Covariance modelling and minimization for variational ocean data assimilation: developments in ADTAO

A. Weaver¹ S. Gratton², S. Gürol^{1,3}, I. Mirouze^{1,4}, A. Moore^{5,★}, A. Piacentini^{1,★} and O. Titaud^{1,6,★}

¹ CERFACS, Toulouse
 ² CERFACS / INPT-IRIT, Toulouse
 ³ Now at ECMWF, Reading
 ⁴ Now at Met Office, Exeter
 ⁵ Uni. of California, Santa Cruz
 ⁶ Now at CLS, Toulouse
 * Funded through the ADTAO and FILAOS projects (RTRA-STAE)

Outline

- Context of the work
- 2 Minimization algorithms with the dual formulation of variational assimilation
- 3 Diffusion-based correlation operators
- 4 Conclusions and future directions

Outline

Context of the work

- 2 Minimization algorithms with the dual formulation of variational assimilation
- 3 Diffusion-based correlation operators
- 4 Conclusions and future directions

The model and data assimilation system

- Ocean data assimilation activities in ADTAO have focused on improving the NEMOVAR system for global applications.
- NEMOVAR is a variational ocean data assimilation system for the NEMO model (Nucleus for European Modelling of the Oceans).
- NEMO is developed by a consortium of European institutes for a variety of reserach and operational applications (regional and global).
- NEMOVAR is developed jointly by CERFACS, ECMWF, UK Met Office and INRIA (Grenoble), with a focus on global applications (Mogensen *et al.* 2009; Mogensen *et al.* 2012; Balmaseda *et al.* 2013).

The observations

ARGO floats

XBTs (eXpandable BathyThermographs)

Elephant seals

Argo Network, as of March 2006

COSTA RECAIL

EUROPEAN UN

· GERBLANDY (123

INDLA (74)

1961 AND (1)

FRANCE (363) · MAURITEL

ARCENTINA (6)

BRAZEL (1)

CANADA (76)
 CHELE (4)
 CHENA (9)

24	30	Act	ve	Floa

nn ()s

 JAPAN (253) 		
KOREA REP. OF (83)	 NORWAY (9) 	
MAURITTUS (2)	 RUSSEAN FED. (7) 	
MEXICO [1]	 SPAIN (6) 	
» NETHERLANDS (7)	 UNITED XENSOLOM (96) 	
NEW ZEALAND (6)	 UNITED STATES (3293) 	16

Recent Advances in Optimization, Toulouse, 24-26 July 2013

The applications

• Seasonal forecasting and climate ocean reanalysis with the ECMWF Ocean ReAnalysis System (ORAS4) based on NEMOVAR (Balmaseda *et al.* 2013).

Recent Advances in Optimization, Toulouse, 24-26 July 2013

Developments in ADTAO

- NEMOVAR solves a large-scale nonlinear optimization problem using an outer/inner loop incremental (Truncated Gauss-Newton) algorithm.
- Developments in ADTAO have focused on two areas:
 - Krylov methods (CG and Lanczos) for solving the inner loop.
 - Covariance models for representing errors in **B** and **R**.

Recent Advances in Optimization, Toulouse, 24-26 July 2013

Outline

D Context of the work

2 Minimization algorithms with the dual formulation of variational assimilation

3 Diffusion-based correlation operators

4 Conclusions and future directions

Characteristics of the inner-loop minimization

- Matrices are only available in operator form.
- Matrix-vector products are expensive.
 - ► Especially with **B** in 3D-Var, and **G** and **G**^T in 4D-Var.
- B contains a wide range of eigenvalues.
 - First-order preconditioning by **B** is important.
- B^{-1} and $B^{1/2}$ can be difficult to specify in practice.
 - ► CG or Lanczos methods requiring only **B** are desirable.
- The dimension (P) of observation space is much smaller than the dimension (N) of model-control space.
 - $P \sim O(10^5)$ compared to $N \sim O(10^6)$ or greater.
 - > Dual formulations can be advantageous over primal formulations.

Characteristics of the inner-loop minimization

- Matrices are only available in operator form.
- Matrix-vector products are expensive.
 - ► Especially with **B** in 3D-Var, and **G** and **G**^T in 4D-Var.
- B contains a wide range of eigenvalues.
 - First-order preconditioning by **B** is important.
- B^{-1} and $B^{1/2}$ can be difficult to specify in practice.
 - ► CG or Lanczos methods requiring only **B** are desirable.
- The dimension (P) of observation space is much smaller than the dimension (N) of model-control space.
 - $P \sim O(10^5)$ compared to $N \sim O(10^6)$ or greater.
 - Dual formulations can be advantageous over primal formulations.

Primal vs dual formulations

• The incremental cost function is

$$J[\delta \mathbf{x}] = \underbrace{\frac{1}{2} \, \delta \mathbf{x}^{\mathrm{T}} \, \mathbf{B}^{-1} \, \delta \mathbf{x}}_{J_{\mathrm{b}}} + \underbrace{\frac{1}{2} \, (\mathbf{G} \, \delta \mathbf{x} - \mathbf{d} \,)^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{G} \, \delta \mathbf{x} - \mathbf{d} \,)}_{J_{\mathrm{o}}}$$

• The exact solution is $\mathbf{x}^{\mathrm{a}} = \mathbf{x}^{\mathrm{b}} + \delta \mathbf{x}^{\mathsf{a}}$ where

B-preconditioned primal and dual formulations

• Right B-preconditioned primal formulation. Solve using CG or Lanczos (e.g., Chan *et al.* 1999)

$$\left(\boldsymbol{I}_{\scriptscriptstyle N} + \boldsymbol{G}^{\rm T}\boldsymbol{R}^{-1}\boldsymbol{G}\,\boldsymbol{B}\right)\boldsymbol{z} \;\; = \;\; \boldsymbol{G}^{\rm T}\boldsymbol{R}^{-1}\boldsymbol{d}$$

with respect to the inner product $\mathbf{z}_1^{\mathrm{T}} \mathbf{B} \, \mathbf{z}_2$.

• Restricted **B**-preconditioned **dual** formulation. Solve using CG or Lanczos (Gratton and Tshimanga 2009; Gürol *et al.* 2013)

$$\left(\mathsf{R}^{-1}\,\mathsf{G}\,\mathsf{B}\,\mathsf{G}^{\mathrm{T}}+\mathsf{I}_{\scriptscriptstyle{\mathcal{P}}}\right)\mathsf{w} \ = \ \mathsf{R}^{-1}\,\mathsf{d}$$

with respect to the inner product $\mathbf{y}_1^{\mathrm{T}} \mathbf{G} \mathbf{B} \mathbf{G}^{\mathrm{T}} \mathbf{y}_2$.

- If the first guess is z = w = 0, these algorithms only require B, not its inverse B^{-1} .
- They require the same number of matrix-vector products with B, $R^{-1},$ G and $G^{\rm T}.$

Results with NEMO Global Ocean 3D-Var (Gürol et al. 2013)

- B-preconditioned CG (BCG) and Restricted B-preconditioned CG (RBCG) produce identical iterates within machine precision.
- Memory and CPU requirements are significantly less with RBCG than with BCG, especially when reorthogonalization is used (curves labelled "O").

Recent Advances in Optimization, Toulouse, 24-26 July 2013

Results with ROMS California Current 4D-Var (Gürol et al. 2013)

- B-preconditioned Lanczos (BLanczos) and Restricted B-preconditioned Lanczos (RBLanczos) produce identical iterates within machine precision.
- RBLanczos outperforms two other dual algorithms (dual-Lanczos and dual-MINRES) proposed in the data assimilation literature.

Recent Advances in Optimization, Toulouse, 24-26 July 2013

Outline

- Context of the work
- 2 Minimization algorithms with the dual formulation of variational assimilation
- O Diffusion-based correlation operators
 - 4 Conclusions and future directions

Characteristics and requirements of the B matrix

- Very large matrix that is difficult to estimate.
- Background errors are inhomogeneous, anisotropic and flow dependent.
- Simplifying assumptions are required to reduce the number of tunable parameters.
- Symmetric and positive-definite operators are required that are computationally efficient on massively parallel machines.
- Appropriate numerical methods are required to handle complex boundaries and complicated curvilinear grids on the sphere.

Diffusion-based correlation operators: theoretical basis

 $\bullet\,$ The solution on \mathbb{S}^2 (ignoring solid boundaries) of the elliptic equation

$$\left(1-L^2\nabla^2\right)^M\psi = \mathcal{A}^M\psi = \widehat{\psi}$$

is a correlation operator

$$\psi(\lambda,\phi) = \int_{\mathbb{S}^2} C(r) \,\widehat{\psi}(\lambda',\phi') \,\mathrm{d}\Sigma$$

• The kernel is a (SPD) correlation function (Weaver and Mirouze 2013)

$$C(r) \approx \widetilde{C}(r) \propto \left(\frac{r}{L}\right)^{M-1} \mathcal{K}_{M-1}\left(\frac{r}{L}\right)$$

- K_{M-1} is the modified Bessel function of the 2nd kind of order M-1, r is Euclidean distance, L(M) is a scale (smoothness) parameter.
- $\widetilde{C}(r)$ is from the class of Matérn functions (Guttorp and Gneiting 2006).
- $(\mathcal{A}^M)^{-1}$ can be interpreted as an *M*-step implicitly-formulated diffusion operator.

Examples of isotropic implicit-diffusion kernels on \mathbb{S}^2

• Correlation kernels of $(\mathcal{A}^M)^{-1}$ where $\mathcal{A} = 1 - L^2 \nabla^2$ for different M and fixed $D = \sqrt{2M - 4L} = 500$ km.

Correlation function

Variance spectrum

Recent Advances in Optimization, Toulouse, 24-26 July 2013

Examples of isotropic implicit-diffusion kernels on \mathbb{S}^2

• Correlation kernels of $(\mathcal{A}^M)^{-1}$ where $\mathcal{A} = 1 - \rho_1 L^2 \nabla^2 + L^4 \nabla^4$ for different ρ_1 , and fixed M = 2 and $D = \sqrt{2M - 4L} = 500$ km.

Correlation function

Variance spectrum

Recent Advances in Optimization, Toulouse, 24-26 July 2013

How to solve the large linear system $\mathbf{A}^M \psi = \widehat{\psi}$?

• Solve as a sequence of linear systems

$$egin{array}{rcl} \mathbf{A}\psi_1&=&\widehat{\psi}\ \mathbf{A}\psi_2&=&\psi_1\ dots\ \mathbf{A}\psi_M&=&\psi_{M-1}\end{array}
ight)$$

- One possibility is to split the 2D (or 3D) implicit diffusion operator into a self-adjoint product of simpler 1D implicit diffusion operators (Purser *et al.* 2003; Mirouze and Weaver 2010; Mirouze 2010).
- Then use a direct solver (e.g., Cholesky factorization) to solve each of the smaller 1D problems.
- For example, in 2D we can define

$$\mathbf{A}^{M} \ \leftarrow \ \mathbf{A}_{x}^{M/2} \mathbf{A}_{y}^{M/2} \left(\mathbf{A}_{y}^{*}\right)^{M/2} \left(\mathbf{A}_{x}^{*}\right)^{M/2}$$

where * denotes adjoint wrt area integration on the model grid.

How many iterations should we use?

Recent Advances in Optimization, Toulouse, 24-26 July 2013

Diffusion-modelled correlations with varying length scales (Mirouze 2010)

Zonal length scales (degs) for temperature (T) estimated from ensemble perturbations

Recent Advances in Optimization, Toulouse, 24-26 July 2013

Limitations when length scale is large relative to local geometry

$$\mathbf{A}^{M} \leftarrow \mathbf{A}_{x}^{M/2} \mathbf{A}_{y}^{M/2} \left(\mathbf{A}_{y}^{*}\right)^{M/2} \left(\mathbf{A}_{x}^{*}\right)^{M/2}$$

Sea surface temperature analysis increments

(Courtesy of James While, Met Office) Recent Advances in Optimization, Toulouse, 24-26 July 2013

Impact of alternating the smoothing directions more frequently

$$\mathbf{A}^{M} \leftarrow \left(\mathbf{A}_{x} \, \mathbf{A}_{y} \, \mathbf{A}_{y}^{*} \, \mathbf{A}_{x}^{*}\right)^{M/2}$$

Sea surface temperature analysis increments

(Courtesy of James While, Met Office) Recent Advances in Optimization, Toulouse, 24-26 July 2013

Correlations estimated directly from an ensemble

Sample correlation matrix

$$\mathbf{C}_{\mathrm{sam}} \ = \ \overline{\left(\epsilon - \overline{\epsilon}\right)\left(\epsilon - \overline{\epsilon}\right)^{\mathrm{T}}} \ \text{where} \quad \epsilon = \mathbf{C}_{\mathrm{true}}^{1/2} \, \widehat{\epsilon} \quad \text{and} \quad \overline{\widehat{\epsilon} \, \widehat{\epsilon}^{\mathrm{T}}} \approx \mathbf{I}$$

Recent Advances in Optimization, Toulouse, 24-26 July 2013

Correlations estimated directly from an ensemble

Sample correlation matrix

$$\mathbf{C}_{\mathrm{sam}} \ = \ \overline{\left(\epsilon - \overline{\epsilon}\right)\left(\epsilon - \overline{\epsilon}\right)^{\mathrm{T}}} \ \text{where} \quad \epsilon = \mathbf{C}_{\mathrm{true}}^{1/2} \, \widehat{\epsilon} \quad \text{and} \quad \overline{\widehat{\epsilon} \, \widehat{\epsilon}^{\mathrm{T}}} \approx \mathbf{I}$$

Recent Advances in Optimization, Toulouse, 24-26 July 2013

Modelling ensemble correlations via diffusion (Weaver and Mirouze 2013)

Estimation of the local diffusion tensor κ $\kappa^{-1} \propto \overline{\nabla \tilde{\epsilon} (\nabla \tilde{\epsilon})^{\mathrm{T}}}$ where $\tilde{\epsilon} = \epsilon / \sigma$ and $\sigma^2 = \overline{(\epsilon)^2}$

Recent Advances in Optimization, Toulouse, 24-26 July 2013

Localizing ensemble correlations via diffusion (Weaver and Piacentini 2013)

Compute Schur product of $C_{\rm sam}$ with a localized correlation matrix

$$\mathsf{C}_{\mathrm{loc}} = \mathsf{C}_{\mathrm{sam}} \circ \mathsf{C}_{\mathrm{dif}} = \overline{\mathrm{diag}(\widetilde{\epsilon}) \, \mathsf{C}_{\mathrm{dif}} \, \mathrm{diag}(\widetilde{\epsilon})}$$

Recent Advances in Optimization, Toulouse, 24-26 July 2013

Outline

- Context of the work
- 2 Minimization algorithms with the dual formulation of variational assimilation
- 3 Diffusion-based correlation operators
- 4 Conclusions and future directions

- Demonstration of the practical benefits of dual-formulated CG/Lanczos algorithms (RBCG and RBLanczos) for the inner-loop minimization in two operational ocean variational DA systems (NEMOVAR and ROMS 4D-Var).
- Improved theoretical understanding of diffusion-based correlation models and their applicability to background-error covariance estimation using ensembles.
- Development of diffusion-based correlation models for NEMOVAR using implicit numerical schemes.

- Combine ensemble (En) and variational (Var) assimilation methods with the goals of:
 - Improving the specification of the background-error covariances;
 - Improving the efficiency of the assimilation on massively parallel machines.
- Exploit and extend developments in ADTAO for NEMOVAR.
 - Ovariance modelling and localization using diffusion operators.
 - Ominimization algorithms with appropriate preconditioning, with applications to 1 (Gratton *et al.* 2013).
- Applications of EnVar to global ocean reanalysis with NEMOVAR.

Project-related references

- Balmaseda, M. A., Mogensen, K. and A. T. Weaver, 2013: Evaluation of the ECMWF Ocean Reanalysis ORAS4. Q. J. R. Meteorol. Soc., 139, 1132–1161.
- Gratton, S., Toint, P. L. and J. Tshimanga, 2013: Conjugate gradients versus multigrid solvers for diffusion-based correlation models in data assimilation. *Q. J. R. Meteorol Soc.*. DOI: 10.1002/qj.2050, In press.
- Gratton, S. and J. Tshimanga, 2009: An observation-space formulation of variational assimilation using a Restricted Preconditioned Conjugate-Gradient algorithm. *Q. J. R. Meteorol Soc.*. **135**, 1573–1585.
- Gürol, S., Weaver, A. T., Moore, A. M., Piacentini, A., Arango, H. and S. Gratton, 2013: B-preconditioned minimization algorithms for variational data assimilation with the dual formulation. *Q. J. R. Meteorol. Soc.*. DOI:10.1002/qj.2150. In press.
- Mirouze, I., 2010: "Régularisation de problimes inverses à laide de léquation de diffusion généralisé". PhD thesis, Université Paul Sabatier, September 2010.
- Mirouze, I. and A. T. Weaver, 2010: Representation of correlation functions in variational assimilation using an implicit diffusion operator. *Q. J. R. Meteorol. Soc.*, **136**, 1421–1443.
- Mogensen, K. S., Balmaseda, M. A., Weaver, A. T., Martin, M. and A. Vidard, 2009: 'NEMOVAR: a variational data assimilation system from the NEMO ocean model'. In ECMWF Newsletter 120 - Summer 2009, ECMWF, Reading, U. K., pp 17-21.

Project-related references cont.

- Mogensen, K., M. A. Balmaseda and A. T. Weaver, 2012: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. ECMWF Tech. Memo., No. 668, 60 pp. Also registered as a CERFACS Technical Report No. TR-CMGC-12-30.
- Weaver, A. T. and I. Mirouze, 2013: On the diffusion equation and its application to isotropic and anisotropic correlation modelling in variational assimilation. *Q. J. R. Meteorol Soc.*. **139**, 242–260.
- Weaver, A. T. and A. Piacentini, 2012: Representing ensemble covariances with a diffusion operator. Presentation at the International Conference on Ensemble Methods in Geophysical Sciences. Toulouse, France, 12–16 November 2012.

Other references

- Chan, T. F., Chow, E., Saad, Y. and Yeung, M. C., 1999: Preserving symmetry in preconditioned Krylov subspace methods. *SIAM J. Sci. Comput.*, **20**, 568–581.
- Guttorp, P. and T. Gneiting, 2006: Miscellanea studies in the history of probability an statistics XLIX: On the Matérn correlation family. *Biometrika*, **93**, 989–995.
- Purser, R. J., Wu, W. S., Parrish, D. F. and N. M. Roberts, 2003. Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: spatially homogeneous and isotropic Gaussian covariances. *Mon. Weather Rev.*, **131**, 1524–1535.