k)x_k = b$$
$$E_k = \frac{r_k x_k^T}{\|x_k\|^2} \qquad \|E_k\| = \frac{\|r_k\|}{\|x_k\|}$$

Data: Tim Davis's sparse matrix collection Real, symmetric posdef examples that include *b*

Plot $\log_{10} ||E_k||$ for CG and MINRES

$||r_k|| / ||x_k||$ for $A \succ 0$ MINRES can stop sooner

$||r_k||/||\overline{x_k}||$ and $\log_{10}||\overline{x-x_k}||_A$

 $\|r_k\|/\|\overline{x_k}\|$ and $\log_{10}\|\overline{x-x_k}\|$

$||r_k|| / ||x_k||$ and $\log_{10} ||x - x_k||_A$

$||r_k|| / ||x_k||$ and $\log_{10} ||x - x_k||$

COMPUTATIONAL AND MATHEMATICAL ENGINEERING

Why does $||r_k||$ for CG lag behind MINRES?

Why does CG lag behind MINRES?

Greenbaum 1997:

(Thanks David Titley-Peloquin)

$$\|r_k^C\| = rac{\|r_k^M\|}{\sqrt{1 - \|r_k^M\|^2 / \|r_{k-1}^M\|^2}}$$

 $\Rightarrow \| \boldsymbol{r}_k^C \| \gg \| \boldsymbol{r}_k^M \|$ if MINRES is almost stalling

Why does CG lag behind MINRES?

Greenbaum 1997:

(Thanks David Titley-Peloquin)

$$\|r_k^C\| = rac{\|r_k^M\|}{\sqrt{1 - \|r_k^M\|^2 / \|r_{k-1}^M\|^2}}$$

 $\Rightarrow \|r_k^C\| \gg \|r_k^M\|$ if MINRES is almost stalling

Fong 2011: If $\alpha = 0$ in stopping rule, stop when $||r_l|| \leq \beta ||b||$

$$\prod_{k=1}^{l} \frac{\|r_k\|}{\|r_{k-1}\|} = \frac{\|r_l\|}{\|b\|} \approx \beta$$

 $\Rightarrow \|r_k^M\| / \|r_{k-1}^M\| \text{ closer to 1 on average if } l \text{ is large} \\\Rightarrow \text{ bigger gap on average between } \|r_k^C\| \text{ and } \|r_k^M\|$

Posdef systems and least squares

$$LS \equiv PSD \text{ system}$$
$$\min ||Ax - b|| \qquad \Rightarrow \qquad A^T A x = A^T b$$

Conversely, let $A = U^T U$ (Cholesky) and solve $U^T c = b$

PSD system \equiv LS $Ax = b \Rightarrow U^T Ux = U^T c \Rightarrow \min ||Ux - c||$

Part II: LSQR and LSMR

$LSQR \equiv CG \qquad \text{on } A^T A x = A^T b$ $LSMR \equiv MINRES \text{ on } A^T A x = A^T b$

Based on Golub-Kahan bidiagonalization

Which problems do LSQR and LSMR solve?

solve Ax = b

solve Ax = b min ||x|| st Ax = b

solve Ax = b min ||x|| st Ax = b

 $\min \|Ax - b\|$

solve
$$Ax = b$$
 $\min ||x||$ st $Ax = b$
 $\min ||Ax - b||$ $\min \left\| \begin{pmatrix} A \\ \lambda I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|$

solve
$$Ax = b$$
 min $||x||$ st $Ax = b$
min $||Ax - b||$ min $\left\| \begin{pmatrix} A \\ \lambda I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|$

- A square or rectangular $(m \times n)$ and often sparse
- A can be an operator (\Rightarrow allows preconditioning)
- Av, $A^T u$ plus O(m+n) operations per iteration

solve
$$Ax = b$$
 min $||x||$ st $Ax = b$
min $||Ax - b||$ min $\left\| \begin{pmatrix} A \\ \lambda I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|$

- A square or rectangular $(m \times n)$ and often sparse
- A can be an operator (\Rightarrow allows preconditioning)
- Av, $A^T u$ plus O(m+n) operations per iteration
- June 2013: F90 complex implementations Austin Benson and Victor Minden, ICME

- $\|r_k\|\searrow 0$ by design
- ||*x*_k|| ↗ PS 1982
- Should have been a clue that $||x_k|| \nearrow$ for CG!

- $\|r_k\|\searrow 0$ by design
- ||*x*_k|| ↗ PS 1982
- Should have been a clue that $||x_k|| \nearrow$ for CG!
- $||r_k|| \le \alpha ||A|| ||x_k|| + \beta ||b||$ chosen by Chris Paige 1982 We didn't know it was optimal till Titley-Peloquin 2010

- $\|r_k\|\searrow 0$ by design
- *∥x_k∥* ↗ PS 1982
- Should have been a clue that $||x_k|| \nearrow$ for CG!
- $||r_k|| \le \alpha ||A|| ||x_k|| + \beta ||b||$ chosen by Chris Paige 1982 We didn't know it was optimal till Titley-Peloquin 2010
- · Realized last week:

Backward errors are monotonic for LSQR on Ax = b (like CG and MINRES when $A \succ 0$):

 $||r_k||/(\boldsymbol{\alpha}||A|| ||x_k|| + \boldsymbol{\beta}||b||) \searrow$

- $\|r_k\|\searrow 0$ by design
- *∥x_k∥* ↗ PS 1982
- Should have been a clue that $||x_k|| \nearrow$ for CG!
- $||r_k|| \le \alpha ||A|| ||x_k|| + \beta ||b||$ chosen by Chris Paige 1982 We didn't know it was optimal till Titley-Peloquin 2010
- · Realized last week:

Backward errors are monotonic for LSQR on Ax = b (like CG and MINRES when $A \succ 0$):

 $||r_k||/(\alpha ||A|| ||x_k|| + \beta ||b||) \quad \searrow$

Everything the same for LSMR!

- $\|r_k\|\searrow 0$ by design
- *∥x_k∥* ↗ PS 1982
- Should have been a clue that $||x_k|| \nearrow$ for CG!
- $||r_k|| \le \alpha ||A|| ||x_k|| + \beta ||b||$ chosen by Chris Paige 1982 We didn't know it was optimal till Titley-Peloquin 2010
- · Realized last week:

Backward errors are monotonic for LSQR on Ax = b (like CG and MINRES when $A \succ 0$):

 $||r_k||/(\boldsymbol{\alpha}||A|| ||x_k|| + \boldsymbol{\beta}||b||) \searrow$

Everything the same for LSMR! What about GMRES?

LSQR and LSMR on min ||Ax - b||

Stewart backward error

$$r_k = b - Ax_k$$
$$\frac{\|A^T r_k\|}{\|A\| \|r_k\|} \leq \alpha$$

LSQR and LSMR on min ||Ax - b||

Stewart backward error

$$r_k = b - Ax_k$$
$$\frac{\|A^T r_k\|}{\|A\| \|r_k\|} \leq \alpha$$

LSQR and LSMR on min ||Ax - b||

Stewart backward error

$$r_k = b - Ax_k$$
$$\frac{\|A^T r_k\|}{\|A\| \|r_k\|} \leq \alpha$$

Overdetermined systems

Test Data

- Tim Davis, University of Florida Sparse Matrix Collection
- LPnetlib: Linear Programming Problems
- A = (Problem.A), b = Problem.c (127 problems)

Overdetermined systems

Test Data

- Tim Davis, University of Florida Sparse Matrix Collection
- LPnetlib: Linear Programming Problems
- A = (Problem.A), b = Problem.c (127 problems)

Solve min $||Ax - b||_2$

with LSQR and LSMR

Backward error – estimates

$$A^T A \hat{x} = A^T b$$
 $\hat{r} = b - A \hat{x}$ exact

$$(A + E_i)^T (A + E_i) x = (A + E_i)^T b$$
 $r = b - Ax$ any x

Backward error – estimates

$$A^T A \hat{x} = A^T b$$
 $\hat{r} = b - A \hat{x}$ exact

$$(A + E_i)^T (A + E_i) x = (A + E_i)^T b$$
 $r = b - Ax$ any x

Two estimates given by Stewart (1975 and 1977)

$$E_{1} = \frac{ex^{T}}{\|x\|^{2}} \qquad \|E_{1}\| = \frac{\|e\|}{\|x\|} \qquad e = \hat{r} - r$$
$$E_{2} = -\frac{rr^{T}A}{\|r\|^{2}} \qquad \|E_{2}\| = \frac{\|A^{T}r\|}{\|r\|} \qquad \text{computable}$$

Backward error – estimates

$$A^T A \hat{x} = A^T b$$
 $\hat{r} = b - A \hat{x}$ exact

$$(A + E_i)^T (A + E_i) x = (A + E_i)^T b$$
 $r = b - Ax$ any x

Two estimates given by Stewart (1975 and 1977)

$$E_{1} = \frac{ex^{T}}{\|x\|^{2}} \qquad \|E_{1}\| = \frac{\|e\|}{\|x\|} \qquad e = \hat{r} - r$$
$$E_{2} = -\frac{rr^{T}A}{\|r\|^{2}} \qquad \|E_{2}\| = \frac{\|A^{T}r\|}{\|r\|} \qquad \text{computable}$$

Theorem

$$\|E_2^{\mathrm{LSMR}}\| \le \|E_2^{\mathrm{LSQR}}\|$$

Backward error - optimal

$$\mu(x) \equiv \min_{E} \|E\| \quad \text{st} \quad (A+E)^{T} (A+E) x = (A+E)^{T} b$$

Exact $\mu(x)$ (Waldén, Karlson, & Sun 1995, Higham 2002)

$$C \equiv \begin{bmatrix} A & \frac{\|r\|}{\|x\|} \left(I - \frac{rr^T}{\|r\|^2} \right) \end{bmatrix} \qquad \mu(x) = \sigma_{\min}(C)$$

Backward error - optimal

$$\mu(x) \equiv \min_{E} \|E\| \quad \text{st} \quad (A+E)^T (A+E) x = (A+E)^T b$$

Cheaper estimate $\tilde{\mu}(x)$ (Grcar, Saunders, & Su 2007)

$$K = \begin{pmatrix} A \\ \frac{\|r\|}{\|x\|} I \end{pmatrix} \qquad v = \begin{pmatrix} r \\ 0 \end{pmatrix}$$
$$\min_{y} \|Ky - v\| \qquad \tilde{\mu}(x) = \frac{\|Ky\|}{\|x\|}$$

Backward error - optimal

$$\mu(x) \equiv \min_{E} \|E\| \quad \text{st} \quad (A+E)^T (A+E) x = (A+E)^T b$$

Cheaper estimate $\tilde{\mu}(x)$ (Grcar, Saunders, & Su 2007)

$$K = \begin{pmatrix} A \\ \|r\| \\ \|x\| \\ I \end{pmatrix} \qquad v = \begin{pmatrix} r \\ 0 \end{pmatrix}$$
$$\min_{y} \|Ky - v\| \qquad \tilde{\mu}(x) = \frac{\|Ky\|}{\|x\|}$$
$$r = b - A^{*}x;$$
$$p = colamd(A);$$
$$eta = norm(r)/norm(x);$$
$$K = [A(:,p); eta^{*}speye(n)];$$
$$v = [r; zeros(n,1)];$$
$$[c,R] = qr(K,v,0);$$

mutilde = norm(c)/norm(x);

For LSMR

$||E_2|| \approx \text{optimal BE almost always}$

Rare: $||\overline{E_1}|| \approx \tilde{\mu}(x)$

Optimal backward errors $\tilde{\mu}(x)$

Seem monotonic for LSMR

Usually not for LSQR

Typical for LSQR and LSMR Name:lp scfxm3, Dim:1800x990, nnz:8206, id=73 L SMB 100 200 300 400 500 600 70 800 900 iteration count

Rare LSQR, typical LSMR

Optimal backward errors

 $ilde{\mu}(x^{ ext{LSMR}}) \leq ilde{\mu}(x^{ ext{LSQR}})$ almost always

Summary

Theoretical properties for Ax = bCG and MINRES, $A \succ 0$ $\|x^* - x_k\|, \|x^* - x_k\|_A$ $\|x_k\|$

CG and MINRES, $A \succ 0$

$$\begin{array}{c|c} \|x^* - x_k\|, \ \|x^* - x_k\|_A \\ \|x_k\| \end{array} \xrightarrow{\sim}$$

$$\frac{\|r_k\|}{|r_k\|/(\alpha \|A\| \|x_k\| + \beta \|b\|)} \xrightarrow{}$$

Theoretical properties for Ax = b

CG and MINRES, $A \succ 0$

$$\begin{array}{c|c} |x^* - x_k\|, \|x^* - x_k\|_A & \searrow \\ \|x_k\| & \nearrow \end{array}$$

$$\begin{aligned} \|r_k\| &\searrow \\ \|r_k\|/(\boldsymbol{\alpha}\|A\|\|x_k\| + \boldsymbol{\beta}\|b\|) &\searrow \end{aligned}$$

LSQR and LSMR, any A

$$\frac{\|r_k\|}{\|r_k\|+\beta\|b\|} \xrightarrow{\searrow}$$

Theoretical properties for Ax = b

CG and MINRES, $A \succ 0$

$$|x^* - x_k\|, \|x^* - x_k\|_A \searrow \|x_k\| \nearrow$$

MINRES,
$$A \succ 0$$

$$\frac{\|r_k\|}{\|r_k\|+\beta\|b\|} \xrightarrow{\sim}$$

LSQR and LSMR, any A

$$\frac{\|r_k\|}{\|r_k\|+\beta\|b\|} \xrightarrow{\searrow}$$

Monotonic backward errors \Rightarrow safe to stop early

Theoretical properties for $\min ||Ax - b||$

LSQR and LSMR

$$\begin{array}{c|c} \|x^* - x_k\|, \ \|r^* - r_k\| & \searrow \\ & \|r_k\| & \searrow \\ & \|x_k\| & \nearrow \\ & x_k \rightarrow \text{min-length } x^* & \text{if } \text{rank}(A) < n \end{array}$$

Theoretical properties for $\min ||Ax - b||$

LSQR and LSMR

$$\begin{array}{c|c} \|x^* - x_k\|, \ \|r^* - r_k\| & \searrow \\ & \|r_k\| & \searrow \\ & \|x_k\| & \nearrow \\ x_k \rightarrow \text{min-length } x^* & \text{if } \text{rank}(A) < n \end{array}$$

LSMR

 $\begin{array}{c|c} \|A^{T}r_{k}\| & \searrow \\ \|A^{T}r_{k}\|/\|r_{k}\| & \searrow \text{ almost always} \\ \approx \text{ optimal BE almost always} \\ < (\|A^{T}r_{k}\|/\|r_{k}\|)^{\text{LSQR}} \end{array}$

Theoretical properties for $\min ||Ax - b||$

LSQR and LSMR

$$\begin{array}{c|c} \|x^* - x_k\|, \ \|r^* - r_k\| & \searrow \\ & \|r_k\| & \searrow \\ & \|x_k\| & \nearrow \\ x_k \rightarrow \text{min-length } x^* & \text{if } \text{rank}(A) < n \end{array}$$

LSMR

For LSMR, optimal backward errors seem monotonic \Rightarrow safe to stop early

We learn from history

We learn from history that we don't learn from history

– G. W. F. Hegel

We learn from history that we don't learn from history - G. W. F. Hegel

If you're not fired with enthusiasm,

We learn from history that we don't learn from history - G. W. F. Hegel

If you're not fired with enthusiasm, you'll be fired with enthusiasm

- Vince Lombardi

We learn from history that we don't learn from history - G. W. F. Hegel

If you're not fired with enthusiasm, you'll be fired with enthusiasm

- Vince Lombardi

Special thanks

Magnus Hestenes & Eduard Stiefel Gene Golub, William Kahan, Chris Paige David Fong, David Titley-Peloquin Andy, Nick, Philippe & Cerfacs friends ONR (Office of Naval Research)

