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Analysis of algorithms for Nonlinear Optimization

Global convergence: convergence to some form of stationarity
independently of the starting point.

Global rates (worst case complexity): no assumption on the starting
point, amount of work needed to reach some threshold of stationarity.

Local rates of convergence: rates of convergence, like superlinear or
quadratic, in a neighborhood of a minimizer.

My talk will focus on: Derivative-Free Optimization (DFO), zero-order
methods.
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There are two main classes of rigorous methods in DFO

Directional methods, like direct search.

Model-based methods, like trust-region methods.
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Direct-search methods

Definition

Sample the objective function at a finite number of points at each
iteration.

Achieve descent by moving in directions of potential descent.

In the smooth case, these directions lie in positive spanning sets
(PSS):
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Our problem setting

Unconstrained optimization

min
x∈Rn

f(x)

f : Rn → R

f is at least locally Lipschitz continuous

A forcing function ρ(·) is a positive and monotonically nondecreasing
function such that

lim
α↓0

ρ(α)

α
= 0.

We will consider ρ(α) = αp, with p > 1.

In most of the talk, we take p = 2: ρ(α) = α2.
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A class of direct-search methods (f smooth, for now)

Choose: x0 and α0.

For k = 0, 1, 2, . . . (Until αk is suff. small)

Search step (optional)

Poll step: Select Dk PSS and find xk + αkdk (dk ∈ Dk):

f(xk + αkdk) < f(xk)− ρ(αk).

Update the new iterate xk+1 (stay at xk is unsuccessful).

Update the step size αk+1.
Possible increase if iteration is successful. Decrease otherwise.
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Behavior of the step size parameter

Assumption

The level set L(x0) = {x ∈ Rn : f(x) ≤ f(x0)} is bounded.

Lemma (IDFO book or SIAM Review 2003 survey on DS)

There exists a point x∗ and a subsequence K of unsuccessful iterations:

lim
k∈K

xk = x∗ and lim
k∈K

αk = 0.

Assumption

The directions in Dk are bounded above and away from zero.

The cosine measure of Dk is bounded away from zero.
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Behavior of unsuccessful iterations

Theorem (Lewis, Tolda, and Torczon 2003)

Let Dk be a PSS.

Assume f ∈ C1
ν .

If the iterate k is unsuccessful, i.e.,

f(xk + αkd) ≥ f(xk)− ρ(αk), for all d ∈ Dk,

then

‖∇f(xk)‖ ≤
C(ν)× αk
cm(Dk)

... since ρ(α) = α2.

Note that global convergence is deduced from here: ‖∇f(xk)‖ −→
K

0.
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The question that interests us (smooth case)

Question

Given ε ∈ (0, 1), how many iterations k̄ are needed to reach

‖∇f(xk̄)‖ ≤ ε ?
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WCC of direct search (smooth case)

Let k0 be the index of the first unsuccessful iteration.

Let k̄ be the first index after k0 such that ‖∇f(xk̄)‖ ≤ ε.

For an unsuccessful iteration k < k̄,

ε < ‖∇f(xk)‖ ≤ C(ν)αk.

One can backtrack from any successful to the previous unsuccessful one
using

f(xk)− f(xk+1) ≥ α2
k ≥

1

C(ν2)
ε2.
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WCC of direct search (smooth case)

Theorem

The number of successful iterations between k0 and k̄ is

S(k0, k̄) ≤
⌈
C(ν2)(f(xk0)− f∗)

1

ε2

⌉
.

Since αk+1 ≤ Cαk (C ≥ 1 or C < 1), one obtains by induction

Theorem

The number of successful iterations between k0 and k̄ is

U(k0, k̄) = O(S(k0, k̄)).

The number of suc. iterations until k0 is at most⌈
f(x0)− f∗

α2
0

⌉
.
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WCC of direct search (smooth case)

Theorem

Any direct-search method (based on sufficient decrease) takes at most

O
(
n ν2 ε−2

)
iterations to reduce the gradient below ε ∈ (0, 1).

The number of function evaluations must be multiplied by n:

O
(
n2ν2 ε−2

)
.

L. N. Vicente, Worst case complexity of direct search, to appear in
EURO J. on Computational Optimization, Vol. 1, Num. 1, 2013.
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Assumption in the smooth, convex case

Assumption

There exists a positive constant R such that

sup
k∈U

dist(xk, X
f
∗ ) ≤ R

where Xf
∗ = {x ∈ Rn : x is a minimizer of f}.

One needs this assumption because

‖xk − x∗‖ ≤ ‖x0 − x∗‖, ∀k ≥ 0,

does NOT hold as in the gradient method (because dk 6= −∇f(xk)).
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WCC of direct search (smooth, convex case)

Lemma (Decrease rate for f)

Any direct-search method (based on sufficient decrease) generates a
sequence {xk}k≥k0 such that

f(xk)− f∗ <
C(ν2)R2

k − k0 −m− 1

where m = m(k0, k) is the # of unsucc. iter. between k0 (the first
unsucc. iter.) and k.

Omitting constants, as in the gradient method,

C(ν2)R2

2k − · · ·
≥

2k∑
l=k+1

f(xl)− f(xl+1) ≥
2k∑

l=k+1

α2
l ≥ k × ε2.
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WCC of DS (smooth, convex case)

Theorem

Any direct-search method (based on sufficient decrease) takes at most

O
(
n ν2Rε−1

)
iterations to reduce the gradient below ε ∈ (0, 1).

The number of function evaluations must be multiplied by n:

O
(
n2ν2R ε−1

)

Reference:

M. Dodangeh and L. N. Vicente, Worst case complexity of direct
search under convexity, 2013.
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How to bound R

Proposition

Let f be continuous and strongly convex with constant µ. Then

sup
y∈L(x0)

dist(y,Xf
∗ ) ≤

√
2

µ
(f(x0)− f∗).
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An example where R is UNBOUNDED

Objective function

Let ε ∈ (0, 1
2) and f be strongly convex function and parameterized by ε

f(x, y) = y2 +
1

2
(εx)2 + εx.

The unique minimizer of f is x∗ = (−ε−1, 0).

The Lipschitz constant ν of the gradient of f is at most 2.

Algorithmic choices

Using γ = 1 (suc. iterates), x0 = (−ε−1,
√

6
2 ), α0 = 1, ρ(α) = εα2, and

D =

[
1 0 −1

−
√

6
2 ε

√
6

2 ε 0

]
.
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An example where R is UNBOUNDED

−21 −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9
0

0.2

0.4

0.6

0.8

1

1.2
x

0

{
ε = 0.05, ‖x0 − x∗‖ =

√
6

2 ,
‖∇f(xk)‖ > ε, ‖xk − x∗‖ ≥ k.
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An example where R is UNBOUNDED

The distance from the unsuccessful iterate xk0 to Xf
∗ is arbitrarily large,

‖xk0 − x∗‖ ≥
ε−1 − 1

2

and so one has that
R = O(ε−1).

One sees immediately that our theory cannot predict better than O(ε−2).

However, one has
ν‖x0 − x∗‖ ≤

√
6

and one expects the global rate O(ε−1) to hold for gradient methods.
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Difficulties in the nonsmooth case

The cone of descent directions at the poll center is shaded.

20/44



One possible fix: Infinite number of directions

One possibility is to use an infinite number of polling directions.

This does not pose a problem to global convergence, which can be
guaranteed a.e. in the unit sphere:

C. Audet and J. E. Dennis Jr., Mesh adaptive direct search algorithms for

constrained optimization, SIAM J. on Optimization, 17 (2006) 188-217.

LTMADS, ORTHOMADS: ways of dense generation guaranteeing the
integer lattice requirement.

L. N. Vicente and A. L. Custódio Analysis of direct searches for

discontinuous functions, Math. Programming, 133 (2012) 299-325.

Dense generation is waived of rules when imposing sufficient decrease.

21/44



One possible fix: Infinite number of directions

One possibility is to use an infinite number of polling directions.

This does not pose a problem to global convergence, which can be
guaranteed a.e. in the unit sphere:

C. Audet and J. E. Dennis Jr., Mesh adaptive direct search algorithms for

constrained optimization, SIAM J. on Optimization, 17 (2006) 188-217.

LTMADS, ORTHOMADS: ways of dense generation guaranteeing the
integer lattice requirement.
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Another possible fix: Smoothing functions

Definition

We call f̃ : Rn × [0,+∞)→ R a smoothing function of f if,
∀µ ∈ (0,+∞), f̃(·, µ) is C1 and, ∀x ∈ Rn,

lim
z→x,µ↓0

f̃(z, µ) = f(x).
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A class of smoothing DS methods

x(0) uns.
µ0:
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A class of smoothing DS methods

x(0) uns.
µ0:

x(1) uns.
µ1: x(2) uns.

µ2:

Initialization: Choose a function r(·) such that limµ↓0 r(µ) = 0.

Choose µ0 > 0, and σ ∈ (0, 1)

For k = 0, 1, 2 . . . (Until µk is suff. small)

Apply DS to f̃(·, µk) until step size < r(µk).

Decrease the smoothing parameter: µk+1 = σµk.
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Global convergence of smoothing DS (behavior of µ)

Assumption

Smoothing functions and their level sets are bounded for all k.

If we let DS run forever for a given k, then α −→ 0. Thus

Theorem

The smoothing parameter goes to zero: lim
k→∞

µk = 0.

Theorem
1 lim

k→+∞
α(k) = 0.

2 ∃x∗ and a subsequence K ⊆ {(0), (1), . . .} of unsucc. DS iterates
such that x(k) −→

K
x∗.
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Global convergence of smoothing DS

Now, ‖∇f̃(x(k), µk)‖ ≤ C(ν̃(µk)) α(k)

≤ C(ν̃(µk)) r(µk).

Thus, choosing r(·) appropriately, i.e., r(µ) = µ2 when ν̃(µ) = O
(

1
µ

)
:

Theorem

lim
k∈K
‖∇f̃(x(k), µk)‖ = 0

and x∗ is stationary point associated with the smoothing function f̃ .

Definition

We say that x∗ is a stationary point associated with the smoothing
function f̃ if 0 ∈ Gf̃ (x∗), where

Gf̃ (x∗) = {all limits of ∇f̃(x, µ) when x→ x∗ and µ→ 0}.
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Clarke generalized derivative and subdifferential

Does 0 ∈ Gf̃ (x∗) mean any form of true stationarity?

Definition

Let f be Lipschitz cont. near x. The Clarke generalized directional
derivative is defined by

f◦(x; v) = lim sup
x̄→x t↓0

f(x̄+ tv)− f(x̄)

t
.

The Clarke subdifferential is given by:

∂f(x) = {s ∈ Rn : f◦(x; v) ≥ 〈v, s〉, ∀v ∈ Rn}.

Clarke stationarity

If x∗ is a local minimizer, 0 ∈ ∂f(x∗).
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How to construct smoothing functions

There are forms of building smoothing functions f̃ such that

f̃ satisfies the gradient consistency property

∂f(x∗) = co Gf̃ (x∗).

Thus, if 0 ∈ Gf̃ (x∗) ⊂ coGf̃ (x∗), then 0 ∈ ∂f(x∗).

ν̃(µ) = O
(

1
µ

)
.

Chen and Zhou introduced such a
smoothing function s̃(t, µ) of |t|:

Then we obtain F̃ (x, µ) =
∑m

i=1 s̃(Fi(x), µ) for ‖F‖1 =
∑m

i=1 |Fi|.
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WCC of smoothing DS (to reduce µ)

Theorem

Let ρ(α) = αp and r(α) = αq, with p, q > 1.

Any smoothing DS (based on sufficient decrease) takes at most

O
(
(− log(ξ))ξ−pq

)
DS inner iterations to reduce µ below ξ ∈ (0, 1).
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WCC of smoothing DS (to reduce smoothing gradient)

Corollary

Assume ν̃(µ) = O(1/µ).

When µ becomes lower than ξ, ∇f̃ becomes

O
(
n

1
2 (ξq−1 + ξ(p−1)q)

)
.

So, for having ξq−1 + ξ(p−1)q = O(ξ), one selects

p =
3

2
and q = 2

leading to

O(n
1
2 ξ).
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WCC of smoothing DS (function evaluations)

Therefore, the number of iterations needed to reach ‖∇f̃‖ ≤ ε and

µ ≤ ξ = O(n−
1
2 ε) is

O
(
(− log(ξ))ξ−pq

) p= 3
2
,q=2

= O
(
n

3
2 [− log(ε) + log(n)]ε−3

)
.

In terms of function evaluations:

O
(
n

5
2 [− log(ε) + log(n)]ε−3

)
.

This compares to O
(
n3ε−3

)
using Gaussian densities (Nesterov, 2011).

Reference:

R. Garmanjani and L. N. Vicente, Smoothing and worst-case
complexity for direct-search methods in nonsmooth optimization, to
appear in IMA Journal of Numerical Analysis .
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Summary of DS global rates

Imposing sufficient decrease to accept new iterates, as in derivative-based
optimization:

O(ε−1) smooth, convex (under sort of strong convexity...).

O(ε−2) smooth, non-convex.

O(ε−3) non-smooth, non-convex (using smoothing techniques...).
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Positive spanning sets

coordinate search minimal case

2n elements

cm(D⊕) =
1√
n

O
(

1
cm(D⊕)2

ε−2
)
= O

(
nε−2

)
iterations

n+ 1 elements

cm(D) = min
0 6=v∈Rn

max
d∈D

v>d

‖v‖‖d‖
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Positive spanning sets

v

x

d

If v = −∇f(x) then d is a descent direction.
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Randomly generating ‘positive spanning sets’ ...
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Randomly generating ‘positive spanning sets’ ...

v

n+ 1 random polling directions

in this case not a PSS

v

< n random polling directions

certainly not a PSS...

All we need is cm(D, v) = max
d∈D

v>d

‖v‖‖d‖ ≥ κ ∈ (0, 1)
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Using n/2 random polling directions...
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problem [Qk −Qk] 2n n+ 1 n/2

arglina 3958 2954 1681 943
arglinb 266 94 62 44

arwhead 3903 2874 1735 945
bdqrtic 1198 1088 682 369

broydn3d 4196 3491 2005 1202
dqrtic 2485 1533 873 493

engval1 1642 888 566 308
freuroth 4 4 5 6
integreq 3796 3100 1789 956
nondia 882 1162 884 764

nondquar 3105 2719 1694 1052
penalty1 1422 1439 832 462
penalty2 2425 1391 744 458
tquartic - (100) 28059 20087 14848
vardim 6 17 19 16

# fevals to reach an opt. accuracy of 10−3.

Here n = 20 and averages where taken for 30 runs.
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DS based on probabilistic descent

Assumption

We say that a sequence of polling directions {Dk} is (p)-probabilistically
κ-descent for corresponding sequences {Xk}, {Alphak} if the events

Sk = { cm(Dk,−∇f(Xk)) ≥ κ }

satisfy the condition

P (Sk|σ(D0, . . . , Dk−1)) ≥ p.

Furthermore, if p ≥ 1
2 , then we say that the polling directions are

probabilistically κ-descent.

39/44



DS based on probabilistic descent

Assumption

We say that a sequence of polling directions {Dk} is (p)-probabilistically
κ-descent for corresponding sequences {Xk}, {Alphak} if the events

Sk = { cm(Dk,−∇f(Xk)) ≥ κ }

satisfy the condition

P (Sk|σ(D0, . . . , Dk−1)) ≥ p.

Furthermore, if p ≥ 1
2 , then we say that the polling directions are

probabilistically κ-descent.

39/44



DS based on probabilistic descent

Assumption

We say that a sequence of polling directions {Dk} is (p)-probabilistically
κ-descent for corresponding sequences {Xk}, {Alphak} if the events

Sk = { cm(Dk,−∇f(Xk)) ≥ κ }

satisfy the condition

P (Sk|σ(D0, . . . , Dk−1)) ≥ p.

Furthermore, if p ≥ 1
2 , then we say that the polling directions are

probabilistically κ-descent.

39/44



DS based on probabilistic descent

Assumption

We say that a sequence of polling directions {Dk} is (p)-probabilistically
κ-descent for corresponding sequences {Xk}, {Alphak} if the events

Sk = { cm(Dk,−∇f(Xk)) ≥ κ }

satisfy the condition

P (Sk|σ(D0, . . . , Dk−1)) ≥ p.

Furthermore, if p ≥ 1
2 , then we say that the polling directions are

probabilistically κ-descent.

39/44



Global convergence of DS based on prob. descent

Lemma

For every realization of the algorithm, limk→∞ αk = 0.

Theorem

Suppose that the polling directions {Dk} are probabilistically κ-descent for
some κ ∈ (0, 1).

Let {Xk} be a sequence of random iterates generated by the algorithm.

Then,

P

[
lim
k→∞

‖∇f(Xk)‖ = 0

]
= 1.

The proof is based on the trust-region corresponding one:

A. S. Bandeira, K. Scheinberg, and L. N. Vicente, Convergence of

trust-region methods based on probabilistic models, submitted.

40/44



Global convergence of DS based on prob. descent

Lemma

For every realization of the algorithm, limk→∞ αk = 0.

Theorem

Suppose that the polling directions {Dk} are probabilistically κ-descent for
some κ ∈ (0, 1).

Let {Xk} be a sequence of random iterates generated by the algorithm.

Then,

P

[
lim
k→∞

‖∇f(Xk)‖ = 0

]
= 1.

The proof is based on the trust-region corresponding one:

A. S. Bandeira, K. Scheinberg, and L. N. Vicente, Convergence of

trust-region methods based on probabilistic models, submitted.

40/44



Global convergence of DS based on prob. descent

Lemma

For every realization of the algorithm, limk→∞ αk = 0.

Theorem

Suppose that the polling directions {Dk} are probabilistically κ-descent for
some κ ∈ (0, 1).

Let {Xk} be a sequence of random iterates generated by the algorithm.

Then,

P

[
lim
k→∞

‖∇f(Xk)‖ = 0

]
= 1.

The proof is based on the trust-region corresponding one:

A. S. Bandeira, K. Scheinberg, and L. N. Vicente, Convergence of

trust-region methods based on probabilistic models, submitted.

40/44



Global convergence of DS based on prob. descent

Lemma

For every realization of the algorithm, limk→∞ αk = 0.

Theorem

Suppose that the polling directions {Dk} are probabilistically κ-descent for
some κ ∈ (0, 1).

Let {Xk} be a sequence of random iterates generated by the algorithm.

Then,

P

[
lim
k→∞

‖∇f(Xk)‖ = 0

]
= 1.

The proof is based on the trust-region corresponding one:

A. S. Bandeira, K. Scheinberg, and L. N. Vicente, Convergence of

trust-region methods based on probabilistic models, submitted.

40/44



Global convergence of DS based on prob. descent

Lemma

For every realization of the algorithm, limk→∞ αk = 0.

Theorem

Suppose that the polling directions {Dk} are probabilistically κ-descent for
some κ ∈ (0, 1).

Let {Xk} be a sequence of random iterates generated by the algorithm.

Then,

P

[
lim
k→∞

‖∇f(Xk)‖ = 0

]
= 1.

The proof is based on the trust-region corresponding one:

A. S. Bandeira, K. Scheinberg, and L. N. Vicente, Convergence of

trust-region methods based on probabilistic models, submitted.
40/44



Worst case complexity of DS based on prob. descent

p↗ when |D| ↗, but what is the effect of this on the
performance/analysis of the algorithm?

Theorem

Let ε ∈ (0, 1). In addition, suppose

P [∃K : ‖∇f(Xj)‖ ≥ ε, j = 0, . . . ,K − 1, ‖∇f(XK)‖ < ε] = 1.

Then,

P

[
# function evals until K ≤ |D|C(ν)

1

ε2

∣∣∣· · ·] ≥ 2p(|D|)− 1.

· · · is (roughly) the σ-algebra until the index corresponding to the smallest
step size up to K.
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DS based on probabilistic descent

One can relax the lower bound on p to

p ≥ ln(Cdec)

ln(Cdec/Cinc)
.

When one imposes p ≥ 1
2 , one must have |D| ≥ 2.
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problem [Qk −Qk] 2n n+ 1 n/2 n/4 2 1

arglina 8.60 6.42 3.65 2.05 1.23 1 - (100)
arglinb 11.08 3.92 2.58 1.83 1.46 1 4.17 (13)

arwhead 8.18 6.03 3.64 1.98 1.19 1 - (100)
bdqrtic 6.62 6.01 3.77 2.04 1.25 1 4.80 (80)

broydn3d 4.71 3.92 2.25 1.35 0.99 1 - (100)
dqrtic 8.28 5.11 2.91 1.64 1.06 1 4.67 (87)

engval1 11.09 6.00 3.82 2.08 1.36 1 4.60 (73)
freuroth 0.67 0.67 0.83 1 1 1 1
integreq 8.38 6.84 3.95 2.11 1.27 1 4.26 (93)
nondia 0.84 1.11 0.84 0.73 0.83 1 0.05 (13)

nondquar 4.27 3.73 2.33 1.45 1.02 1 - (100)
penalty1 5.51 5.58 3.22 1.79 1.17 1 3.82 (70)
penalty2 11.28 6.47 3.46 2.13 1.37 1 5.54 (90)
tquartic - (100) 1.62 1.16 0.86 0.75 1 - (100)
vardim 0.46 1.31 1.46 1.23 1.08 1 5.54 (3.3)

Now, we display increase in # fevals relatively to using 2 directions.
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