An introductory look at the antibandwidth problem

Jennifer Scott, STFC Rutherford Appleton Laboratory

in collaboration with Yifan Hu, AT&T

Sparse Days at CERFACS, 6th September 2011

Outline

- Background: definitions and motivation
- Existing work
- Level-set approach
- Hill climbing for refinement
- Concluding remarks and future work

Bandwidth minimization problem

Minimizing the bandwidth of a sparse symmetric matrix $A = \{a_{ij}\}$ is a well-known problem ie permute the rows and columns of A to minimize the maximum distance b from diagonal

$$b = min_i \{max_j\{|i-j| : a_{ij} \neq 0\}\}$$

Equivalently, label (or order) the nodes of graph $\mathcal{G}(A)$ to minimize the maximum the difference between a node *i* and its neighbours (minimize the length of the longest edge).

Bandwidth minimization history

- Bandwidth minimization problem originated in 1950s when structural engineers first analyzed steel frameworks using matrices (wanted small bandwidth to factorize matrix).
- The problem was posed independently for graphs (Harper 1964 and Harary 1967).
- Problem is NP-Complete (Papadimitriou 1976, Johnson, Garey, Graham and Knuth 1978).
- Many papers published in the literature.
- Best-known algorithm for computing a good band ordering is that of Cuthill-McKee (eg rcm in MATLAB, MC61 in HSL).

Antibandwidth problem

The antibandwidth maximization problem is to permute the rows and columns of A to maximize the minimum distance ab from diagonal

$$ab = max_i \{ min_j \{ |i - j| : i \neq j \text{ and } a_{ij} \neq 0 \} \}.$$

Equivalently, label the nodes of $\mathcal{G}(A)$ such that the length of the shortest edge is maximized.

A bit of history

- Introduced by Leung, Vornberger, Witthoff in *On some variants of bandwidth minimization problem*, SIAM Journal of Computing 13, 1984.
- Antibandwidth is also known as separation number or dual bandwidth.
- Also NP-Complete.
- Some theoretical results for special graphs.

Applications: frequency assignment problem

Hale, *Frequency assignment: theory and applications*, Proceedings IEEE 60, 1980:

Given n transmitters and n frequencies find a bijective frequency assignment where the interfering transmitters have frequencies that are as different as possible.

Graph model:

- transmitters = nodes
- interferencies = edges between interfering transmitters
- frequency assignment = optimal antibandwidth labelling

Background Existing work Level-set approach Conclusions

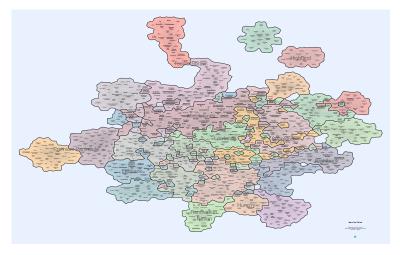
Obnoxious facilities location problem

- Let nodes represent sensitive facilities or chemicals
- Aim: locate them as far from each other as possible

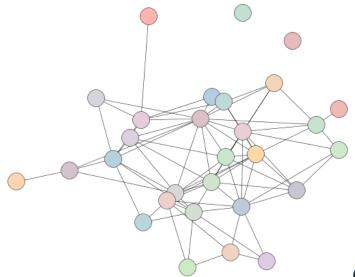
Maximum differential graph colouring

- Four Colour Theorem states only 4 colours needed to colour a map so that no neighbouring countries share same colour.
- But assumes each country forms a contiguous region.
- If not, need unique colour for each country.
- countries = nodes
- edge between two countries if they share non-trivial boundary
- maximize colour distance between nodes that share an edge = optimal antibandwidth labelling

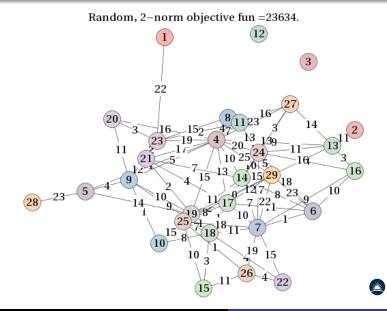
Map with original colours



Representation as graph

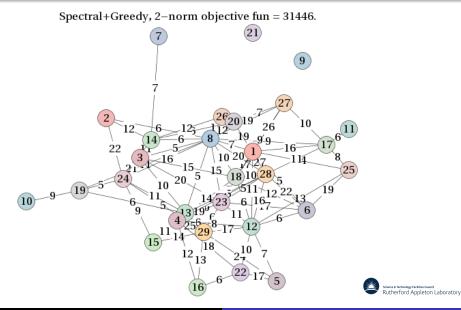


Assign numbers to colours



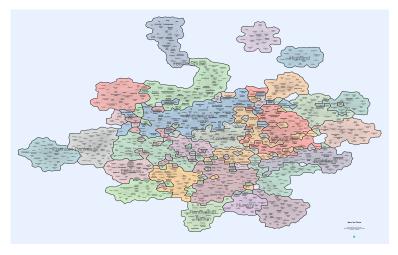
Science & Technology Facilities Council Rutherford Appleton Laboratory

Relabel graph



nce & Technology Facilities Council

Map with new colours



Theoretical results

Optimal solutions are known for a few special classes and for others bounds have been proved.

In particular, for a 2D $m \times k$ mesh with $m \ge k \ge 2$

$$\mathsf{ab} = \left\lceil \frac{k(m-1)}{2}
ight
ceil$$

(Miller and Pritkin 1989, Raspaud et al. 2009).

For 3D $m \times m \times m$ mesh (Török and Vrt'o 2010)

$$ab=rac{4m^3-3m^2}{8}+\mathcal{O}(m).$$

Numerical methods

Duarte, Marti, Resende and Silva (2010) first proposed heuristics aimed at obtaining high-quality solutions on general graphs.

- Use an integer programming formulation and then CPLEX (optimization package) to solve.
- But too expensive (> 24 hours for problems with n = O(10)).
- So then propose metaheuristics based on GRASP (Greedy Randomized Adaptive Search Procedure).
- Each GRASP iteration constructs a trial solution and then applies a local search.

Some good results but still costly ... several minutes for relatively small Harwell-Boeing matrices.

Can we do better? Retain quality but faster orderings?

Can we exploit knowledge and experience from the bandwidth minimization problem to develop algorithms for the antibandwidth maximization problem?

Cuthill-McKee algorithm for bandwidth reduction

- Works with the adjacency graph \mathcal{G} of A.
- *G* is an undirected graph that has a node for each row (or column) of the matrix and node *i* is a neighbour of node *j* if *a*_{*ij*} (and by symmetry *a*_{*ji*}) is an entry (nonzero) of *A*.
- Choose starting node *s* and relabel nodes of *G* by order of increasing distance from *s*.
- Notes:
 - Assume G is connected (otherwise, procedure repeated from an s in each component).
 - Reversing the ordering (RCM) reduces the profile of A (the average distance between first entry in a row and the diagonal) but does**not** effect the bandwidth.

Cuthill-McKee algorithm

```
Choosing starting node s and label as node 1
Set I_1 = \{s\}; i = 1
do k = 2, 3, ... until i = n
     l_{k} = \{\}
     do for each v \in I_{k-1} in label order
          do for each neighbour u of v that has not been labelled,
                   in order of increasing degree
              add u to l_k; i = i + 1; label u as node i
          end do
     end do
end do
```


- Ordering the nodes in this way groups them into level sets.
- Nodes in level set l_k can have neighbours only in level sets l_{k-1} , l_k , and l_{k+1} .
- Therefore desirable that the level sets be small, which is likely if there are many of them.
- Algorithms for finding a good starting node are usually based on finding a pseudo-diameter of ${\cal G}$.

Level-set approach for antibandwidth problem

Recall: for 2D $m \times k$ mesh with $m \ge k \ge 2$

$$ab = \left\lceil \frac{k(m-1)}{2} \right\rceil$$

Miller and Pritikin describe how this bound can be achieved.

25	26	27	28	29	30
19	20	21	22	23	24
13	14	15	16	17	18
7	8	9	10	11	12
1	2	3	4	5	6

Start at a corner: $\mathit{l}_1 = \{1\}, \ \mathit{l}_2 = \{2,7\}, \ \mathit{l}_3 = \{3,8,13\},$ and so on.

25	26	27	28	29	30
19	20	21	22	23	24
13	14	15	16	17	18
7	8	9	10	11	12
1	2	3	4	5	6

Start at a corner: $\mathit{l}_1=\{1\},\ \mathit{l}_2=\{2,7\},\ \mathit{l}_3=\{3,8,13\},$ and so on.

Order I_2 , I_4 , I_6 , ..., and then I_1 , I_3 , ...

20	7	25	12	29	15
3	21	8	26	13	30
17	4	22	9	27	14
1	18	5	23	10	28
16	2	19	6	24	11

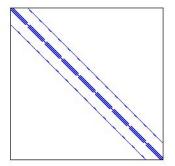
Level-based antibandwidth algorithm

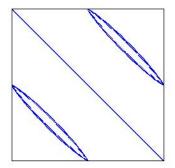
```
Initialise: sweep = 0; flag(1:n) = 0; i = 0.
Given s, construct L(s) = \{l_1, l_2, ..., l_h\}.
do until i = n
    sweep = sweep + 1
    do r = 1, ..., h
        do for each unlabelled u \in I_r
            if (flag(u) = sweep) cycle
             i = i + 1: label u as node i
             Set flag(v) = sweep for each unlabelled neighbour v of u
        end do
    end do
end do
```


Notes on level-based approach

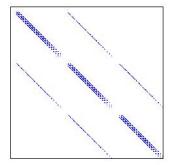
- Algorithm comprises a number of sweeps through level-set structure *L*(*s*).
- On each sweep, a node can only be labelled if none of its neighbours has already been labelled on the current sweep.
- On uniform mesh, reduces to ordering the even numbered sets and then the odd numbered set (Miller and Pritikin).
- Success will depend on good starting node and getting well-balanced level sets.

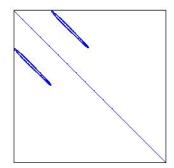
HB/nos7 before and after LB reordering





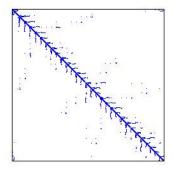
HB/sherman4 before and after LB reordering

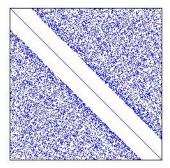




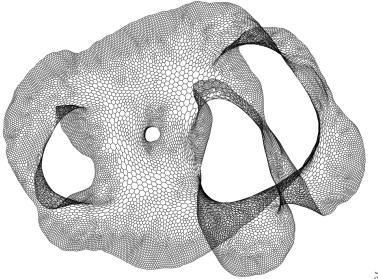
Background Existing work Level-set approach Conclusions

HB/1shp2614 before and after LB reordering



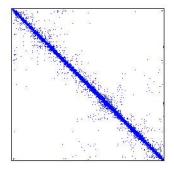


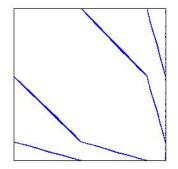
Finite-element mesh for AG-Monien/big_dual



Technology Facilities Council Prford Appleton Laboratory

AG-Monien/big_dual before and after LB reordering





Story so far ...

- Level-based approach generalises that of Miller and Pritikin.
- It works well on many grid-based problems.
- **BUT** while it increases average distance from the diagonal, can get some rows towards end of ordering where minimum distance to diagonal is very small (possibly even ab = 1) eg AG-Monien/big_dual.

Can we improve *ab* using a local refinement strategy?

Hill climbing

We define i to be critical if

$$min_k\{|i-k|: i \neq k \text{ and } a_{ik} \neq 0\} = ab.$$

Basic idea: If *i* is critical, look for non-critical *j* such that symmetrically permuting *i* and *j* (swapping rows *i* and *j* and columns *i* and *j*) leaves *i* and *j* non-critical.

Note: used for bandwidth reduction by Lim et al. (2004) and by Reid and Scott (2006) for unsymmetric matrices.

Hill climbing (HC) algorithm

```
outer: do
    Form the set V_c of critical nodes
    do until V_c is empty
        if there are nodes i \in V_c and j \notin V_c such that
          swapping i and j leaves both non-critical then
          swap i and j and remove i from V_c
        else
          exit outer
        end if
    end do
end do outer
```


Hill climbing

Differences between HC for bandwidth and antibandwidth problems:

- definition of a critical node,
- checks that are needed for finding suitable swap.

Looking for swap is simple in bandwidth case (just keep track of first and last entries in each row).

Hill climbing

For antibandwidth, restrict the search eg if row *i* has a lower critical entry for current antibandwidth ($\exists k < i$ such that i - k = ab) and *j* is in range

$$i-2*ab \leq j \leq i-1$$

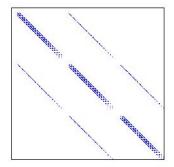
swapping *i* and *j* decreases the antibandwidth so reject.

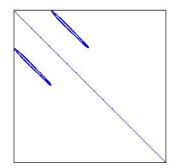
But still necessary to check entries in rows i and j to see if a swap is possible. Not acceptable if

$$\bullet a_{ij} \neq 0 \text{ and } |i - j| = ab, \text{ or }$$

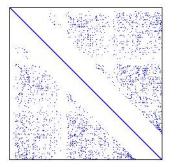
- ② ∃ *I* such that $a_{il} \neq 0$ and $|I j| \leq ab$, or
- **③** ∃ k such that $a_{kj} \neq 0$ and $|k i| \leq ab$.

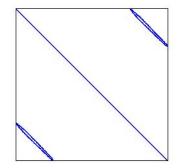
Recall: HB/sherman4 before and after LB reordering



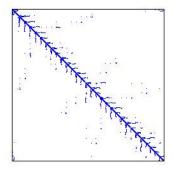


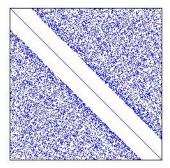
HC applied to HB/sherman4



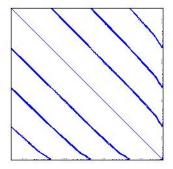


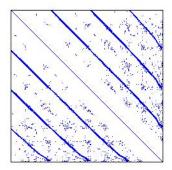
Recall: HB/1shp2614 before and after LB reordering





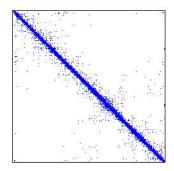
HC applied to HB/1shp2614

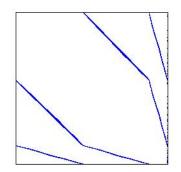




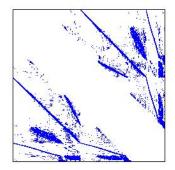
Background Existing work Level-set approach Conclusions

Recall: AG-Monien/big_dual before and after LB reordering





HC applied to AG-Monien/big_dual



Comparisons with GRASP

Problem	n	GRASP	LB+HC
HB/curtis54	54	12	9
HB/dwt_234	234	51	80
HB/can_445	445	85	56
HB/662_bus	662	220	163
HB/nos6	675	328	329
HB/sherman4	1104	261	815

For these small problems, LB+HC takes < 0.01 seconds. For a problem with n = 201,822, time was 100 seconds.

Duarte et al report GRASP requires 300 seconds for HB/sherman4

Results to date

Bad news:

The antibandwidth maximization problem appears to be tougher than the bandwidth minimization problem.

Some positive results:

- Level-based ordering can work well on grid problems.
- Hill climbing offers local refinement ... final quality depends on initial ordering.
- Hill-climbing is expensive compared with level-based ordering but much faster than GRASP and can be used for larger problems.

Future directions

However, simple 2-step approach is not sufficient for all problems.

Future plans include:

- Developing other algorithms to obtain initial orderings (including a spectral approach and a node centroid algorithm).
- Deriving more sophisticated refinement algorithms.

It seems likely there will always be a compromise between quality and speed.

Thank you!

Note: we are currently looking to recruit a new member of the Numerical Analysis Group at RAL. Contact me if interested.

