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The model and data assimilation system

Ocean data assimilation activities in ADTAO have focused on
improving the NEMOVAR system for global applications.
NEMOVAR is a variational ocean data assimilation system for the
NEMO model (Nucleus for European Modelling of the Oceans).
NEMO is developed by a consortium of European institutes for a
variety of reserach and operational applications (regional and global).
NEMOVAR is developed jointly by CERFACS, ECMWF, UK Met
Office and INRIA (Grenoble), with a focus on global applications
(Mogensen et al. 2009; Mogensen et al. 2012; Balmaseda et al. 2013).
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The observations
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The applications

Seasonal forecasting and climate ocean reanalysis with the ECMWF
Ocean ReAnalysis System (ORAS4) based on NEMOVAR (Balmaseda
et al. 2013).

Seasonal (SST) forecast skill:
ORAS4 vs Control (no DA) initialization

Time-evolution of global heat content anomalies:
ORAS4 vs observational estimates

ORAS4
CNTL

Central equatorial Paci!c Central equatorial Atlantic

Northern sub tropical Paci!c Northern sub tropical Atlantic

0 1 2 3 4 5 6 7
Forecast time (months)

0.4

0.5

0.6

0.7

0.8

0.9

1

A
n

o
m

al
y 

co
rr

e
la

ti
o

n

0 1 2 3 4 5 6 7
Forecast time (months)

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7
Forecast time (months)

0.4

0.5

0.6

0.7

0.8

0.9

1

A
n

o
m

al
y 

co
rr

e
la

ti
o

n

0 1 2 3 4 5 6 7
Forecast time (months)

0.4

0.5

0.6

0.7

0.8

0.9

1

Ocean heat content 700 m (1022 J)  

1960 1964 1968 1972 1976 1984 1988 1992 1996 2004 20081980 2000
-15

-10

-5

0

5

10

15
ORAS4
Domingues et al. 
Ishii and Kimoto
Willis et al.
Lyman and Johnson
Palmer et al.
Levitus et al.
Gouretski and Reseghetti

Recent Advances in Optimization, Toulouse, 24-26 July 2013



Developments in ADTAO

NEMOVAR solves a large-scale nonlinear optimization problem using
an outer/inner loop incremental (Truncated Gauss-Newton) algorithm.
Developments in ADTAO have focused on two areas:

▶ Krylov methods (CG and Lanczos) for solving the inner loop.
▶ Covariance models for representing errors in B and R.
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Characteristics of the inner-loop minimization

Matrices are only available in operator form.
Matrix-vector products are expensive.

▶ Especially with B in 3D-Var, and G and GT in 4D-Var.

B contains a wide range of eigenvalues.
▶ First-order preconditioning by B is important.

B−1 and B1/2 can be difficult to specify in practice.
▶ CG or Lanczos methods requiring only B are desirable.

The dimension (P) of observation space is much smaller than the
dimension (N) of model-control space.

▶ P ∼ O(105) compared to N ∼ O(106) or greater.
▶ Dual formulations can be advantageous over primal formulations.
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Primal vs dual formulations

The incremental cost function is

J[δx] =
1
2
δxT B−1 δx︸ ︷︷ ︸

Jb

+
1
2
(G δx− d )TR−1(G δx− d )︸ ︷︷ ︸

Jo

The exact solution is xa = xb + δxa where

δxa︸︷︷︸
N×1

=
(
B−1 + GTR−1G

)−1︸ ︷︷ ︸
N×N

GT︸︷︷︸
N×P

R−1︸ ︷︷ ︸
P×P

d︸︷︷︸
P×1

primal formulation

= B︸︷︷︸
N×N

GT︸︷︷︸
N×P

(
GBGT + R

)−1︸ ︷︷ ︸
P×P

d︸︷︷︸
P×1

dual formulation
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B-preconditioned primal and dual formulations

Right B-preconditioned primal formulation. Solve using CG or
Lanczos (e.g., Chan et al. 1999)(

IN + GTR−1GB
)
z = GTR−1d

with respect to the inner product zT
1 Bz2.

Restricted B-preconditioned dual formulation. Solve using CG or
Lanczos (Gratton and Tshimanga 2009; Gürol et al. 2013)(

R−1 GBGT + IP
)
w = R−1 d

with respect to the inner product yT
1 GBGT y2.

If the first guess is z = w = 0, these algorithms only require B, not its
inverse B−1.
They require the same number of matrix-vector products with B, R−1,
G and GT.
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Results with NEMO Global Ocean 3D-Var (Gürol et al. 2013)

B-preconditioned CG (BCG) and Restricted B-preconditioned CG
(RBCG) produce identical iterates within machine precision.
Memory and CPU requirements are significantly less with RBCG than
with BCG, especially when reorthogonalization is used (curves labelled
“_O”).

Cost function vs iteration Memory vs wallclock time
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Results with ROMS California Current 4D-Var (Gürol et al. 2013)

B-preconditioned Lanczos (BLanczos) and Restricted B-preconditioned
Lanczos (RBLanczos) produce identical iterates within machine
precision.
RBLanczos outperforms two other dual algorithms (dual-Lanczos and
dual-MINRES) proposed in the data assimilation literature.

Strong-constraint 4D-Var (N∼O(106)) Weak-constraint 4D-Var (N∼O(107))

10
4

10
5

10
6

10
7

 0  5  10  15  20  25  30  35  40

C
o

s
t 

fu
n

c
ti

o
n

Iteration

BLanc_OS
DLanc_OS
DMin_OS

RBLanc_OS

10
4

10
5

10
6

10
7

 0  5  10  15  20  25  30  35  40

C
o

s
t 

fu
n

c
ti

o
n

Iteration

DLanc_OW
DMin_OW

RBLanc_OW

Recent Advances in Optimization, Toulouse, 24-26 July 2013



Outline

...1 Context of the work

...2 Minimization algorithms with the dual formulation of variational
assimilation

...3 Diffusion-based correlation operators

...4 Conclusions and future directions

Recent Advances in Optimization, Toulouse, 24-26 July 2013



Characteristics and requirements of the B matrix

Very large matrix that is difficult to estimate.
Background errors are inhomogeneous, anisotropic and flow dependent.
Simplifying assumptions are required to reduce the number of tunable
parameters.
Symmetric and positive-definite operators are required that are
computationally efficient on massively parallel machines.
Appropriate numerical methods are required to handle complex
boundaries and complicated curvilinear grids on the sphere.
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Diffusion-based correlation operators: theoretical basis

The solution on S2 (ignoring solid boundaries) of the elliptic equation(
1− L2∇2)M

ψ = AMψ = ψ̂

is a correlation operator

ψ(λ, ϕ) =

∫
S2

C (r) ψ̂(λ′, ϕ′) dΣ

The kernel is a (SPD) correlation function (Weaver and Mirouze 2013)

C (r) ≈ C̃ (r) ∝
( r

L

)M−1
KM−1

( r
L

)
KM−1 is the modified Bessel function of the 2nd kind of order M − 1,
r is Euclidean distance, L (M) is a scale (smoothness) parameter.
C̃ (r) is from the class of Matérn functions (Guttorp and Gneiting 2006).

(AM)−1 can be interpreted as an M-step implicitly-formulated
diffusion operator.

Recent Advances in Optimization, Toulouse, 24-26 July 2013



Examples of isotropic implicit-diffusion kernels on S2

Correlation kernels of (AM)−1 where A = 1− L2∇2 for different M
and fixed D =

√
2M − 4L = 500 km.

Correlation function Variance spectrum
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Examples of isotropic implicit-diffusion kernels on S2

Correlation kernels of (AM)−1 where A = 1− ρ1L2∇2 + L4∇4

for different ρ1, and fixed M = 2 and D =
√

2M − 4L = 500 km.

Correlation function Variance spectrum
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How to solve the large linear system AMψ = ψ̂?

Solve as a sequence of linear systems

Aψ1 = ψ̂
Aψ2 = ψ1

...
AψM = ψM−1


One possibility is to split the 2D (or 3D) implicit diffusion operator
into a self-adjoint product of simpler 1D implicit diffusion operators
(Purser et al. 2003; Mirouze and Weaver 2010; Mirouze 2010).
Then use a direct solver (e.g., Cholesky factorization) to solve each of
the smaller 1D problems.
For example, in 2D we can define

AM ← AM/2
x AM/2

y
(
A∗

y
)M/2

(A∗
x)

M/2

where ∗ denotes adjoint wrt area integration on the model grid.
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How many iterations should we use?

Matérn with M = 2 2×1D implicit diffusion with M = 2

Matérn with M = 10 2×1D implicit diffusion with M = 10
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Diffusion-modelled correlations with varying length scales (Mirouze 2010)

Zonal length scales
(degs) for temperature

(T) estimated from
ensemble perturbations

T-T correlations at
selected points using

3×1D implicit diffusion
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Limitations when length scale is large relative to local geometry

AM ← AM/2
x AM/2

y
(
A∗

y
)M/2

(A∗
x)

M/2

Sea surface temperature analysis increments

(Courtesy of James While, Met Office)
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Impact of alternating the smoothing directions more frequently

AM ←
(
Ax Ay A∗

y A∗
x
)M/2

Sea surface temperature analysis increments

(Courtesy of James While, Met Office)
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Correlations estimated directly from an ensemble

“True” correlations at selected points

ci cj ck cl

ci = Ctru ei

Sample correlation matrix

Csam = (ϵ− ϵ) (ϵ− ϵ)T where ϵ = C1/2
true ϵ̂ and ϵ̂ ϵ̂T ≈ I

Nsam = 10

ci cj ck cl

ci = (ϵi − ϵi ) (ϵ− ϵ)
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Modelling ensemble correlations via diffusion (Weaver and Mirouze 2013)

“True” correlations at selected points

ci cj ck cl

ci = Ctru ei

Estimation of the local diffusion tensor κ

κ−1 ∝ ∇ϵ̃ (∇ϵ̃)T where ϵ̃ = ϵ/σ and σ2 = (ϵ)2

Nsam = 10

ci cj ck cl

ci = Cdif ei
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Localizing ensemble correlations via diffusion (Weaver and Piacentini 2013)

“True” correlations at selected points

ci cj ck cl

ci = Ctru ei

Compute Schur product of Csam with a localized correlation matrix

Cloc = Csam ◦ Cdif = diag(ϵ̃)Cdif diag(ϵ̃)

Nsam = 10

ci cj ck cl

ci = Cloc ei
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Highlights

Demonstration of the practical benefits of dual-formulated
CG/Lanczos algorithms (RBCG and RBLanczos) for the inner-loop
minimization in two operational ocean variational DA systems
(NEMOVAR and ROMS 4D-Var).
Improved theoretical understanding of diffusion-based correlation
models and their applicability to background-error covariance
estimation using ensembles.
Development of diffusion-based correlation models for NEMOVAR
using implicit numerical schemes.
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Current and future directions: FILAOS and AVENUE projects

Combine ensemble (En) and variational (Var) assimilation methods
with the goals of:

...1 Improving the specification of the background-error covariances;

...2 Improving the efficiency of the assimilation on massively parallel
machines.

Exploit and extend developments in ADTAO for NEMOVAR.
...1 Covariance modelling and localization using diffusion operators.
...2 Minimization algorithms with appropriate preconditioning, with

applications to 1 (Gratton et al. 2013).

Applications of EnVar to global ocean reanalysis with NEMOVAR.
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