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Motivation
 Increasing core counts  to with Moore’s law may cause

 increased main memory contention;
 reduced memory bandwidth and scalability  applications;

 Introduction of NUMA (Non Uniform Memory Access) architectures – as 
a workaround to this problem.
 characterized by multiple physical memory banks.
➢ Memory affinity – placement of data in physical memory banks 
 needs to be efficient in order to accommodate NUMA architectures. 

 



NUMA overview
NUMA – Non Uniform Memory Access – is becoming 

increasingly popular in the multicore domain.
Characterized by multiple physical memory banks (NUMA 

nodes). 
➢ each provides the fastest access to a set of cores.

Very effective for threads operating on private data due to 
improved memory bandwidth for large thread counts.

Shared data among multiple threads. 
➢ remote access latencies and bandwidth contention.
➢ calls for intelligent data distribution and placement 

(memory affinity) strategies.



Existing data placement policy
 Default memory affinity policy in Linux is first touch.

 places memory on the NUMA node of the thread/process which 
initializes (touches) it first.

 causes all threads which share a piece of memory to converge 
to the NUMA node which contains it.

 results in remote access latencies and  bandwidth contention.



Proposed design/policy
(1) Identify all the shared arrays.
(2) Identify the shared arrays with deterministic access pattern:

➢ each thread exclusively accesses a certain contiguous chunk 
of the array.

(3) Determine the chunks accessed by each thread and pin them
to a specific memory bank.

(4) Identify the shared arrays with non-deterministic access:
➢ each thread has no  exclusive access to a chunk → spread 

among banks.

ASSUMPTION
 Static even distribution of chunks among threads.

➢ Static: work-sharing pattern is known in advance.
➢ Even: each thread gets almost the same chunk size.

 Reason: loop iterations for each thread must be known apriori. 
➢ to place in memory the section of a shared array  accessed by 

each thread before its execution.



Proposed Data Access Pattern



Sparse Matrix Representation
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MATVEC loop for CSC
DO i = 1, lastcol
     DO k = ia(i), ia(i+1)-1
         y(ja(k)) = y(ja(k)) + x(i)*a(k)
     ENDDO
ENDDO
 
MATVEC loop for CSR
DO i = 1, lastrow
     DO k = ia(i), ia(i+1)-1
         y(i) = y(i) + x(ja(k))*a(k)
     ENDDO
ENDDO

x( ) – input vector
y( ) – output vector

    

Protected by critical section

No need for critical section

Loop to be parallelized 

Loop to be parallelized

MATVEC pseudo-code



Two basic memory affinity policies provided by the Linux NUMA API, bind and 
interleave.

Bind: places (binds) data to a memory bank or set of banks.

Interleave: interleaves data on a page by page basis over the memory banks.

Bind and Interleave are too generic to be applied across the entire application .

➢Solution: to apply them selectively according to the tread access patterns.

Shared arrays of MATVEC distributed based on the access pattern of the threads.

Deterministic – bind sections to the appropriate NUMA bank.

Non-deterministic – interleave over all the NUMA banks.                                                          
        

                             
                                  CSC                                                                            CSR

                                                                                            

  

  D – Deterministic                ND – Non-deterministic 

       
  

Array Access Policy Operation

a( ) D Bind Read

ja( ) D Bind Read

ia( ) D Bind Read

x( ) D Bind Read

y( ) ND Intrlv. Write

Array Access Policy Operation

a( ) D Bind Read

ja( ) D Bind Read

ia( ) D Bind Read

x( ) ND Intrlv. Read

y( ) D Bind Write

Shared-array affinity for MATVEC



Policy Implementation Pseudocode
To find no. of rows/columns (chunk) accessed
per NUMA node:
                                                                           

            
per_thread_dim = ceil(dimension/nthreads)
virtual_dim = per_thread_dim*nthreads
offset = virtual_dim – dimension

loop i = 1, (nthreads-offset)
    dim_per_thread(i) = per_thread_dim
end loop 

loop i = (nthreads-offset+1),  nthreads
    dim_per_thread(i) = per_thread_dim -1
end loop

loop j = 1, num_nodes                                        
  loop i = num_cores*(j-1)+1, num_cores*j

         dim_per_node(j) += dim_per_thread(i)
    end loop
end loop

Here,
dimension –  no. of rows/columns in the 

matrix 
nthreads – no. of threads 
dim_per_thread(i) – no. of rows/columns 

accessed by thread i
dim_per_node(i) – no. of rows/columns 

accessed by NUMA node i
num_nodes – no. of NUMA nodes
num_cores – no. of cores per NUMA node 

Note:  
1) This algorithm finds the most even 

distribution of chunks between the 
threads.

2) Chunk represents columns in the case of 
CSC and rows in the case of CSR.

3) Assumes no. of threads equals to no. of 
cores.



Test Applications: CG
● Kernel from the NAS parallel benchmark suite.
● Solves linear systems of equations with conjugate gradient 

method within an eigenvalue computation.
● Works on a large, sparse, symmetric matrix.

➢ stored in CSR format.
● Employs sparse MATVECs (parallelized with OpenMP).

➢ OpenMP C implementation is provided by the OMNI compiler 
group used for this work. 

● Problem used: 
➢ Class C, matrix size 150,000. 
➢ single MPI process. 



Test Applications: MFDn
● Computes ab initio nuclear structure using Lanczos algorithm. 

● Large, sparse, symmetric nuclear Hamiltonian matrix is  generated and 
stored in the CSC format.

● Diagonalized iteratively to obtain low lying eigenvalue and eigenvectors.

● Uses hybrid MPI/OpenMP
➣ each MPI process spawns multiple OpenMP threads.

● Employs sparse MATVECs (parallelized with OpenMP).
● Symmetric matrix in MFDn -> only lower triangular portion stored:

➢ MATVEC operation requires transpose matrix-vector multiplication.
● Problem used: 

➢ Carbon-12, N
max

 = 4 (N
max 

is maximum number of harmonic oscillator 

quanta).
➢ 6 MPI processes (single process per compute node).



Performance Comparisons
 Testbed: Hopper supercomputer at NERSC.

  6,384 compute nodes.
  Each node with 2 twelve-core AMD ‘MagnyCours’
   processors (24 cores) and 32 GB of RAM.
  NUMA architecture with 4 memory banks – each
   of 8 GB associated with a set of 6 cores.

 All speedups are with respect to wall clock time:
  on a single process (running on one compute node).
  for the MATVEC only.



Scaling with first-touch policy 

Scaling suffers in moving beyond 6 threads because of NUMA 
effects.



CG with proposed policy

 CG scaling is shown to be almost ideal after applying the 
proposed policy – result of elimination of NUMA effects.



 Presence of critical section –  irrespective of storage format 
used (CSC or CSR).
 result of performing transpose MATVEC as well. 
 causes poor scaling at larger thread counts.

MFDn results with proposed policy



MFDn modified MATVEC
 Crude workaround: Use a combination of CSC and CSR with  

the proposed strategy.
 Doubles the memory requirement may not be practical for  

large problem sizes.

 Much improved speedups and consistent scaling.



Conclusions
A memory affinity policy for efficient data placement is devised and 

implemented. 
data placement for applications employing sparse matrix-vector 

multiplications (MATVECs).
designed for multicore NUMA architectures characterized by split 

physical memory banks.
NUMA effects such as remote access latencies and bandwidth 

contention are eliminated for large thread/core counts.
speedup of up to 3 times observed over the default first-touch 

Linux policy.
consistent scaling among small to large thread counts.

Generic nature of policy.
can be applied to any application employing sparse MATVECs.
can be extended to other parallel computations which show similar 

access patterns.  
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