Using random models and random steps in unconstrained optimization

> Katya Scheinberg Lehigh University (based on work with A. Bandeira and L.N. Vicente, X. Tang and also with C. Cartis)

07/25/2013

Difficult unconstrained optimization

> Unconstrained optimization problem

 $\min_{x \in \Omega} f(x)$

Function f can be

- computed by a black box or
- very large scale or
- stochastic
- > $f \in C^1$ or C^2 for now.
- Derivatives are often inaccurate or impossible/ expensive to compute.

Trust region framework

Original trust region framework

1. Compute a potential step

 $m_k(x) = f(x^k) + g_k^{\top}(x - x^k) + \frac{1}{2}(x - x^k)^{\top} H_k(x - x_k)$ in $B(x_k, \Delta_k)$. $(g_k, H_k \text{ are some gradient and Hessian approximations at <math>x^k$.) Compute a point x^+ which minimizes (reduces) m(x) in $B(x^k, \Delta_k)$.

2. Check decrease

Compute $f(x^+)$ and check if f is reduced comparably to m by x^+ .

- 3. Successful step If yes $x^{k+1} := x^+$, set $\Delta_{k+1} \ge \Delta_k$. Generate new g_{k+1}, H_{k+1} .
- 4. Unsuccessful step

Otherwise, $x_{k+1} = x_k$, decrease Δ_k by the constant factor. $g_{k+1} = g_k, H_{k+1} = H_k.$

07/25/2013

Trust region framework in DFO

1. Compute a potential step

 $m_k(x) = f(x^k) + g_k^{\top}(x - x^k) + \frac{1}{2}(x - x^k)^{\top} H_k(x - x_k)$ in $B(x_k, \Delta_k)$. $(g_k, H_k \text{ are some gradient and Hessian approximations at <math>x^k$.) Compute a point x^+ which minimizes (reduces) m(x) in $B(x^k, \Delta_k)$.

2. Check decrease

Compute $f(x^+)$ and check if f is reduced comparably to m by x^+ .

- 3. Successful step If yes $x^{k+1} := x^+$, set $\Delta_{k+1} \ge \Delta_k$. Generate new g_{k+1}, H_{k+1} .
- 4. Unsuccessful step

Otherwise, $x_{k+1} := x_k$. Possibly decrease Δ_k by the constant factor. Generate new g_{k+1} , H_{k+1} .

07/25/2013

Trust region framework in DFO

1. Compute a potential step

 $m_k(x) = f(x^k) + g_k^{\top}(x - x^k) + \frac{1}{2}(x - x^k)^{\top} H_k(x - x_k)$ in $B(x_k, \Delta_k)$. $(g_k, H_k \text{ are some gradient and Hessian approximations at <math>x^k$.) Compute a point x^+ which minimizes (reduces) m(x) in $B(x^k, \Delta_k)$.

2. Check decrease

Compute $f(x^+)$ and check if f is reduced comparably to m by x^+ .

3. Successful step

If yes $x^{k+1} := x^+$, set $\Delta_{k+1} \ge \Delta_k$. Generate new g_{k+1}, H_{k+1} .

4. Unsuccessful step

Otherwise, $x_{k+1} := x_k$. Possibly decrease Δ_k by the constant factor. Generate new g_{k+1} , H_{k+1} .

"Refreshing" models at each iteration allows the occasional use of really bad models.

07/25/2013

Motivating example with interpolation or regression models

07/25/2013

different DFO methods

08/20/2012

Model based trust region methods

Model based trust region methods

08/20/2012

Model based trust region methods

Powell, Conn, S. Toint, Vicente, Wild, etc.

08/20/2012

Model Based trust region methods

At each iteration a model is defined by the current sample set of points.

08/20/2012

Sample sets and models for f(x)=cos(x)+sin(y)

What do we need from a deterministic model for convergence?

We need Taylor-like behavior of first-order models

A model is called κ -fully-linear in $B(x, \Delta)$, for $\kappa = (\kappa_{ef}, \kappa_{eg})$ if $\|\nabla f(x+s) - \nabla m(x+s)\| \leq \kappa_{eg} \Delta, \quad \forall s \in B(0; \Delta),$ $|f(x+s) - m(x+s)| \leq \kappa_{ef} \Delta^2, \quad \forall s \in B(0; \Delta),$

What do we need from a model to explore the curvature?

We may want Taylor-like behavior of second-order models

A model is called κ -fully-quadratic in $B(x, \Delta)$ for $\kappa = (\kappa_{ef}, \kappa_{eg}, \kappa_{eh})$ if

$$\|\nabla^2 f(x+s) - \nabla^2 m(x+s)\| \leq \kappa_{eh} \Delta, \quad \forall s \in B(0; \Delta),$$

$$\begin{aligned} \|\nabla f(x+s) - \nabla m(x+s)\| &\leq \kappa_{eg} \,\Delta^2, \quad \forall s \in B(0;\Delta), \\ |f(x+s) - m(x+s)| &\leq \kappa_{ef} \,\Delta^3, \quad \forall s \in B(0;\Delta), \end{aligned}$$

07/25/2013

For deterministic methods convergence theory requires the model to be "good" (i.e. κ -fully linear) before trust region size is reduced.

For deterministic methods convergence theory requires the model to be "good" (i.e. κ -fully linear) before trust region size is reduced.

This means that some model quality checks or guarantees are needed, which can be expensive.

07/25/2013

Line search framework

Traditional line search algorithm

1.Computing direction

 $m_k(x) = f(x^k) + g_k^{\top}(x - x^k) + \frac{1}{2}(x - x^k)^{\top} H_k(x - x_k)$ (g_k, H_k are approximations of gradient and Hessian (p.d).) Compute a direction $d^k \approx -H_k^{-1}g_k$.

2.Compute the step and check decrease Given a step size α_k , compute $f(x^k + \alpha_k d^k)$ and check if f is reduced sufficiently at $x^k + \alpha_k d^k$.

3. Successful step If yes $x^{k+1} := x^k + \alpha_k d^k$ and $\alpha_{k+1} \ge \alpha_k$. Gerate new g_{k+1} and H_{k+1} .

4.Unsuccessful step Otherwise, $x^{k+1} := x^k$, $\alpha_{k+1} = \gamma \alpha_k$, $\gamma < 1$

$$g_{k+1} = g_k, \ H_{k+1} = H_k, \ d^{k+1} = d^k.$$

07/25/2013

Modified "line search" algorithm

1.Computing direction

 $m_k(x) = f(x^k) + g_k^{\top}(x - x^k) + \frac{1}{2}(x - x^k)^{\top} H_k(x - x_k)$ (g_k, H_k are approximations of gradient and Hessian (p.d).) Compute a direction $d^k \approx -H_k^{-1}g_k$.

2.Compute the step and check decrease Given a step size α_k , compute $f(x^k + \alpha_k d^k)$ and check if f is reduced sufficiently at $x^k + \alpha_k d^k$.

3. Successful step If yes $x^{k+1} := x^k + \alpha_k d^k$ and $\alpha_{k+1} \ge \alpha_k$. Generate new g_{k+1} and H_{k+1} .

4.Unsuccessful step

Otherwise, $x^{k+1} := x^k$, $\alpha_{k+1} = \gamma \alpha_k$, $\gamma < 1$ Generate new g_{k+1} and H_{k+1} and/or d^{k+1} .

07/25/2013

Modified "line search" algorithm

1.Computing direction

 $m_k(x) = f(x^k) + g_k^{\top}(x - x^k) + \frac{1}{2}(x - x^k)^{\top} H_k(x - x_k)$ (g_k, H_k are approximations of gradient and Hessian (p.d).) Compute a direction $d^k \approx -H_k^{-1}g_k$.

2.Compute the step and check decrease Given a step size α_k , compute $f(x^k + \alpha_k d^k)$ and check if f is reduced sufficiently at $x^k + \alpha_k d^k$.

3. Successful step If yes $x^{k+1} := x^k + \alpha_k d^k$ and $\alpha_{k+1} \ge \alpha_k$. Generate new g_{k+1} and H_{k+1} .

4.Unsuccessful step Otherwise, $x^{k+1} := x^k$, $\alpha_{k+1} = \gamma \alpha_k$, $\gamma < 1$ Generate new g_{k+1} and H_{k+1} and/or d^{k+1} .

Possibly more work, but allows for occasionally bad directions/models.

07/25/2013

Motivating example with large scale sparse optimization

07/25/2013

Motivation from large scale sparse optimization

 $\min_{x \in \Omega} f(x) + \lambda \|x\|_1$

- f(x) is smooth, convex (not quadratic) and very large scale, often with dense Hessian.
- Very common examples: logistic regression and sparse inverse covariance selection. (Hsieh et al., Byrd et al., etc)
- Latest most efficient approaches build Lasso models:

$$m(x) = f(x^k) + \nabla f(x^k)^\top (y - x^k) + \frac{1}{2}(y - x^k)^\top H_k(y - x^k) + \lambda \|x\|_1$$

• Optimize the resulting Lasso subproblem approximately by coordinate descent of a first order method.

07/25/2013

Approximate proximal Newton method:

1. Build a model of the objective by approximating the smooth part, f(x), by a quadratic function around current iterate x^{k} .

$$F(x^k) + \nabla f(x^k)^{\top}(x - x^k) + \frac{1}{2}(x - x^k)^{\top} H_k(x - x^k) + \lambda ||x||$$

- Approximately (by coordinate descent, FISTA or another method) optimize the resulting model to obtain a direction d^k
- 2. Evaluate the objective function $f(x+\alpha_k d^k)$.
 - If sufficient decrease has been achieved, accept as the new iterate, $x^{k+1}=x+\alpha_k d^k$
 - Otherwise, reduce α_k and repeat.
- 3. Return to the Step 1.

For convergence need to make sure that Lasso subproblem produces sufficiently accurate $d^+ =>$ expensive checking of KKT conditions.

Algorithms based on random models and directions

- We focus on properties of the models that are essential for convergence.
- We will assume that these properties are satisfied often enough in a random fashion, but we do not know when.
- Ensure that those properties are satisfied by models of interest.

What do we need from a random model for convergence?

We need likely Taylor-like behavior of first-order models

A random model is called (κ, δ) -fully-linear in $B(x, \Delta)$ if

 $\|\nabla f(x+s) - \nabla m(x+s)\| \le \kappa_{eg} \Delta, \quad \forall s \in B(0; \Delta),$

 $|f(x+s) - m(x+s)| \leq \kappa_{ef} \Delta^2, \quad \forall s \in B(0; \Delta),$

with probability at least $1 - \delta$.

What do we need from a random model to explore curvature?

We need likely Taylor-like behavior of second order models

A random model is called (κ, δ) -fully-quadratic in $B(x, \Delta)$ if $\|\nabla^2 f(x+s) - \nabla^2 m(x+s)\| \leq \kappa_{eh} \Delta, \quad \forall s \in B(0; \Delta),$ $\|\nabla f(x+s) - \nabla m(x+s)\| \leq \kappa_{eg} \Delta^2, \quad \forall s \in B(0; \Delta),$ $|f(x+s) - m(x+s)| \leq \kappa_{ef} \Delta^3, \quad \forall s \in B(0; \Delta),$ with probability at least $1 - \delta$.

Random models/steps with good properties

- > Interpolation and regression models based on random sample sets of points are (κ , δ)-fully-linear (quadratic).
- > Sparse interpolation and reg. models based on smaller random sample sets are (κ , δ)-fully-linear (quadratic).
- > Interpolation and reg. models of stochastic functions based on larger random sample sets are (κ , δ)-fullylinear (quadratic).
- > Taylor models based on finite difference derivative evaluations with asynchronous faulty parallel function evaluations can be (κ , δ)-fully-linear (quadratic).
- Steps computed by optimizing Lasso subproblem using k steps of randomized coordinate descent are "good" with some probability (using results of Nesterov (2010) Richtarik and Takac (2011)).

07/25/2013

Trust region framework with random models

 Compute a potential step
 m_k(x) = f(x^k) + g^T_k(x - x^k) + ½(x - x^k)^TH_k(x - x_k) in B(x_k, Δ_k).
 (g_k, H_k are such that m_k(x) is (κ, δ)-fully-linear.)
 Compute a point x⁺ which minimizes (reduces) m(x) in B(x^k, Δ_k).

 Check decrease

Compute $f(x^+)$ and check if f is reduced comparably to m by x^+ .

3. Successful step

If yes $x^{k+1} := x^+$, $\Delta_{k+1} := \Delta_k / \gamma, \ \gamma < 1$, if Δ_k is small compared to $\|g^k\|$. Generate new g_{k+1}, H_{k+1} such that $m_k(x)$ is (κ, δ) -fully-linear.

4. Unsuccessful step

Otherwise, $x_{k+1} := x_k$. $\Delta_{k+1} := \gamma \Delta_k$. Generate new g_{k+1} , H_{k+1} . such that $m_{k+1}(x)$ is (κ, δ) -fully-linear.

07/25/2013

Quality of the "best" model vs. random model

08/20/2012

Convergence results for the basic TR framework

If models are fully linear with prob. $1-\delta > 0.5$ then with probability *one* $\lim ||\nabla f(x_k)|| = 0$

If models are fully quadratic w. p. $1-\delta > 0.5$ then with probability *one liminf max* {|| $\nabla f(x_k)$ ||, $\lambda_{min}(\nabla^2 f(x_k))$ }=0

For *lim* result δ need to decrease occasionally

Bandeira, S. and Vicente, 2013

07/25/2013

"Line search" algorithm for random models/directions

1.Computing direction

 $m_k(x) = f(x^k) + g_k^{\top}(x - x^k) + \frac{1}{2}(x - x^k)^{\top} H_k(x - x_k)$ (g_k, H_k are approximations of gradient and Hessian (p.d).) Compute a direction $d^k \approx H_k^{-1}g_k$, (given α_k) such that $\|d^k - H_k^{-1}\nabla f(x^k)\| \leq \kappa \alpha_k \|d^k\|$ with prob $1 - \delta$.

2.Compute the step and check decrease Compute $f(x^k + \alpha_k d^k)$ and check if f is reduced sufficiently at $x^k + \alpha_k d^k$.

3. Successful step

If yes $x^{k+1} := x^k + \alpha_k d^k$ and $\alpha_{k+1} = \alpha_k / \gamma, \gamma < 1$.. Generate new g_{k+1} and H_{k+1} .

4.Unsuccessful step

Otherwise, $x^{k+1} = x^k$, $\alpha_{k+1} = \gamma \alpha_k$, $\gamma < 1$ Generate new g_{k+1} and H_{k+1} and/or d^{k+1} such that $\|d^k - H_k^{-1} \nabla f(x^k)\| \leq \kappa \alpha_k \|d^k\|$ with prob $1 - \delta$.

07/25/2013

Approximate Newton method with randomized coordinate descent:

1. Build a model of the objective by approximating the smooth part, f(x), by a quadratic function around current iterate x^{k} .

 $f(x^{k}) + \nabla f(x^{k})^{\top} (x - x^{k}) + \frac{1}{2} (x - x^{k})^{\top} H_{k}(x - x^{k}) + \lambda ||x||_{1}$

- Approximately (with sufficient accuracy, with probability p, by randomized coordinate descent) optimize the resulting model to obtain a direction d^k.
- 2. Evaluate the objective function $f(x+\alpha_k d^k)$.
 - If sufficient decrease has been achieved, accept as the new iterate, $x^{k+1}=x+\alpha_k d^k$
 - Otherwise, reduce α_k and repeat.
- 3. Return to the Step 1.

Random directions vs. random fully linear model gradients

Key observation for line search convergence

If g_k is a "good" direction and ∇f is *L*-Lipschitz continuous then when α_k is small enough (i.e. $\alpha_k \leq (1-\theta)/(L/2+\kappa)$)

$$f(x^+) = f(x_k - \alpha_k g_k) \le f(x_k) - \alpha_k \theta \|g_k\|^2$$

Successful step!

07/25/2013

Analysis of line search convergence

Assume g_k is always a "good direction"

 $\alpha_k \ge C \; \forall k$

C is a constant depending on κ , θ , L, etc

and

if $\|\nabla f(x_k)\| \ge \epsilon$ then $\|g_k\| \ge \epsilon/2$

 $f(x_k) - f(x_{k+1}) \ge \frac{C\theta\epsilon^2}{4}$

Convergence!!

07/25/2013

Analysis of line search convergence

Assume g_k is always a "good direction" w.p. $\geq 1-\delta$

and if $\|
abla f(x_k)\| \geq \epsilon$ then $\|g_k\| \geq \epsilon/2$ w.p. $\geq 1-\delta$

success

 $f(x_k) - f(x_{k+1}) \ge \frac{\alpha_k \theta \epsilon^2}{4} \quad \text{w.p.} \ge 1-\delta$ $\alpha_{k+1} = \gamma \alpha_k$

no success

 $\alpha_{k+1} = \gamma^{-1} \alpha_k$

Toulouse 2013

w.p. $\leq \delta$

07/25/2013

Analysis via martingales

Analyze two stochastic processes: X_k and Y_k :

$$X_{k+1} = \begin{cases} \min\{C, \gamma X_k\} & \text{w.p. } 1 - \delta \\ \gamma^{-1} X_k & \text{w.p. } \delta \end{cases}$$

$$Y_{k+1} = \begin{cases} Y_k + X_k \theta \epsilon^2 / 4 & \text{w.p. } 1 - \delta \\ Y_k & \text{w.p. } \delta \end{cases}$$

We observe that

 $\alpha_k \ge X_k$ $f(x_0) - f(x_k) \ge Y_k$

If random models are independent of the past, then X_k and Y_k are random walks, otherwise they are submartingales if $\delta \le 1/2$.

07/25/2013

Analysis via martingales

Analyze two stochastic processes: X_k and Y_k :

$$X_{k+1} = \begin{cases} \min\{C, \gamma X_k\} & \text{w.p. } 1 - \delta \\ \gamma^{-1} X_k & \text{w.p. } \delta \end{cases}$$

$$Y_{k+1} = \begin{cases} Y_k + X_k \theta \epsilon^2 / 4 & \text{w.p. } 1 - \delta \\ Y_k & \text{w.p. } \delta \end{cases}$$

We observe that

 $\alpha_k \ge X_k$ $f(x_0) - f(x_k) \ge Y_k$

 X_k does not converge to 0 w.p. 1 => algorithm converges Expectations of Y_k and X_k will facilitate convergence rates.

07/25/2013

Behavior of X_k for γ =2, C=1 and δ =0.45

 X_k

07/25/2013

Future work

Convergence rates theory based on random models.

- Convex optimization cases.
- Extend to composite optimization.
- Extend to stochastic programming.

Thank you!

07/25/2013

Analysis of line search convergence

If m_k is κ -fully linear

$$\|g_k - \nabla f(x_k)\| \le \kappa \Delta_k = \kappa \alpha_k \|g_k\|$$

If ∇f is *L*-Lipschitz continuous and $\alpha_k \leq (1-\theta)/(L/2+\kappa)$

$$f(x_k - \alpha_k * g_k) \le f(x_k) - \alpha_k \theta \|g_k\|^2$$

If $\|\nabla f(x_k)\| \ge \epsilon$ then $\|g_k\| \ge \epsilon/2$ and

$$f(x_k) - f(x_{k+1}) \ge \frac{\alpha_k \theta \epsilon^2}{4}$$

Hence only so many line search steps are needed to get a small gradient

07/25/2013

Analysis of line search convergence

If m_k is κ -fully linear

$$\|g_k - \nabla f(x_k)\| \le \kappa \Delta_k = \kappa \alpha_k \|g_k\|$$

If ∇f is *L*-Lipschitz continuous and $\alpha_k \leq (1-\theta)/(L/2+\kappa)$

$$f(x_k - \alpha_k * g_k) \le f(x_k) - \alpha_k \theta \|g_k\|^2$$

If $\|\nabla f(x_k)\| \ge \epsilon$ then $\|g_k\| \ge \epsilon/2$ and

$$f(x_k) - f(x_{k+1}) \ge \frac{\alpha_k \theta \epsilon^2}{4}$$

We assumed that $m_k(x)$ is κ -fully-linear every time.

07/25/2013

Polynomial models

07/25/2013