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Difficult unconstrained
optimization
» Unconstrained optimization problem

minazEQ f(ZIZ)

» Function f can be
o computed by a black box or
o Vvery large scale or
o Sstochastic

» f e Clor C? for now.

» Derivatives are often inaccurate or impossible/
expensive to compute.
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Original trust region framework

. Compute a potential step
my(z) = f(z¥) + g, (x — 2%) + 3 (z — 2*) " Hp(x — zx) in B(zk, Ag).
(gr, Hy are some gradient and Hessian approximations at ")

Compute a point 1 which minimizes (reduces) m(z) in B(z*, Ay).

. Check decrease

Compute f(z*) and check if f is reduced comparably to m by z™.

. Successful step
If yes zF1! := 27T, set Apy1 > Ag.
Generate new ggy1, Hit1-

. Unsuccessful step
Otherwise, 41 = x, decrease Ag by the constant factor.

gk+1 — 9k, Hlst—{—l — HA
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Trust region framework in DFO

. Compute a potential step
my(z) = f(z¥) + g; (x — 2%) + 5 (z — 2*) " Hy(x — zx) in B(zk, Ag).
(gr, Hy are some gradient and Hessian approximations at 2. )

Compute a point 1 which minimizes (reduces) m(z) in B(z*, Ay).

. Check decrease

Compute f(z*) and check if f is reduced comparably to m by z™.

. Successful step
If yes zF1! := 27T, set Apy1 > Ag.
Generate new g1, Hi11.

. Unsuccessful step

Otherwise, g1 := T.

Possibly decrease Ay by the constant factor.
Generate new ggy1, Hi11.
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Trust region framework in DFO

. Compute a potential step

my(z) = f(z¥) + g; (x — 2%) + 5 (z — 2*) " Hy(x — zx) in B(zk, Ag).
(gr, Hy are some gradient and Hessian approximations at 2. )
Compute a point 1 which minimizes (reduces) m(z) in B(z*, Ay).

. Check decrease

Compute f(zT) and check if f is reduced comparably to m by z™.

. Successful step
If yes zF1! := 27T, set Apy1 > Ag.
Generate new g1, Hi11.

. Unsuccessful step

Otherwise, g1 := T.

Possibly decrease Ay by the constant factor.
Generate new ggy1, Hi11.

“‘Refreshing” models at each iteration allows the
occasional use of really bad models.
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ample sets and models for f(x)=cos(x)+sin(y)
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What do we need from a deterministic
model for convergence?

We need Taylor-like behavior of first-order models

A model is called x-fully-linear in B(x,A), for kK = (Kef, Keg) if
|Vf(z+s)—Vm(z+s)|| < kegd, Vse B(0;A),

f(x+8)—m(z+3s)| < key A%, Vs € B(0;A),
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What do we need from a model to
explore the curvature?

We may want Taylor-like behavior of second-order models

A model is called x-fully-quadratic in B(z, A) for kK = (Keg, Keg, Ken) if
V2 f(z+s) — Vim(z +3)|| £ ken A, Vs € B(0;A),

IVFf(z+8) — Vm(z +35)|| < key A%, Vs € B(0;A),
|f(z+8) —m(x+3)| < ke A®, Vs e B(0;A),
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Traditional line search algorithm

1.Computing direction
mi(z) = f(z®) + g (z — 2%) + 3(x — 2*) T Hi(z — =)
(gk, Hy are approximations of gradient and Hessian (p.d).)
Compute a direction d* ~ —H, *gj.

2.Compute the step and check decrease
Given a step size oy, compute f(z* + apd*) and check if
f is reduced sufficiently at z* + oy d”.

3. Successful step
If yes zF*! := 2% + 0,d* and ar1 > oy
Gerate new gry1 and Hp 1.

4.Unsuccessful step

Otherwise, z*t1 := 2, ap1 = va, v < 1

gA+1 — gk;, HA_|_1 — H']‘.:7 dl‘_*’l — d,lit.
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Modified “line search” algorithm

1.Computing direction
mi(z) = f(z®) + g (z — 2%) + 3(x — 2*) T Hi(z — =)
(gk, Hy are approximations of gradient and Hessian (p.d).)
Compute a direction d* ~ —H, *gj.

2.Compute the step and check decrease
Given a step size oy, compute f(z* + apd*) and check if
f is reduced sufficiently at z* + oy d”.

3. Successful step
If yes zF*! := 2% + 0,d* and ar1 > oy
Generate new g1 and Hy. .

4.Unsuccessful step

Otherwise, z*t1 := 2, ap1 = va, v < 1

Generate new gr+1 and Hyy1 and/or gl
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Modified “line search” algorithm

1.Computing direction
mi(z) = f(z®) + g (z — 2%) + 3(x — 2*) T Hi(z — =)
(gk, Hy are approximations of gradient and Hessian (p.d).)
Compute a direction d* ~ —H, *gj.

2.Compute the step and check decrease
Given a step size oy, compute f(z* + apd*) and check if
f is reduced sufficiently at ¥ + ayd”.

3. Successful step
If yes zF*! := 2% + 0,d* and ar1 > oy
Generate new g1 and Hy. .

4.Unsuccessful step
Otherwise, z*t1 := 2, ap1 = va, v < 1

Generate new gr+1 and Hyy1 and/or gl

Possibly more work, but allows for occasionally bad directions/models.
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Motivation from large scale
sparse optimization

mingecqo f(x) + Al|lz||:

» f(x) is smooth, convex (not quadratic) and very large
scale, often with dense Hessian.

* Very common examples: logistic regression and sparse
inverse covariance selection. (Hsieh et al., Byrd et al., etc)

« Latest most efficient approaches build Lasso models:

m(z) = f(@*) + VI Ty — %) + 50— )T Hily - =) + Al

* Optimize the resulting Lasso subproblem approximately
by coordinate descent of a first order method.
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Approximate proximal Newton method:

1. Build a model of the objective by approximating the smooth part,

f(x), by a quadratic function around current iterate x.
F@*) + Vi) (@~ a*) + o (@ — o)) Huw — o) + Mal
1. Approximately (by coordinate descent, FISTA or another method)

optimize the resulting model to obtain a direction d*

2. Evaluate the objective function f(x+a,d¥).

« [f sufficient decrease has been achieved, accept as the new iterate, x<*'=x+a d*
« Otherwise, reduce &, and repeat.

3. Return to the Step 1.

For convergence need to make sure that Lasso subproblem produces
sufficiently accurate d* => expensive checking of KKT conditions.

JNSTNS! DANPA, Srd guzirgisr raviawy



Algorithms based on random
models and directions

- We focus on properties of the models
that are essential for convergence.

-  We will assume that these properties
are satisfied often enough in a random
fashion, but we do not know when.

- Ensure that those properties are
satisfied by models of interest.

O07/123/20113 Toulouss 2013



What do we need from a random model
for convergence?

We need likely Taylor-like behavior of first-order models

A random model is called (k, §)-fully-linear in B(z, A) if
IVf(z+s)—Vm(z+s)|| < kegd, Vse B(0;A),

|f(z+8) —m(x+35)| < Kkep A%, Vs e B(0;A),
with probability at least 1 — 0.
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What do we need from a random model
to explore curvature?

We need likely Taylor-like behavior of second order models

A random model is called (x, d)-fully-quadratic in B(x, A) if
V2 f(z +5) — V'm(z +s)|| < kenq, Vs B(0;A),

IVFf(z+3) — Vm(z +3)|| < keg A%, Vs € B(0;A),
1f(x+3)—m(z+8)| < ke A®, Vs € B(0;A),
with probability at least 1 — 0.
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Random models/steps with good properties

» Interpolation and regression models based on random
sample sets of points are (k, é)-fully-linear (quadratic).

» Sparse interpolation and reg. models based on smaller
random sample sets are (x, é)-fully-linear (quadratic).

» Interpolation and reg. models of stochastic functions
based on larger random sample sets are (x, 4)-fully-
linear (quadratic).

» Taylor models based on finite difference derivative
evaluations with asynchronous faulty parallel function
evaluations can be (x, é)-fully-linear (quadratic).

» Steps computed by optimizing Lasso subproblem using k
steps of randomized coordinate descent are “good” with
some probability (using results of Nesterov (2010) Richtarik
and Takac (2011)).
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Trust region frarmework with random models

1. Compute a potential step
my(z) = f(z¥) + g; (x — 2%) + 5 (z — 2*) " Hy(x — zx) in B(zk, Ag).
(gx, Hy are such that my(z) is (., d)-fully-linear.)
Compute a point 1 which minimizes (reduces) m(z) in B(z*, Ay).

2. Check decrease
Compute f(z™) and check if f is reduced comparably to m by x™.

3. Successful step
If yes zFt! := T,
Api1 = Ar/v, v <1, if Ag is small compared to ||g

Generate new gry1, Higa1 such that mg(x) is (k, d)-fully-linear.

k;H.

4. Unsuccessful step
Otherwise, g1 := T.
Agy1 = vAg.

Generate new gry1, Hga1. such that mg,q1(x) is (k, 0)-fully-linear.
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Quality of the “best” model vs. random model
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Convergence results for the basic TR framework

If models are fully linear with prob. 1-6 > 0.5
then with probability one lim ||V f(x,)|| =0

If models are fully quadratic w. p. 1-60 > 0.5
then with probability one
liminf max {|| V f(x ||, A,,.,.( VZf(x,))}=0

For /im result 6 need to Bandeira, S. and Vicente,
decrease occasionally 2013
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“Line search” algorithm
for random models/directions

1.Computing direction
my(z) = f(z*) + g; (x — 2%) + 3 (z — 2*) " Hp(z — 1)
(9%, Hy, are approximations of gradient and Hessian (p.d).)
Compute a direction d* ~ H . 1 gk, (given ay)
such that ||d* — H_ 'V f(2*)|| < kag||d*| with prob 1 — 6.

2.Compute the step and check decrease
Compute f(z* + azd*) and check if
f is reduced sufficiently at 2 + aid".

3. Successful step
If yes 1 := 2* + apd® and ap11 = ax /v, v < 1..
Generate new g1 and Hyy 1.

4.Unsuccessful step
Otherwise, zFt! = zF Qpt1 = Yok, ¥ < 1
Generate new grp4q and Hyy 1 and/or dF+!

such that ||d* — H, 'V f(2*)|| < kag||d¥| with prob 1 — 6.
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Approximate Newton method with
randomized coordinate descent:

1. Build a model of the objective by approximating the smooth part,

f(x), by a quadratic function around current iterate xk.

f(@*) + V(") (@ —2") + %(w — %) "Hy(z — 2*) + Az

1. Approximately (with sufficient accuracy, with probability p, by
randomized coordinate descent) optimize the resulting model to
obtain a direction g

2. Evaluate the objective function f(x+a,d¥).
« [f sufficient decrease has been achieved, accept as the new iterate, x<*'=x+a d*
« Otherwise, reduce &, and repeat.

3. Return to the Step 1.

JNSTNS! DANPA, Srd guzirgisr raviawy
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Analysis via martingales

Analyze two stochastic processes: X, and Y,:

L min{C,yXg} w.p.1-96
A . ¢ w.p. 0

v Yi + Xp0c?/4 wop.1-96
k1 = Yk W.p. )

We observe that

ap > X

f(zo) — f(xr) > Yi

If random models are independent of the past, then X, and Y, are
random walks, otherwise they are submartingales if § < 1/2.
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Analysis via martingales

Analyze two stochastic processes: X, and Y,:

L min{C,yXy} w.p.1-94
A . ¢ w.p. 0

v Yi + Xp0c?/4 wop.1-96
k+l = Yk W.p. )

We observe that

ap > Xk

f(zo) — fzk) = Vi

X, does not converge to O w.p. 1 => algorithm converges
Expectations of Y, and X, will facilitate convergence rates.
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Future work

» Convergence rates theory based on
random models.

» Convex optimization cases.
» Extend to composite optimization.
» Extend to stochastic programming.
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