Memory affinity in sparse matrixvector multiplications on multicore NUMA architectures

Avinash Srinivasa Masha Sosonkina Ames Laboratory and Iowa State University

Work supported by National Science Foundation

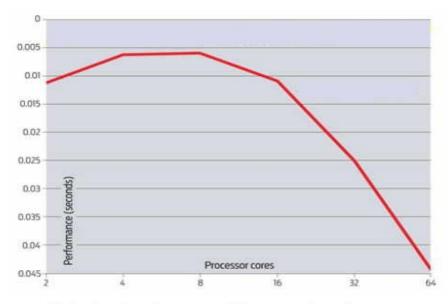
Sparse Days, Toulouse, Sept. 7 2011

Outline

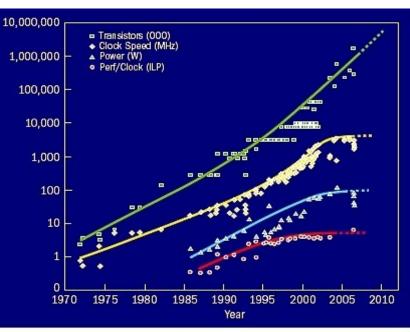
- Motivation: need for memory efficiency
- NUMA overview
- Existing memory affinity policy
- Proposed memory affinity policy
- Test applications
- Performance comparisons

Motivation

- Increasing core counts to with Moore's law may cause
 - increased main memory contention;
 - reduced memory bandwidth and scalability applications;
- Introduction of NUMA (Non Uniform Memory Access) architectures as a workaround to this problem.
 - characterized by multiple physical memory banks.
 - Memory affinity placement of data in physical memory banks
 - needs to be efficient in order to accommodate NUMA architectures.



Variation of performance with core numbers for conventional architectures (source: Sandia National Labs)



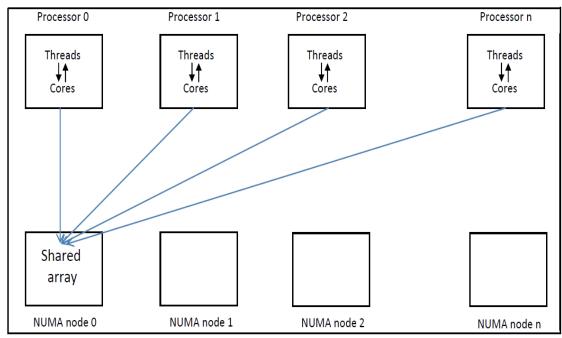
Impact of Moore's law (source: SCIDAC review)

NUMA overview

- NUMA Non Uniform Memory Access is becoming increasingly popular in the multicore domain.
- Characterized by *multiple physical memory banks* (NUMA nodes).
 - > each provides the fastest access to a set of cores.
- Very effective for threads operating on *private data* due to improved memory bandwidth for large thread counts.
- *Shared data* among multiple threads.
 - remote access latencies and bandwidth contention.
 - calls for intelligent data distribution and placement (memory affinity) strategies.

Existing data placement policy

- Default memory affinity policy in Linux is *first touch*.
 - places memory on the NUMA node of the thread/process which initializes (touches) it first.
 - causes all threads which share a piece of memory to converge to the NUMA node which contains it.
 - results in remote access latencies and bandwidth contention.



Thread data access pattern with *first touch* policy

Proposed design/policy

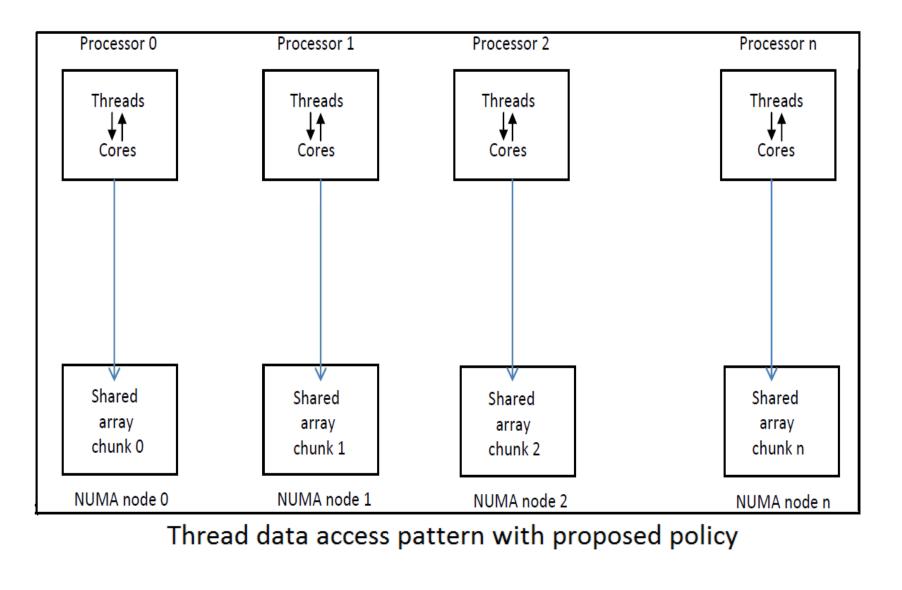
(1) Identify all the shared arrays.

- (2) Identify the shared arrays with *deterministic access* pattern:
 - each thread exclusively accesses a certain contiguous chunk of the array.
- (3) Determine the chunks accessed by each thread and pin them to a specific memory bank.
- (4) Identify the shared arrays with *non-deterministic access*:
 - > each thread has no exclusive access to a chunk → spread among banks.

ASSUMPTION

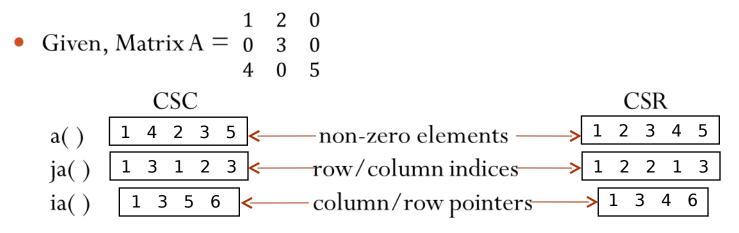
- *Static even distribution* of chunks among threads.
 - Static: work-sharing pattern is known in advance.
 - Even: each thread gets almost the same chunk size.
- Reason: loop iterations for each thread must be known apriori.
 - to place in memory the section of a shared array accessed by each thread before its execution.

Proposed Data Access Pattern



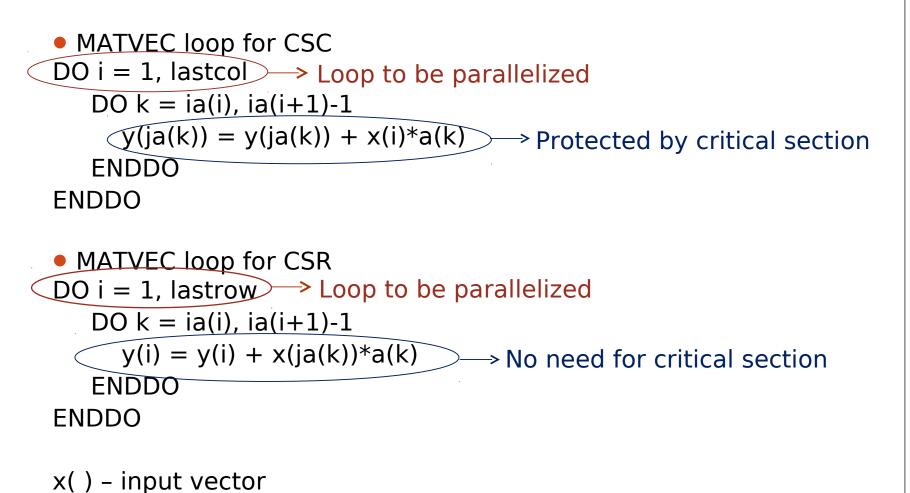
Sparse Matrix Representation

- Sparse matrices stored in CSC (Compressed Sparse Column) or CSR (Compressed Sparse Row) formats.
- CSC stored in column order and CSR in row order.



- CSC Transpose of CSR and vice versa
- Matrix vector multiplication (MATVEC) loop over the rows (CSR) or over the columns (CSC) – parallelized using a standard such as OpenMP.
- Matrix and vector arrays shared between threads.

MATVEC pseudo-code



y() – output vector

Shared-array affinity for MATVEC

 Two basic memory affinity policies provided by the Linux NUMA API, bind and interleave.

>Bind: places (binds) data to a memory bank or set of banks.

- >Interleave: interleaves data on a page by page basis over the memory banks.
- Bind and Interleave are too generic to be applied across the entire application .
 Solution: to apply them selectively according to the tread access patterns.
- Shared arrays of MATVEC distributed based on the access pattern of the threads.
 Deterministic bind sections to the appropriate NUMA bank.

>Non-deterministic – interleave over all the NUMA banks.

CSC

Array	Access	Policy	Operation	Array	Access	Policy	Operation
a()	D	Bind	Read	a()	D	Bind	Read
ja()	D	Bind	Read	ja()	D	Bind	Read
ia()	D	Bind	Read	ia()	D	Bind	Read
x()	D	Bind	Read	x()	ND	Intrlv.	Read
y()	ND	Intrlv.	Write	y()	D	Bind	Write
D – Deterministic		ND – Non-deterministic					

CSR

Policy Implementation Pseudocode

To find no. of rows/columns (chunk) accessed per NUMA node:

per_thread_dim = ceil(dimension/nthreads)
virtual_dim = per_thread_dim*nthreads
offset = virtual_dim - dimension

```
loop i = 1, (nthreads-offset)
    dim_per_thread(i) = per_thread_dim
end loop
```

```
loop i = (nthreads-offset+1), nthreads
    dim_per_thread(i) = per_thread_dim -1
end loop
```

```
loop j = 1, num_nodes
loop i = num_cores*(j-1)+1, num_cores*j
    dim_per_node(j) += dim_per_thread(i)
    end loop
end loop
```

Here,

- **dimension** no. of rows/columns in the matrix
- nthreads no. of threads
- dim_per_thread(i) no. of rows/columns
 accessed by thread i
- dim_per_node(i) no. of rows/columns
 accessed by NUMA node i

```
num_nodes - no. of NUMA nodes
```

```
num_cores – no. of cores per NUMA node
```

Note:

- 1) This algorithm finds the most even distribution of chunks between the threads.
- 2) Chunk represents columns in the case of CSC and rows in the case of CSR.
- Assumes no. of threads equals to no. of cores.

Test Applications: CG

- Kernel from the NAS parallel benchmark suite.
- Solves linear systems of equations with conjugate gradient method within an eigenvalue computation.
- Works on a large, sparse, symmetric matrix.
 - stored in CSR format.
- Employs sparse MATVECs (parallelized with OpenMP).
 - OpenMP C implementation is provided by the OMNI compiler group used for this work.
- Problem used:
 - Class C, matrix size 150,000.
 - single MPI process.

Test Applications: MFDn

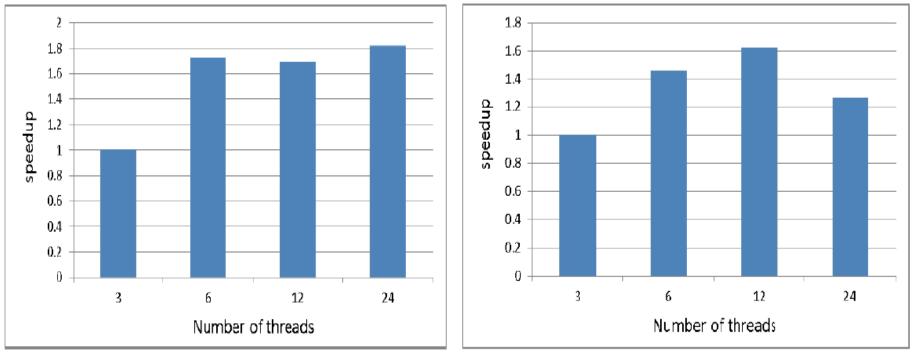
- Computes ab initio nuclear structure using Lanczos algorithm.
- Large, sparse, symmetric nuclear Hamiltonian matrix is generated and stored in the CSC format.
- Diagonalized iteratively to obtain low lying eigenvalue and eigenvectors.
- Uses hybrid MPI/OpenMP
 - ► each MPI process spawns multiple OpenMP threads.
- Employs sparse MATVECs (parallelized with OpenMP).
- Symmetric matrix in MFDn -> only lower triangular portion stored:
 - > MATVEC operation requires transpose matrix-vector multiplication.
- Problem used:
 - > Carbon-12, $N_{max} = 4 (N_{max}$ is maximum number of harmonic oscillator quanta).
 - > 6 MPI processes (single process per compute node).

Performance Comparisons

Testbed: Hopper supercomputer at NERSC.

- 6,384 compute nodes.
- Each node with 2 twelve-core AMD 'MagnyCours' processors (24 cores) and 32 GB of RAM.
- NUMA architecture with 4 memory banks each of 8 GB associated with a set of 6 cores.
- All speedups are with respect to wall clock time:
 - on a single process (running on one compute node).
 - for the MATVEC only.

Scaling with first-touch policy

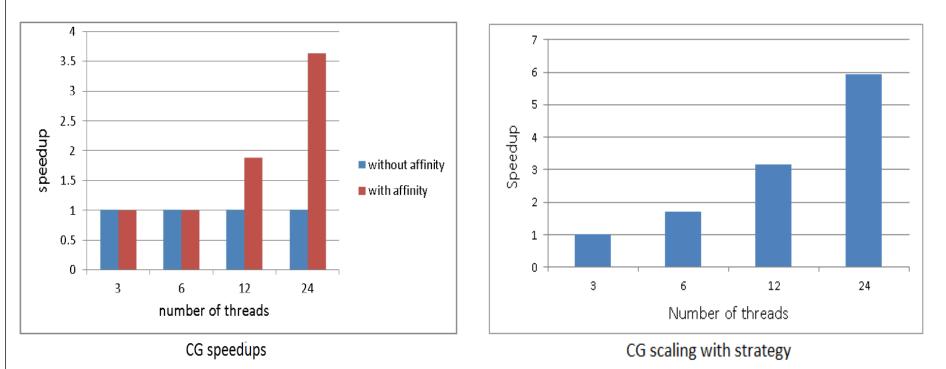


CG scaling without strategy

MFDn scaling without strategy

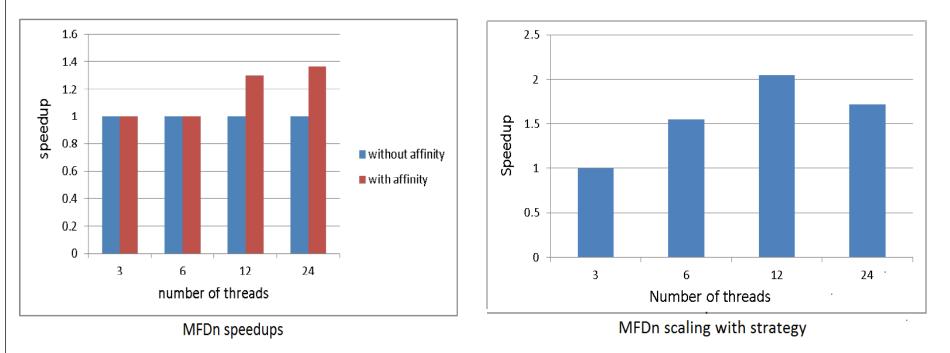
Scaling suffers in moving beyond 6 threads because of NUMA effects.

CG with proposed policy



 CG scaling is shown to be almost ideal after applying the proposed policy – result of elimination of NUMA effects.

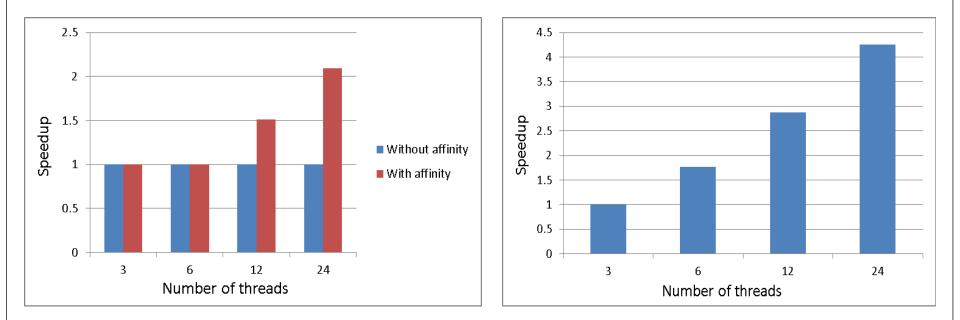
MFDn results with proposed policy



- Presence of critical section irrespective of storage format used (CSC or CSR).
 - result of performing transpose MATVEC as well.
 - causes poor scaling at larger thread counts.

MFDn modified MATVEC

- Crude workaround: Use a combination of CSC and CSR with the proposed strategy.
- Doubles the memory requirement may not be practical for large problem sizes.



Much improved speedups and consistent scaling.

Conclusions

- A memory affinity policy for efficient data placement is devised and implemented.
 - > data placement for applications employing sparse matrix-vector multiplications (MATVECs).
 - > designed for multicore NUMA architectures characterized by split physical memory banks.
- NUMA effects such as remote access latencies and bandwidth contention are eliminated for large thread/core counts.
 - > speedup of up to 3 times observed over the default first-touch Linux policy.
 - > consistent scaling among small to large thread counts.
- Generic nature of policy.
 - > can be applied to any application employing sparse MATVECs.
 - can be extended to other parallel computations which show similar access patterns.