
Avinash Srinivasa
Masha Sosonkina

Ames Laboratory and Iowa State University

Work supported by National Science Foundation

Sparse Days, Toulouse, Sept. 7 2011

Memory affinity in sparse matrix-
vector multiplications on multicore

NUMA architectures

Outline
Motivation: need for memory efficiency
NUMA overview
Existing memory affinity policy
Proposed memory affinity policy
Test applications
Performance comparisons

Motivation
 Increasing core counts to with Moore’s law may cause

 increased main memory contention;
 reduced memory bandwidth and scalability applications;

 Introduction of NUMA (Non Uniform Memory Access) architectures – as
a workaround to this problem.
 characterized by multiple physical memory banks.
➢ Memory affinity – placement of data in physical memory banks
 needs to be efficient in order to accommodate NUMA architectures.

NUMA overview
NUMA – Non Uniform Memory Access – is becoming

increasingly popular in the multicore domain.
Characterized by multiple physical memory banks (NUMA

nodes).
➢ each provides the fastest access to a set of cores.

Very effective for threads operating on private data due to
improved memory bandwidth for large thread counts.

Shared data among multiple threads.
➢ remote access latencies and bandwidth contention.
➢ calls for intelligent data distribution and placement

(memory affinity) strategies.

Existing data placement policy
 Default memory affinity policy in Linux is first touch.

 places memory on the NUMA node of the thread/process which
initializes (touches) it first.

 causes all threads which share a piece of memory to converge
to the NUMA node which contains it.

 results in remote access latencies and bandwidth contention.

Proposed design/policy
(1) Identify all the shared arrays.
(2) Identify the shared arrays with deterministic access pattern:

➢ each thread exclusively accesses a certain contiguous chunk
of the array.

(3) Determine the chunks accessed by each thread and pin them
to a specific memory bank.

(4) Identify the shared arrays with non-deterministic access:
➢ each thread has no exclusive access to a chunk → spread

among banks.

ASSUMPTION
 Static even distribution of chunks among threads.

➢ Static: work-sharing pattern is known in advance.
➢ Even: each thread gets almost the same chunk size.

 Reason: loop iterations for each thread must be known apriori.
➢ to place in memory the section of a shared array accessed by

each thread before its execution.

Proposed Data Access Pattern

Sparse Matrix Representation

1 4 2 3 5

1 3 5 6

1 3 1 2 3

1 2 3 4 5

1 3 4 6

1 2 2 1 3

MATVEC loop for CSC
DO i = 1, lastcol
 DO k = ia(i), ia(i+1)-1
 y(ja(k)) = y(ja(k)) + x(i)*a(k)
 ENDDO
ENDDO

MATVEC loop for CSR
DO i = 1, lastrow
 DO k = ia(i), ia(i+1)-1
 y(i) = y(i) + x(ja(k))*a(k)
 ENDDO
ENDDO

x() – input vector
y() – output vector

Protected by critical section

No need for critical section

Loop to be parallelized

Loop to be parallelized

MATVEC pseudo-code

Two basic memory affinity policies provided by the Linux NUMA API, bind and
interleave.

Bind: places (binds) data to a memory bank or set of banks.

Interleave: interleaves data on a page by page basis over the memory banks.

Bind and Interleave are too generic to be applied across the entire application .

➢Solution: to apply them selectively according to the tread access patterns.

Shared arrays of MATVEC distributed based on the access pattern of the threads.

Deterministic – bind sections to the appropriate NUMA bank.

Non-deterministic – interleave over all the NUMA banks.

 CSC CSR

 D – Deterministic ND – Non-deterministic

Array Access Policy Operation

a() D Bind Read

ja() D Bind Read

ia() D Bind Read

x() D Bind Read

y() ND Intrlv. Write

Array Access Policy Operation

a() D Bind Read

ja() D Bind Read

ia() D Bind Read

x() ND Intrlv. Read

y() D Bind Write

Shared-array affinity for MATVEC

Policy Implementation Pseudocode
To find no. of rows/columns (chunk) accessed
per NUMA node:

per_thread_dim = ceil(dimension/nthreads)
virtual_dim = per_thread_dim*nthreads
offset = virtual_dim – dimension

loop i = 1, (nthreads-offset)
 dim_per_thread(i) = per_thread_dim
end loop

loop i = (nthreads-offset+1), nthreads
 dim_per_thread(i) = per_thread_dim -1
end loop

loop j = 1, num_nodes
 loop i = num_cores*(j-1)+1, num_cores*j

 dim_per_node(j) += dim_per_thread(i)
 end loop
end loop

Here,
dimension – no. of rows/columns in the

matrix
nthreads – no. of threads
dim_per_thread(i) – no. of rows/columns

accessed by thread i
dim_per_node(i) – no. of rows/columns

accessed by NUMA node i
num_nodes – no. of NUMA nodes
num_cores – no. of cores per NUMA node

Note:
1) This algorithm finds the most even

distribution of chunks between the
threads.

2) Chunk represents columns in the case of
CSC and rows in the case of CSR.

3) Assumes no. of threads equals to no. of
cores.

Test Applications: CG
● Kernel from the NAS parallel benchmark suite.
● Solves linear systems of equations with conjugate gradient

method within an eigenvalue computation.
● Works on a large, sparse, symmetric matrix.

➢ stored in CSR format.
● Employs sparse MATVECs (parallelized with OpenMP).

➢ OpenMP C implementation is provided by the OMNI compiler
group used for this work.

● Problem used:
➢ Class C, matrix size 150,000.
➢ single MPI process.

Test Applications: MFDn
● Computes ab initio nuclear structure using Lanczos algorithm.

● Large, sparse, symmetric nuclear Hamiltonian matrix is generated and
stored in the CSC format.

● Diagonalized iteratively to obtain low lying eigenvalue and eigenvectors.

● Uses hybrid MPI/OpenMP
➣ each MPI process spawns multiple OpenMP threads.

● Employs sparse MATVECs (parallelized with OpenMP).
● Symmetric matrix in MFDn -> only lower triangular portion stored:

➢ MATVEC operation requires transpose matrix-vector multiplication.
● Problem used:

➢ Carbon-12, N
max

 = 4 (N
max

is maximum number of harmonic oscillator

quanta).
➢ 6 MPI processes (single process per compute node).

Performance Comparisons
 Testbed: Hopper supercomputer at NERSC.

 6,384 compute nodes.
 Each node with 2 twelve-core AMD ‘MagnyCours’
 processors (24 cores) and 32 GB of RAM.
 NUMA architecture with 4 memory banks – each
 of 8 GB associated with a set of 6 cores.

 All speedups are with respect to wall clock time:
 on a single process (running on one compute node).
 for the MATVEC only.

Scaling with first-touch policy

Scaling suffers in moving beyond 6 threads because of NUMA
effects.

CG with proposed policy

 CG scaling is shown to be almost ideal after applying the
proposed policy – result of elimination of NUMA effects.

 Presence of critical section – irrespective of storage format
used (CSC or CSR).
 result of performing transpose MATVEC as well.
 causes poor scaling at larger thread counts.

MFDn results with proposed policy

MFDn modified MATVEC
 Crude workaround: Use a combination of CSC and CSR with

the proposed strategy.
 Doubles the memory requirement may not be practical for

large problem sizes.

 Much improved speedups and consistent scaling.

Conclusions
A memory affinity policy for efficient data placement is devised and

implemented.
data placement for applications employing sparse matrix-vector

multiplications (MATVECs).
designed for multicore NUMA architectures characterized by split

physical memory banks.
NUMA effects such as remote access latencies and bandwidth

contention are eliminated for large thread/core counts.
speedup of up to 3 times observed over the default first-touch

Linux policy.
consistent scaling among small to large thread counts.

Generic nature of policy.
can be applied to any application employing sparse MATVECs.
can be extended to other parallel computations which show similar

access patterns.

	Memory affinity in sparse matrix-vector multiplications on multicore NUMA architectures
	Outline
	Motivation
	NUMA overview
	Existing data placement policy
	Proposed design/policy
	PowerPoint Presentation
	Design (Cont’d)
	Slide 9
	Slide 10
	Pseudocode
	Test applications
	Slide 13
	Performance Analysis
	Scaling study with default policy
	Slide 16
	Slide 17
	MFDn modified MATVEC results
	Conclusions

