
The out-of-core challenge for large-scale problems

Jennifer A. Scott (j.a.scott@rl.ac.uk)

Joint work with John Reid

CERFACS October 2007 – p.1/29

Sparse systems

Problem: we wish to solve
Ax = b

where A is
LARGE

s p a r s e

Problem sizes constantly grow larger

40 years ago large might have meant order 10
2

Today order > 10
7 not unusual

For direct methods storage requirements generally grow more rapidly than
problem size

CERFACS October 2007 – p.2/29

Options for large problems

Possibilities:

Iterative method ... but preconditioner?

Combine iterative and direct methods?

Buy a bigger machine ... but expensive and inflexible

Parallel direct solver?

Use an out-of-core solver

An out-of-core solver holds the matrix factors in files and may also hold the matrix
data and some work arrays in files.

Note: out-of-core working has become even more important because of more lim-
ited local memories on distributed memory machines

CERFACS October 2007 – p.3/29

Options for large problems

Possibilities:

Iterative method ... but preconditioner?

Combine iterative and direct methods?

Buy a bigger machine ... but expensive and inflexible

Parallel direct solver?

Use an out-of-core solver

An out-of-core solver holds the matrix factors in files and may also hold the matrix
data and some work arrays in files.

Note: out-of-core working has become even more important because of more lim-
ited local memories on distributed memory machines

CERFACS October 2007 – p.3/29

Out-of-core solvers

Idea of out-of-core solvers not new: band and frontal solvers developed in
1970s and 1980s held matrix data and factors out-of-core.

For example, MA32 in HSL (superseded in 1990s by MA42).

30 years ago John Reid at Harwell developed a Cholesky out-of-core
multifrontal code TREESOLV for element applications.

More recent codes include:

BCSEXT-LIB (Boeing)

Oblio (Dobrian and Pothen)

TAUCS (Toledo and students)

MUMPS currently developing out-of-core version

Also work by Rothberg and Schreiber

CERFACS October 2007 – p.4/29

Out-of-core solvers

Idea of out-of-core solvers not new: band and frontal solvers developed in
1970s and 1980s held matrix data and factors out-of-core.

For example, MA32 in HSL (superseded in 1990s by MA42).

30 years ago John Reid at Harwell developed a Cholesky out-of-core
multifrontal code TREESOLV for element applications.

More recent codes include:

BCSEXT-LIB (Boeing)

Oblio (Dobrian and Pothen)

TAUCS (Toledo and students)

MUMPS currently developing out-of-core version

Also work by Rothberg and Schreiber

CERFACS October 2007 – p.4/29

HSL MA77

Our new out-of-core solver is HSL MA77

HSL MA77 is designed to solve LARGE sparse symmetric systems

First release for positive definite problems (Cholesky A = LL
T); coming

VERY soon is version for symmetric indefinite problems (A = LDL
T)

Matrix A may be either in assembled form or a sum of element matrices

A =

m∑

k=1

A
(k)

where A
(k) has nonzeros in a small number of rows and columns and

corresponds to the matrix from element k.

Matrix data, matrix factor, and the main work space held in files

Aim today: to provide brief introduction to HSL MA77 and to present some
numerical results hope you will go away wanting to try the code

CERFACS October 2007 – p.5/29

Basic multifrontal algorithm

HSL MA77 implements a multifrontal algorithm

Assume that A is a sum of element matrices.

Basic multifrontal algorithm may be described as follows:

Given a pivot sequence:

do for each pivot

assemble all elements that contain the pivot into a dense matrix;

eliminate the pivot and any other variables that are found only here;

treat the reduced matrix as a new generated element

end do

CERFACS October 2007 – p.6/29

Language

HSL is a Fortran library

HSL MA77 written in Fortran 95, PLUS we use allocatable structure components
and dummy arguments (part of Fortran 2003, implemented by current compilers).

Advantages of using allocatables:

more efficient than using pointers
pointers must allow for the array being associated with an array section (eg
a(i,:)) that is not a contiguous part of its parent
optimization of a loop involving a pointer may be inhibited by the
possibility that its target is also accessed in another way in the loop

avoids the memory-leakage dangers of pointers

CERFACS October 2007 – p.7/29

Language (continued)

Other features of F95 that are important in design of HSL MA77:
Automatic and allocatable arrays significantly reduce complexity of code and
user interface, (especially in indefinite case)

We selectively use long (64-bit) integers (selected int kind(18))
Multifrontal algorithm can be naturally formulated using recursive procedures

....

call factor (root)

....

recursive subroutine factor (node)

! Loop over children over node

do i = 1,number_children

call factor (child(i))

end do

! Assemble frontal matrix and partially factorize

....

end subroutine factor

CERFACS October 2007 – p.8/29

Input/Output in HSL MA77

For HSL MA77 to perform well, the I/O must be efficient. I/O involves:
writing the original real and integer data
analyse phase (integer data only)

reading data for input matrix
writing data at each node of the assembly tree
reading data at each node
writing reordered data ready for factorization

factorization phase
reading integer data at each node of the tree
reading real data for each leaf node
writing columns of L as they are computed
writing Schur complements to stack
reading matrix from stack

solve phase
reading integer/ real factor data once for forward sub. and once for back sub.

CERFACS October 2007 – p.9/29

Input/Output in Fortran

In Fortran 77/90/95 - direct access I/O is entirely record based

Fine if every read/write is of the same amount of data
But we need to read/write different numbers of reals and integers at each stage
of the computation
Note: we do not want to be restricted to only accessing the data in the same
order as it was written so sequential access (which is less efficient) not an
option

We have got around these limitations while adhering to the strict Fortran standard
by writing our own virtual memory management system

CERFACS October 2007 – p.10/29

Input/Output in Fortran

In Fortran 77/90/95 - direct access I/O is entirely record based

Fine if every read/write is of the same amount of data
But we need to read/write different numbers of reals and integers at each stage
of the computation
Note: we do not want to be restricted to only accessing the data in the same
order as it was written so sequential access (which is less efficient) not an
option

We have got around these limitations while adhering to the strict Fortran standard
by writing our own virtual memory management system

CERFACS October 2007 – p.10/29

Virtual memory management

We have a separate HSL package HSL OF01 that handles all i/o

HSL OF01 also written in Fortran 95

It provides read/write facilities for one or more direct access files through a
single in-core buffer (work array)

The buffer is divided into fixed length pages

The page length is the same as the record length in the file(s)

Our handling of the buffer aims to avoid actual input-output operations
whenever possible

CERFACS October 2007 – p.11/29

Virtual memory management

Each set of data (such as the reals in the matrix and its factor) is accessed as a
virtual array i.e. as if it were a very long array

Long integers are used for addresses in the virtual array

Most active pages of the virtual array are held in the buffer

Any contiguous section of the virtual array (of any length) may be read or
written

Each virtual array is associated with a primary file

For very large problems, the virtual array may be too large for a single file. In
this case, one or more secondary files are used

The primary and secondary files are direct access files.

CERFACS October 2007 – p.12/29

Virtual memory management

Superfiles

Virtual arrays

temp_filemain_file main_file1 main_file2

Buffer

In this example, two superfiles associated with the in-core buffer

First superfile has two secondaries, the second has none

CERFACS October 2007 – p.13/29

Use of the buffer

Buffer divided into fixed length pages (user chooses number/length)

Most recently accessed pages of the virtual array are held in the buffer

For each page in the buffer, we store:

unit number of its primary file

page number within corresponding virtual array

Required page(s) found using simple hash function

CERFACS October 2007 – p.14/29

Use of the buffer to minimise i/o

Aim to minimise number of i/o operations by:

Using wanted pages that are already in buffer first

If buffer full, free the least recently accessed page

Only write page to file if it has changed since entry into buffer

Optional flag to indicate if transferred data unlikely to be needed again before
other data in the buffer (eg writing out factor data)

When reading, optional flag to indicate data will not be read again (eg reading
stack data)

CERFACS October 2007 – p.15/29

Advantages

Advantages of this approach for developing sparse solvers:

All i/o is isolated... assists with code design, development, debugging, and
maintenance

User is shielded from i/o but can control where files are written and can save
data for future solves

Possible for the primary and secondary files to reside on different devices

Actual i/o is not needed if user has supplied long buffer

HSL OF01 can be used in development of other solvers

CERFACS October 2007 – p.16/29

Use of HSL OF01 within HSL MA77

HSL MA77 has one integer buffer and one real buffer

The integer buffer is associated with a file that holds the integer data for the
matrix A and the matrix factor

The real buffer is associated with two files:
one holds the real data for the matrix A and the matrix factor
the other is used for the multifrontal stack (work space)

The indefinite case uses a further real file to hold delayed pivots

The user supplies pathnames together with names for the primary files

HSL OF01 options used to minimise i/o (eg. when reading from multifrontal
stack, flag set to indicate not required again and when writing factor data, flag
set to indicate data not required soon)

NOTE: HSL MA77 includes option for the files to be replaced by in-core arrays
(faster for problems for which user has enough memory) . A combination of files
and arrays may be used.

CERFACS October 2007 – p.17/29

Use of HSL OF01 within HSL MA77

HSL MA77 has one integer buffer and one real buffer

The integer buffer is associated with a file that holds the integer data for the
matrix A and the matrix factor

The real buffer is associated with two files:
one holds the real data for the matrix A and the matrix factor
the other is used for the multifrontal stack (work space)

The indefinite case uses a further real file to hold delayed pivots

The user supplies pathnames together with names for the primary files

HSL OF01 options used to minimise i/o (eg. when reading from multifrontal
stack, flag set to indicate not required again and when writing factor data, flag
set to indicate data not required soon)

NOTE: HSL MA77 includes option for the files to be replaced by in-core arrays
(faster for problems for which user has enough memory) . A combination of files
and arrays may be used.

CERFACS October 2007 – p.17/29

Stream I/O

Fortran 2003 includes stream i/o (sometimes called binary i/o)

Allows a stream of bytes to be read/written

File is opened with ACCESS = "STREAM" specified

Addresses are specified by bytes, rather than by records

Modelled on binary stream file in C

CERFACS October 2007 – p.18/29

Stream I/O

Advantages of stream i/o for HSL OF01

Code is significantly simplified

Buffers no longer needed

Reduces input parameters (page length/number of pages no needed)

Disadvantages

Not part of Fortran 95

Not yet offered by all compilers (existing extensions that offered stream i/o are
not necessarily portable)

To include in HSL we will need both Fortran 95 and 2003 versions

What about performance?

CERFACS October 2007 – p.19/29

Stream I/O

Advantages of stream i/o for HSL OF01

Code is significantly simplified

Buffers no longer needed

Reduces input parameters (page length/number of pages no needed)

Disadvantages

Not part of Fortran 95

Not yet offered by all compilers (existing extensions that offered stream i/o are
not necessarily portable)

To include in HSL we will need both Fortran 95 and 2003 versions

What about performance?

CERFACS October 2007 – p.19/29

Stream I/O

Advantages of stream i/o for HSL OF01

Code is significantly simplified

Buffers no longer needed

Reduces input parameters (page length/number of pages no needed)

Disadvantages

Not part of Fortran 95

Not yet offered by all compilers (existing extensions that offered stream i/o are
not necessarily portable)

To include in HSL we will need both Fortran 95 and 2003 versions

What about performance?

CERFACS October 2007 – p.19/29

Numerical experiments

We have performed a limited number of experiments

All times are wall clock times in seconds

First compare HSL OF01 with using stream I/O

Times are for complete HSL MA77 solution

CERFACS October 2007 – p.20/29

Numerical experiments

HSL OF01 Stream I/O

m t1 19.4 23.3

shipsec1 24.1 28.3

troll 35.8 48.0

inline 1 121.5 189.1

CERFACS October 2007 – p.20/29

Numerical experiments

HSL OF01 Stream I/O

m t1 19.4 23.3

shipsec1 24.1 28.3

troll 35.8 48.0

inline 1 121.5 189.1

Timings are effected by what else is happening on machine

These timings were for lightly loaded machine

If two problems run together, stream i/o seems more sensitive (sometimes
more than double)

Conclude: at present, not planning to use stream i/o

CERFACS October 2007 – p.20/29

Comparisons with MA57

Test set of 24 problems of order up to 1.5 ∗ 10
6 from a range of applications

All available in University of Florida Sparse Matrix Collection

Tests used double precision (64-bit) reals on a Dell Precision 670 with 4
Gbytes of RAM

f95 compiler with the -O3 option and ATLAS BLAS and LAPACK

Comparisons with flagship HSL solver MA57 (Duff)

Multifrontal solver (replaced earlier package MA27)
Primarily designed for indefinite problems (option to switch off numerical
pivoting)

CERFACS October 2007 – p.21/29

Factorization time compared with MA57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.25

0.5

1

2

Problem Index

T
im

e
/ (

M
A

77
 o

ut
−

of
−

co
re

 ti
m

e)

MA57
MA77 in−core

CERFACS October 2007 – p.22/29

Solve time compared with MA57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.05

0.1

0.2

0.3

0.4

0.5

Problem Index

T
im

e
/ (

M
A

77
 o

ut
−

of
−

co
re

 ti
m

e)

MA57
MA77 in−core

CERFACS October 2007 – p.23/29

Total time compared with MA57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.25

0.5

1

2

Problem Index

T
im

e
/ (

M
A

77
 o

ut
−

of
−

co
re

 ti
m

e)

MA57
MA77 in−core

CERFACS October 2007 – p.24/29

Times (in seconds) for larger problems

Phase inline 1 bones10 nd24k bone010

(n = 503, 712) (n = 914, 898) (n = 72, 000) (n = 986, 703)

Input 4.87 6.25 2.86 8.00

Ordering 14.2 22.8 16.4 34.7

MA77 analyse 4.20 6.70 22.1 26.7

MA77 factor(0) 90.6 174.6 1284 1491

MA77 factor(1) 93.0 190.2 1243 1861

MA77 solve(1) 5.30 12.0 13.4 294

MA77 solve(8) 10.6 20.3 16.5 309

MA77 solve(64) 60.5 121 90.2 497

MA57 not able to solve these on our test computer (insufficient memory).

CERFACS October 2007 – p.25/29

Mflop rates for larger problems

Phase inline 1 bones10 nd24k bone010

(n = 503, 712) (n = 914, 898) (n = 72, 000) (n = 986, 703)

MA77 factor(0) 1600 1615 1917 2632

MA77 factor(1) 1523 1478 1948 2355

MA77 solve(1) 130 120 123 18

MA77 solve(8) 650 574 778 140

MA77 solve(64) 948 760 1488 701

Note: these are using wall clock times

CERFACS October 2007 – p.26/29

Unsymmetric element problems

Recently developed out-of-core multifrontal code for unsymmetric element
problems. Code is called HSL MA78

Based on the design of HSL MA77

Again uses HSL OF01 to handle out-of-core

Separate package HSL MA74 written to compute the partial factorization of
the dense unsymmetric frontal matrices

Implements a block factorization ... employs level 3 BLAS

Incorporates threshold pivoting (options for partial, diagonal or rook
pivoting)

Also option for static pivoting (prevents delayed pivots but may produce
inaccurate factorization)

HSL MA78 solves AX = B or AT X = B

CERFACS October 2007 – p.27/29

Comparison with frontal solver

HSL MA42 ELEMENT is an unsymmetric out-of-core (uni-)frontal code

n Time (secs) Factors (∗10
6)

MA42 ELEMENT MA78 MA42 ELEMENT MA78

crplat2 18010 1.85 1.84 4.35 2.94

ship 001 34920 10.5 13.4 15.5 15.6

m t1 97578 552 101 135.5 56.2

shipsec8 114919 950 101 196.0 55.6

troll 213453 3042 74 672.0 63.7

These results illustrate the benefits of the multifrontal algorithm.

Appeal: We need large test problems in element form from real applications.

CERFACS October 2007 – p.28/29

Concluding remarks

Writing the solver has been (and still is) a major project

Positive definite and unsymmetric elements codes performing well
Out-of-core working adds an overhead but not prohibitive (exception is solve
phase)

Indefinite kernel almost done (separate HSL package)

Version for complex arithmetic will be developed

THANK YOU!

CERFACS October 2007 – p.29/29

Concluding remarks

Writing the solver has been (and still is) a major project

Positive definite and unsymmetric elements codes performing well
Out-of-core working adds an overhead but not prohibitive (exception is solve
phase)

Indefinite kernel almost done (separate HSL package)

Version for complex arithmetic will be developed

THANK YOU!

CERFACS October 2007 – p.29/29

	Sparse systems
	Options for large problems
	Out-of-core solvers
	{	t HSL_MA77}
	Basic multifrontal algorithm
	Language
	Language (continued)
	Input/Output in {	t HSL_MA77}
	Input/Output in Fortran
	Virtual memory management
	Virtual memory management
	Virtual memory management
	Use of the buffer
	Use of the buffer to minimise i/o
	Advantages
	Use of {	t HSL_OF01} within {	t HSL_MA77}
	Stream I/O
	Stream I/O
	Numerical experiments
	Comparisons with {	t MA57}
	Factorization time compared with {MA57}
	Solve time compared with {MA57}
	Total time compared with {MA57}
	Times (in seconds)
for larger problems
	Mflop rates for larger problems
	Unsymmetric element problems
	Comparison with frontal solver
	Concluding remarks

