Sparse inverse incidence matrices in the factorization of indefinite matrices

W.H.A. Schilders, S.Lungten

Center for Analysis, Scientific Computing and Applications (CASA)

Technische Universiteit **Eindhoven** University of Technology

June 17, 2013

Where innovation starts

TU

- Motivation and goals
- Incidence matrix
- Sparse inverse of permuted incidence matrix
- Numerical examples
- Concluding remarks

Motivation and goals

Consider indefinite linear systems of the form

where A is symmetric and positive (semi) definite, and B^T is of maximal column rank of m with $m \le n$.

- ▶ For very large *A*, iterative methods take too much time.
- Preconditioning techniques to substantially reduce the number of iterations have become very important.
- Schilders' factorization can be used as a basis for such preconditioners.

(1)

Motivation and goals (cont.)

In Schilders' factorization, a possibly permuted $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{B}^T \\ \tilde{B} & 0 \end{bmatrix}$ is split into a block 3 × 3 structure and factorized as

$$\begin{bmatrix} \tilde{A}_{11} & \tilde{A}_{12} & \tilde{B}_1^T \\ \tilde{A}_{21} & \tilde{A}_{22} & \tilde{B}_2^T \\ \tilde{B}_1 & \tilde{B}_2 & 0 \end{bmatrix} = \begin{bmatrix} \tilde{B}_1^T & 0 & L_1 \\ \tilde{B}_2^T & L_2 & M \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} D_1 & 0 & I \\ 0 & D_2 & 0 \\ I & 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{B}_1 & \tilde{B}_2 & 0 \\ 0 & L_2^T & 0 \\ L_1^T & M^T & I \end{bmatrix}$$
(2)

The permutation should be such that

$$\tilde{B}^T = \begin{bmatrix} \tilde{B}_1^T \\ \tilde{B}_2^T \end{bmatrix} = \begin{bmatrix} & & \\ & &$$

a lower trapezoidal form. (3)

 ${\mathcal A}$ is sparse and so is $\tilde{{\mathcal A}}.$

But
$$\tilde{\mathcal{A}} = \begin{bmatrix} \tilde{B}_1^T & 0 & L_1 \\ \tilde{B}_2^T & L_2 & M \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} D_1 & 0 & I \\ 0 & D_2 & 0 \\ I & 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{B}_1 & \tilde{B}_2 & 0 \\ 0 & L_2^T & 0 \\ L_1^T & M^T & I \end{bmatrix}$$
 (4)

can have blocks which are more dense.

Sparsity of these blocks depends on the sparsity of \tilde{B}_1^{-T} .

 ${\mathcal A}$ is sparse and so is $\tilde{{\mathcal A}}.$

But
$$\tilde{\mathcal{A}} = \begin{bmatrix} \tilde{B}_1^T & 0 & L_1 \\ \tilde{B}_2^T & L_2 & M \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} D_1 & 0 & I \\ 0 & D_2 & 0 \\ I & 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{B}_1 & \tilde{B}_2 & 0 \\ 0 & L_2^T & 0 \\ L_1^T & M^T & I \end{bmatrix}$$
 (4)

can have blocks which are more dense.

Sparsity of these blocks depends on the sparsity of \tilde{B}_1^{-T} . For example:

$$D_{1} = \operatorname{diag}\left(\tilde{B}_{1}^{-T}\tilde{A}_{11}\tilde{B}_{1}^{-1}\right)$$
(5)

$$L_{1} = \tilde{B}_{1}^{T}\operatorname{lower}\left(\tilde{B}_{1}^{-T}\tilde{A}_{11}\tilde{B}_{1}^{-1}\right)$$
(6)

$$M = \left(\tilde{A}_{21} - \tilde{B}_{2}^{T}L_{1}^{T}\right)\tilde{B}_{1}^{-1} - \tilde{B}_{2}^{T}D_{1}$$
(7)
The tenset universited

 ${\mathcal A}$ is sparse and so is $\tilde{{\mathcal A}}.$

But
$$\tilde{\mathcal{A}} = \begin{bmatrix} \tilde{B}_1^T & 0 & L_1 \\ \tilde{B}_2^T & L_2 & M \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} D_1 & 0 & I \\ 0 & D_2 & 0 \\ I & 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{B}_1 & \tilde{B}_2 & 0 \\ 0 & L_2^T & 0 \\ L_1^T & M^T & I \end{bmatrix}$$
 (4)

can have blocks which are more dense.

Sparsity of these blocks depends on the sparsity of \tilde{B}_1^{-T} . For example:

$$D_{1} = \operatorname{diag}\left(\tilde{B}_{1}^{-T}\tilde{A}_{11}\tilde{B}_{1}^{-1}\right)$$
(5)

$$L_{1} = \tilde{B}_{1}^{T}\operatorname{lower}\left(\frac{\tilde{B}_{1}^{-T}\tilde{A}_{11}\tilde{B}_{1}^{-1}\right)$$
(6)

$$M = \left(\tilde{A}_{21} - \tilde{B}_{2}^{T}L_{1}^{T}\right)\tilde{B}_{1}^{-1} - \tilde{B}_{2}^{T}D_{1}$$
(7)

Different applications lead to different types of B^T . Requirement is the lower trapezoidal form

$$\tilde{B}^T = \begin{bmatrix} \tilde{B}_1^T \\ \tilde{B}_2^T \end{bmatrix} = \begin{bmatrix} & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & &$$

which can be achieved by:

- 1. permuting rows and columns of B^T if it is an <u>incidence matrix</u>.
- 2. performing LQ decomposition on B^T if it is of more general form.

Consider a loopless digraph G(V, E) with the

- node set $V = \{\eta_0, \eta_1, ..., \eta_6\}$
- arc set $E = \{\xi_1, \xi_2, \dots, \xi_{10}\}$

• η_0 is called as ground or reference node.

The node-arc incidence matrix of G is defined as

Technische Universiteit Eindhoven University of Technology

The node-arc incidence matrix of G is defined as

The node-arc incidence matrix of G is defined as

Deleting the column η_0 gives the incidence matrix

$$B^{T} = \begin{cases} \eta_{1} & \eta_{2} & \eta_{3} & \eta_{4} & \eta_{5} & \eta_{6} \\ \xi_{1} & 1 & 0 & 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$

which can be permuted to a lower trapezoidal form. TU/e

Inverse of permuted B_1^T

Different graphs lead to different \tilde{B}_1^T and \tilde{B}_1^{-T} .

$$\tilde{B}_{1}^{T} = \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ -\mathbf{1} & \mathbf{1} & 0 & 0 \\ -\mathbf{1} & 0 & \mathbf{1} & 0 \\ -\mathbf{1} & 0 & \mathbf{1} & 0 \end{bmatrix} \tilde{B}_{1}^{-T} = \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ \mathbf{1} & \mathbf{1} & 0 & 0 \\ \mathbf{1} & 0 & \mathbf{1} & 0 \\ \mathbf{1} & 0 & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

$$\tilde{B}_{1}^{T} = \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ -\mathbf{1} & \mathbf{1} & 0 & 0 \\ 0 & -\mathbf{1} & \mathbf{1} & 0 \\ 0 & 0 & -\mathbf{1} & \mathbf{1} \end{bmatrix} \tilde{B}_{1}^{-T} = \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ \mathbf{1} & \mathbf{1} & 0 & 0 \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & 0 \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{bmatrix}$$

Hamiltonian path

Case I: B^T of size 100×60

Case II (a): B^T of size 100×60

TU/e Technische Universiteit Eindhoven University of Technology

Case II (b): B^T of size 100×60

TU/e Technische Universiteit Eindhoven University of Technology $N = \text{lower}\left(\tilde{B}_{1}^{T}\right)$ is a nilpotent part of \tilde{B}_{1}^{T} . If k is the degree of nilpotency, then

$$\tilde{B}_1^{-T} = (I - N)^{-1} = I + N + N^2 + N^3 + \dots + N^{k-1}$$
(4)

The nilpotent part N of \tilde{B}_1^T

 $N = \text{lower}\left(\tilde{B}_{1}^{T}\right)$ is a nilpotent part of \tilde{B}_{1}^{T} . If k is the degree of nilpotency, then

 $N = \text{lower}\left(\tilde{B}_{1}^{T}\right)$ is a nilpotent part of \tilde{B}_{1}^{T} . If k is the degree of nilpotency, then

We aim for a permutation which leads to a small k.

Consider

Technische Universiteit Eindhoven University of Technology

Search for a node connected to η_0

$$B^{T} = \begin{cases} \eta_{1} & \eta_{2} & \eta_{3} & \eta_{4} & \eta_{5} & \eta_{6} \\ \xi_{1} & 1 & 0 & 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$

10/23

Eindhoven University of Technology

Τι

Search for a node connected to η_0

Technische Universiteit Eindhoven University of Technology

Search for a node connected to η_0

Technische Universiteit Eindhoven University of Technology

Search for a node connected to η_0

Technische Universiteit Eindhoven University of Technology

Search for a node connected to η_0

$$B^{T} \sim \begin{cases} \eta_{3} & \eta_{2} & \eta_{1} & \eta_{4} & \eta_{5} & \eta_{6} \\ \xi_{6} & \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ \xi_{7} & 0 & -1 & 0 & 0 & 0 \\ \xi_{8} & \xi_{9} & 1 & 0 & -1 & 0 & 0 \\ \xi_{10} & 1 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$

Technische Universiteit Eindhoven University of Technology

TU

Search for all the nodes connected to η_3 or η_0 .

$$B^{T} \sim \begin{cases} \eta_{3} & \eta_{2} & \eta_{1} & \eta_{4} & \eta_{5} & \eta_{6} \\ \xi_{6} & \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$

Technische Universiteit Eindhoven University of Technology

Т

Search for all the nodes connected to η_3 or η_0 .

Technische Universiteit Eindhoven University of Technology

Search for all the nodes connected to η_3 or η_0 .

e Technische Universiteit Eindhoven University of Technology

TU

Search from $\{\eta_4, \eta_6\}$ the one connected to η_2 else η_1 else η_5 .

$$B^{T} \sim \begin{array}{c} \eta_{3} & \eta_{2} & \eta_{1} & \eta_{5} & \eta_{4} & \eta_{6} \\ \hline \xi_{6} & \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ \xi_{7} & \xi_{7} & 0 & -1 & 0 & 0 & 0 \\ \xi_{8} & \xi_{3} & 0 & 0 & 0 & -1 \\ \xi_{8} & \xi_{4} & 0 & 1 & 0 & 0 & 0 \\ \end{array}$$

10/23

Eindhoven University of Technology

Search from $\{\eta_4, \eta_6\}$ the one connected to η_2 else η_1 else η_5 .

Technische Universiteit Eindhoven University of Technology

Search from $\{\eta_4, \eta_6\}$ the one connected to η_2 else η_1 else η_5 .

$$B^{T} \sim \begin{array}{c} \eta_{3} & \eta_{2} & \eta_{1} & \eta_{5} & \eta_{6} & \eta_{4} \\ \hline \xi_{6} & \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ \xi_{7} & \xi_{8} & \\ \xi_{3} & \\ \xi_{2} & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \\ \end{bmatrix}$$

TU/e Technische Universiteit Eindhoven University of Technology

Search for a connection from η_4 to η_1 else η_5 else η_6 .

$$B^{T} \sim \begin{array}{c} \eta_{3} & \eta_{2} & \eta_{1} & \eta_{5} & \eta_{6} & \eta_{4} \\ \hline \xi_{6} & \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ \xi_{7} & \xi_{8} & \xi_{3} \\ \xi_{3} & \xi_{2} & 0 & 0 & -1 & 0 & 0 \\ \end{array}$$

Technische Universiteit Eindhoven University of Technology

Search for a connection from η_4 to η_1 else η_5 else η_6 .

Technische Universiteit Eindhoven University of Technology

Search for a connection from η_4 to η_1 else η_5 else η_6 .

TU/e Technische Universiteit Eindhoven University of Technology

There is a row permutation matrix

$$P_r = [e_6, e_5, e_9, e_{10}, e_4, e_2, e_7, e_8, e_3, e_1]^T$$

and a column permutation matrix

$$P_c = [e_3, e_2, e_1, e_5, e_6, e_4]$$

such that

$$P_r B^T P_c = \tilde{B}^T$$

There is a row permutation matrix

$$P_r = [e_6, e_5, e_9, e_{10}, e_4, e_2, e_7, e_8, e_3, e_1]^T$$

and a column permutation matrix

$$P_c = [e_3, e_2, e_1, e_5, e_6, e_4]$$

such that

$$P_r B^T P_c = \tilde{B}^T$$

Note

Permutation is not unique.

Has the permutation improved the sparsity of \tilde{B}_1^{-T} ?

Case II (a): B^T of size 100×60

20

0

40

 \tilde{B}_1^{-T} , nz = 1830

60

Case II (b): B^T of size 100×60

Case II (c): B^T of size 100×60 (new permutation)

60

40

nz = 275

60

0

 \tilde{B}

20

Numerical Example: A Resistor network

Numerical Example: Component R₃

B^T of size 2476 \times 1541 from R_3

Blocks in Schilders' factorization

$$D_1 = \operatorname{diag}\left(\tilde{B}_1^{-T}\tilde{A}_{11}\tilde{B}_1^{-1}\right)$$
(5)

$$L_1 = \tilde{B}_1^T \operatorname{lower}\left(\tilde{B}_1^{-T} \tilde{A}_{11} \tilde{B}_1^{-1}\right)$$
(6)

$$M = \left(\tilde{A}_{21} - \tilde{B}_{2}^{T} L_{1}^{T}\right) \tilde{B}_{1}^{-1} - \tilde{B}_{2}^{T} D_{1}$$
(7)

Blocks in Schilders' factorization

$$D_1 = \operatorname{diag}\left(\tilde{B}_1^{-T}\tilde{A}_{11}\tilde{B}_1^{-1}\right)$$
(5)

$$\boldsymbol{L}_{1} = \tilde{\boldsymbol{B}}_{1}^{T} \operatorname{lower}\left(\tilde{\boldsymbol{B}}_{1}^{-T} \tilde{\boldsymbol{A}}_{11} \tilde{\boldsymbol{B}}_{1}^{-1}\right)$$
(6)

$$\boldsymbol{M} = \left(\tilde{A}_{21} - \tilde{B}_{2}^{T} L_{1}^{T}\right) \tilde{B}_{1}^{-1} - \tilde{B}_{2}^{T} D_{1}$$
(7)

Sparsity of blocks from component *R*₃

$$D_1 = \operatorname{diag}\left(\tilde{B}_1^{-T}\tilde{A}_{11}\tilde{B}_1^{-1}\right)$$
(5)

$$L_1 = \tilde{B}_1^T \operatorname{lower} \left(\tilde{B}_1^{-T} \tilde{A}_{11} \tilde{B}_1^{-1} \right)$$
(6)

$$M = \left(\tilde{A}_{21} - \tilde{B}_{2}^{T} L_{1}^{T}\right) \tilde{B}_{1}^{-1} - \tilde{B}_{2}^{T} D_{1}$$
(7)

Note

For a resistor network, A is a diagonal matrix with entries of resistance values.

Sparsity of blocks from component R₃

Block	Size	Nonzeros	Nonzeros (%)	Sparsity (%)
\tilde{B}_1^T	1541 × 1541	3079	0.26	99.74
\tilde{B}_1^{-T}	1541 × 1541	19929	1.68	98.32
L_1	1541 × 1541	112536	9.48	90.52
М	935 × 1541	151673	10.53	89.47

Sparsity of blocks from other components

15	/23

component		R_1	R_2	R_4	R_5
nodes		2300	1210	341	243
arcs		3682	1936	555	333
nilpotency (k)		50	33	42	20
Block sparsity (%)	\tilde{B}_1^T	99.83	99.67	98.83	98.37
	\tilde{B}_1^{-T}	98.24	97.33	91.50	92.45
	L_1	92.11	96.42	90.69	88.86
	М	90.96	91.20	77.56	84.72

 For general incidence matrices, we can determine a permutation which leads to a sparse inverse.

 The determination of the most sparse inverse still remains to be a significant challenge.

Micro- and macro-block factoirzations for regularized saddle point systems

Joseph M.L. Maubach and Wil H.A. Schilders

Structure of indefinite *X* from regularized saddle point problems:

$$X = {n \atop m} \begin{bmatrix} n & m \\ A & B^T \\ B & -C \end{bmatrix}, \quad m \le n$$

- A is $n \times n$ symmetric positive definite;
- B^T is $n \times m$ of full column rank;
- $C \neq 0$ (regularized saddle point problem) is $m \times m$ symmetric positive semi-definite;
- **Goal:** Construct a preconditioner or implicit/explicit factorization.

We exploit the structure:

- A is $n \times n$ symmetric positive definite;
- B^T is $n \times m$ lower trapezoidal of full column rank;
- C is $m \times m$ positive diagonal matrix.

Results do extend to symmetric positive semi-definite C.

Define a permutation matrix Q and obtain

$$Y = Q^T X Q$$

Micro-block factorization:

$$Y = L \operatorname{diag}\left(L^{-T}\right) L^{T}$$

- *L* is a micro-block lower triangular with 2×2 , 1×2 and 1×1 micro-blocks
- ► diag(L^{-T}) is a micro-block diagonal with 2 × 2 and 1 × 1 micro-blocks

I Micro-block factorization: Example

TU/e Technische Universiteit Eindhoven University of Technology

I Micro-block factorization: Example

e Technische Universiteit Eindhoven University of Technology

II Macro-block factorization

Back permutation of *Y* induces

$$\begin{split} X &= QYQ^{T} \\ &= Q\left(L \operatorname{diag}\left(L^{-T}\right) L^{T}\right)Q^{T} \\ &= \underbrace{\left(QLQ^{T}\right)}_{L_{x}}\underbrace{\left(Q \operatorname{diag}\left(L^{-T}\right) Q^{T}\right)}_{D_{x}}\underbrace{\left(QL^{T}Q^{T}\right)}_{L_{x}^{T}}, \\ L_{x} &= \begin{bmatrix} L_{1} & 0 & B_{1}^{T} \\ M & L_{2} & B_{2}^{T} \\ dB_{1} & 0 & -C \end{bmatrix}, \quad D_{x} = \begin{bmatrix} FC & 0 & F \, dB_{1} \\ 0 & D_{2} & 0 \\ F \, dB_{1} & 0 & -FD_{1} \end{bmatrix}, \end{split}$$

where

► *L*₁, *L*₂ are lower triangulars; *D*₁, *D*₂ are diagonals; and *M* a rectangular

•
$$dB_1 = \text{diag}(B_1)$$
 and $F = (dB_1^2 + CD_1)^{-1}$

Let $\mathcal{L}_x = L_x D_x$ and $\mathcal{D}_x = D_x$. Then there exists the macro-block factorization

$$X = \mathcal{L}_{x} \mathcal{D}_{x} \mathcal{L}_{x}^{T}$$

where

$$\mathcal{L}_{x} = \begin{bmatrix} B_{1}^{T} F \, dB_{1} + L_{1} F C & 0 & -B_{1}^{T} F D_{1} + L_{1} F \, dB_{1} \\ B_{2}^{T} F \, dB_{1} + M F C & L_{2} D_{2} & -B_{2}^{T} F D_{1} + M F \, dB_{1} \\ 0 & 0 & I \end{bmatrix}.$$

This is an extension of Schilders' factorization to the case $C \neq 0$.

II Macro-block factorization: Example

TU/e Technische Universiteit Eindhoven University of Technology

References

- W.H.A. Schilders, *Solution of indefinite linear systems using an LQ decomosition for the linear constraints*, Linear Algebra and its Applications, Elsevier Inc. 431(2009), pp. 381-395.
- B.Jorgen, G.Gregory *Digraphs*, Theory, Algorithms, and Applications, Springer-Verlag, Berlin, Heidelberg, New York 2007.
- R.Diestel, Graph Theory, Graduat Texts in Mathematics, Springer-Verlag, New York 2005.
- C.Keller, N.I.M.Gould, A.J.Wathen, Constraint preconditioning for indefinite linear systems, SIAM Journal on Matrix Analysis and Applications 2000, vol 21, No 4, pp. 1300-1317.
 - J.M.L. Maubach, W.H.A. Schilders, Micro- and macro-block factorizations for regularized saddle point systems, Technical report, April 2012.

