
Risolv - Robust Iterative Solver

Hillel Tal-Ezer

Academic College of Tel-Aviv Yaffo

hillel@mta.ac.il

1

Abstract

One of the most effective iterative algorithms for solving large, sparse,

non-symmetric linear system is GMRES. Nevertheless, it suffers from lack

of robustness. The algorithm can exhibit very slow rate of convergence or

complete stagnation. In this talk we would like to present a new iterative al-

gorithm, named Risolv, aiming at overcoming this drawback. The algorithm

is based on using Leja points for constructing the ’optimal’ polynomial Pm(z)

which satisfies

||Pm(z)||∞ = min
Qm∈Πm

||Qm(z)||∞ z ∈ D (1)

where Πm is the set of all polynomials of degree m which satisfies Qm(0) = 1

and D is a domain in the complex plane which includes all the eigenvalues

of A. The new algorithm is more robust and specially efficient in the case

where we have a set of linear systems which share the same matrix A and

differ by the r.h.s vector.

2

In this talk we will address the essential problem of solving large set of linear

equations

Ax = b (2)

where A is square, general, non-symmetric N ×N matrix.

When A is symmetric, positive definite , Conjugate Gradient is the way to

go.

There are optimal algorithms for the indefinite, symmetric case (e.g. Minres,

Symmlq).

The situation is significantly more complicated in the general, non-symmetric

case.

A popular algorithm for this type of problems is Gmres .

Gmres is optimal in the following sense:

3

Let xm be the solution vector after applying m matrix-vector multiplications

and rm is the residum vector

rm = b− Axm, (3)

it can be shown that

rm = Pm(A)r0 (4)

where Pm(z) is a polynomial of degree m which satisfies Pm(0) = 1 and rm

satisfies

||rm||2 = min
u
||b− Au||2. (5)

Disadvantage - one has to store m vectors. m can be very large.

Solution - restarted Gmres → GMRES (k) → keep in memory only k + 1

Krylov vectors.

Restarted Gmres leads to loss of optimality. Can result in extremely slow

rate of convergence or complete stagnation.

Another approach is based on polynomial approximation in the complex

plane.

4

PAC - Polynomial Approximation in the Complex Plane

We have (4)

rm = Pm(A)r0. (6)

Let ui, λi, 1 ≤ i ≤ N be eigenvectors and corresponding eigenvalues of A.

Assuming that the set of eigenvectors is linearly independent, we can write

r0 =
N∑
i=1

βiui (7)

and

rm =
N∑
i=1

βiPm (λi)ui. (8)

In the PAC approach, the algorithm is based on looking for Pm such that

maxz∈D |Pm(z)| is as small as possible (D is the domain in the complex

plane which includes all the eigenvalues of A).

Examples:

5

Examples:

• Chebyshev polynomials when D is real interval or elipse in the complex

plane.

• Faber polynomials when D is in the complex plane.

• Leja interpolating polynomials when D is in the complex plane.

drawback- need knowledge of D.

advantages:

• If D does not surround the singular point z = 0, convergence is guaran-

teed.

• There is no need for inner-products. Significant saving of cpu, specially

in parallel computations.

The new algorithm presented in this talk belongs to this type of

algorithms and it overcomes the drawback mentioned above.

6

RISOLV

Although Risolv is a PAC algorithm, it can be considered as a slight modifi-

cation of GMRES.

Using GMRES , at the j restart, we have

xj+1 = xj + Vjyj (9)

where yj is chosen such that ||rj+1||2 is minimized.

rj+1 satisfies

rj+1 =
k∏

i=1

I − 1

zij
A

 rj (10)

where z1j, . . . , zkj are the eigenvalues of the modified Hessenberg matrix.

Hence, after n restarts we have

rm =
n∏

j=1

k∏
i=1

I − 1

zij
A

 r0. (m = nk) (11)

Also in the Risolv case, xj+1 satisfies (9) but now,

yj is chosen such that z1j, . . . , zkj are uniformly distributed in D.

This target can be achieved by making use of Leja algorithm.

7

Leja Polynomial

Sequences of Leja points , zj , in D are defined recursively as follows: if z0 is

an arbitrary fixed point in D , the zj are chosen in such a way that

j−1∏
k=0

|zj − zk| = max
z∈D

j−1∏
k=0

|z − zk|, j = 1, 2, . . . (12)

This set of points can be approximated by

j−1∏
k=0

|zj − zk| = max
z∈D̂

j−1∏
k=0

|z − zk|, j = 1, 2, . . . (13)

where D̂ is a large set of points distributed all over D.

Leja points are uniformly distributed in D and if

Pm(z) =
m−1∏
i=0

(
1− z

zi

)
(14)

then maxz∈D |Pm(z)| converges to 0 exponentially fast.

8

Employing Leja algorithm in Risolv

Let Hi be the Hessenberg matrix that satisfies

AV = V Hi + hi+1,ivi+1e
H
i , 1 ≤ i ≤ k (15)

and Ĥi is the modified Hessenberg defined as

Ĥi = Hi + h2
i+1,ife

H
i , (16)

where f = H−Hi ei and ei = [0, . . . , 1]H .

At each restart we have in our possession 2k matrices, Hi, Ĥi, 1 ≤ i ≤ k.

Each Hi matrix has i eigenvalues. All together we have a set of k2 eigenvalues.

We consider this set as D̂ from which we extract k , uniformly distributed,

Leja points (taking into account the already chosen k × j points).

9

Hence, after n restarts, the residual is the same as (9) but now the set of

points

{zij}1≤i≤k,1≤j≤n (17)

is almost uniformly distributed in D.

Computing yj and ej at each cycle

At the j′s stage we have

xj+1 = xj + V yj, rj+1 = V̂ ej (18)

where yj and ej can be computed by the following:

y=zeros(k,1)

e=zeros(k+1,1)

e(1)=||r||

for i=1:k

w=(1/z(ij))*e(1:k)

y=y+w

e=e-h(1:k+1,1:k)*w

end

10

multiple right hand sides

RISOLV is specially efficient while solving

Axi = bi, 1 ≤ i ≤ s. (19)

After solving the first system , the set {zij} is almost uniformly distributed

and RISOLV turns to be mainly a simple RICHARDSON algorithm

xk+1 = xk +
1

wk
(b− Axj) . (20)

where wk is a point in the set {zij}.

Obviously, this stage is free of inner products. If needed, few additional

matrix-vector multiplications will reduce the error to the desired accuracy.

11

NUMERICAL EXAMPLES

Example 1: Modified Grcar matrix

A =



1 1 1 1 1 1

−1 1 1 1 1 1 1

−1 1 1 1 1 1 1

. .


The size of the matrix in this example is 500 × 500 and b = [1, . . . , 1]T .

The eigenvalues are

12

We have solved this system with GMRES and RISOLV. For both of them,

the size of the Krylov space was 20 and the desired accuracy was 10−4.

It took GMRES and RISOLV 3226 and 1195 matrix-vector multiplications

respectively to reach a solution.

The following figures are of the two sets zij (11) of Gmres and Risolv.

13

14

Adding another upper diagonal (making the matrix more non-normal)

A =



1 1 1 1 1 1 1

−1 1 1 1 1 1 1 1

−1 1 1 1 1 1 1 1

. .


The eigenvalues are

15

and the {zij} are

16

17

Due to the fact that now the pseudospectra of the matrix almost surround

the origin, solving the linear system iteratively becomes a much more diffi-

cult task. While GMRES stagnated completely, it took 1400 matrix-vector

multiplications for RISOLV to reach an accuracy of 10−4.

18

Example 2: Few linear systems with matrices taken from Matrix-Market

Table 1

matrix Risolv Gmres

mat-vecs mat-vecs

ADD20 273 1070

MEMPLUS 994 3973

ORSIRR1 919 5186

ORSIRR2 615 2380

ORSREG1 73 79

RAEFSKY1 495 5264

SAYLR4 1028 -

19

Example 3: Solving Axi = bi, 1 ≤ i ≤ s.

In this experiment we have solved 10 linear systems with different r.h.s vectors

where A is the ORSIRR1 matrix and bi are random vectors. Here are the

results:

20

Table 2

no system mat-vecs inn-prod

1 905 10923

2 999 2591

3 902 77

4 900 35

5 904 44

6 905 20

7 905 20

8 904 5

9 904 5

10 904 5

21

Example 3: Convection-Diffusion (taken from SPARSKIT2 of Y. SAAD)

22

23

In this case N = 76800 and NNZ = 535553. We have used ILUT as

preconditioner. Drop tolerance of 0.1 was good enough for RISOLV resulting

in 624912 size of preconditioner. Drop tolerance of 0.0001 was needed for

GMRES resulting in 4752955 size of preconditioner.

24

