Covariance modelling and minimization for variational ocean data assimilation: developments in ADTAO

A. Weaver ${ }^{1}$
S. Gratton ${ }^{2}$, S. Gürol ${ }^{1,3}$, I. Mirouze ${ }^{1,4}$, A. Moore ${ }^{5, \star}$, A. Piacentini ${ }^{1, \star}$ and O. Titaud ${ }^{1,6, \star}$
${ }^{1}$ CERFACS, Toulouse
${ }^{2}$ CERFACS / INPT-IRIT, Toulouse
${ }^{3}$ Now at ECMWF, Reading
${ }^{4}$ Now at Met Office, Exeter
${ }^{5}$ Uni. of California, Santa Cruz
${ }^{6}$ Now at CLS, Toulouse

* Funded through the ADTAO and FILAOS projects (RTRA-STAE)

Outline

(1) Context of the work
(2) Minimization algorithms with the dual formulation of variational assimilation
(3) Diffusion-based correlation operators

4 Conclusions and future directions

Outline

(1) Context of the work
(2) Minimization algorithms with the dual formulation of variational assimilation
(3) Diffusion-based correlation operators

4 Conclusions and future directions

The model and data assimilation system

- Ocean data assimilation activities in ADTAO have focused on improving the NEMOVAR system for global applications.
- NEMOVAR is a variational ocean data assimilation system for the NEMO model (Nucleus for European Modelling of the Oceans).
- NEMO is developed by a consortium of European institutes for a variety of reserach and operational applications (regional and global).
- NEMOVAR is developed jointly by CERFACS, ECMWF, UK Met Office and INRIA (Grenoble), with a focus on global applications (Mogensen et al. 2009; Mogensen et al. 2012; Balmaseda et al. 2013).

The observations
ARGO floats

Argo Network, as of March 2006
Elephant seals

9 azertrua (a) scostazaca($)$
 $-\operatorname{cozza}(\mathrm{d})$
 $-\operatorname{cost}(9)$

$\cdot \cosh (9)$ | - EVOORENUN |
| :--- |
| - RANE OHI |

 - Dotalt Spelion (i)
 KOCEA Mer OF
MENTITVS (z) 9 menaitus
onertion ORTMELANO - NEW ZEALLNO ($)$

2436 Active Floats
Notway (\%)

tWartio crucocu(be)
owated states (291) kinne9

XBTs (eXpandable BathyThermographs)

Satellites

SST

The applications

- Seasonal forecasting and climate ocean reanalysis with the ECMWF Ocean ReAnalysis System (ORAS4) based on NEMOVAR (Balmaseda et al. 2013).

Seasonal (SST) forecast skill: ORAS4 vs Control (no DA) initialization

Time-evolution of global heat content anomalies: ORAS4 vs observational estimates

Recent Advances in Optimization, Toulouse, 24-26 July 2013

Developments in ADTAO

- NEMOVAR solves a large-scale nonlinear optimization problem using an outer/inner loop incremental (Truncated Gauss-Newton) algorithm.
- Developments in ADTAO have focused on two areas:
- Krylov methods (CG and Lanczos) for solving the inner loop.
- Covariance models for representing errors in \mathbf{B} and \mathbf{R}.

Outline

(1) Context of the work

(2) Minimization algorithms with the dual formulation of variational assimilation
(3) Diffusion-based correlation operators

Characteristics of the inner-loop minimization

- Matrices are only available in operator form.
- Matrix-vector products are expensive.
- Especially with B in 3D-Var, and G and \mathbf{G}^{T} in 4D-Var.
- B contains a wide range of eigenvalues.
- First-order preconditioning by \mathbf{B} is important.
- \mathbf{B}^{-1} and $\mathbf{B}^{1 / 2}$ can be difficult to specify in practice.
- CG or Lanczos methods requiring only B are desirable.
- The dimension (P) of observation space is much smaller than the dimension (N) of model-control space.
- $P \sim O\left(10^{5}\right)$ compared to $N \sim O\left(10^{6}\right)$ or greater.
- Dual formulations can be advantageous over primal formulations.

Characteristics of the inner-loop minimization

- Matrices are only available in operator form.
- Matrix-vector products are expensive.
- Especially with B in 3D-Var, and G and \mathbf{G}^{T} in 4D-Var.
- B contains a wide range of eigenvalues.
- First-order preconditioning by \mathbf{B} is important.
- \mathbf{B}^{-1} and $\mathbf{B}^{1 / 2}$ can be difficult to specify in practice.
- CG or Lanczos methods requiring only B are desirable.
- The dimension (P) of observation space is much smaller than the dimension (N) of model-control space.
- $P \sim O\left(10^{5}\right)$ compared to $N \sim O\left(10^{6}\right)$ or greater.
- Dual formulations can be advantageous over primal formulations.

Primal vs dual formulations

- The incremental cost function is

$$
J[\delta \mathbf{x}]=\underbrace{\frac{1}{2} \delta \mathbf{x}^{\mathrm{T}} \mathbf{B}^{-1} \delta \mathbf{x}}_{J_{\mathrm{b}}}+\underbrace{\frac{1}{2}(\mathbf{G} \delta \mathbf{x}-\mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{G} \delta \mathbf{x}-\mathbf{d})}_{J_{\mathrm{o}}}
$$

- The exact solution is $\mathbf{x}^{\mathrm{a}}=\mathbf{x}^{\mathrm{b}}+\delta \mathbf{x}^{\mathrm{a}}$ where

B-preconditioned primal and dual formulations

- Right B-preconditioned primal formulation. Solve using CG or Lanczos (e.g., Chan et al. 1999)

$$
\left(\mathbf{I}_{N}+\mathbf{G}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{G B}\right) \mathbf{z}=\mathbf{G}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{d}
$$

with respect to the inner product $\mathbf{z}_{1}^{\mathrm{T}} \mathbf{B} \mathbf{z}_{2}$.

- Restricted B-preconditioned dual formulation. Solve using CG or Lanczos (Gratton and Tshimanga 2009; Gürol et al. 2013)

$$
\left(\mathbf{R}^{-1} \mathrm{GBG}^{\mathrm{T}}+\mathbf{I}_{p}\right) \mathbf{w}=\mathbf{R}^{-1} \mathbf{d}
$$

with respect to the inner product $\mathbf{y}_{1}^{\mathrm{T}} \mathbf{G B G} \mathbf{G}^{\mathrm{T}} \mathbf{y}_{2}$.

- If the first guess is $\mathbf{z}=\mathbf{w}=\mathbf{0}$, these algorithms only require \mathbf{B}, not its inverse B^{-1}.
- They require the same number of matrix-vector products with B, R^{-1}, G and G^{T}.
- B-preconditioned CG (BCG) and Restricted B-preconditioned CG (RBCG) produce identical iterates within machine precision.
- Memory and CPU requirements are significantly less with RBCG than with BCG, especially when reorthogonalization is used (curves labelled "_O").

Cost function vs iteration

Iteration

Memory vs wallclock time

Results with ROMS California Current 4D-Var (Gürol et al. 2013)

- B-preconditioned Lanczos (BLanczos) and Restricted B-preconditioned Lanczos (RBLanczos) produce identical iterates within machine precision.
- RBLanczos outperforms two other dual algorithms (dual-Lanczos and dual-MINRES) proposed in the data assimilation literature.

Strong-constraint 4D-Var ($N \sim O\left(10^{6}\right)$)

Weak-constraint 4D-Var ($N \sim O\left(10^{7}\right)$)

Outline

(1) Context of the work
(2) Minimization algorithms with the dual formulation of variational assimilation
(3) Diffusion-based correlation operators

Characteristics and requirements of the \mathbf{B} matrix

- Very large matrix that is difficult to estimate.
- Background errors are inhomogeneous, anisotropic and flow dependent.
- Simplifying assumptions are required to reduce the number of tunable parameters.
- Symmetric and positive-definite operators are required that are computationally efficient on massively parallel machines.
- Appropriate numerical methods are required to handle complex boundaries and complicated curvilinear grids on the sphere.

- The solution on \mathbb{S}^{2} (ignoring solid boundaries) of the elliptic equation

$$
\left(1-L^{2} \nabla^{2}\right)^{M} \psi=\mathcal{A}^{M} \psi=\widehat{\psi}
$$

is a correlation operator

$$
\psi(\lambda, \phi)=\int_{\mathbb{S}^{2}} C(r) \widehat{\psi}\left(\lambda^{\prime}, \phi^{\prime}\right) \mathrm{d} \Sigma
$$

- The kernel is a (SPD) correlation function (Weaver and Mirouze 2013)

$$
C(r) \approx \widetilde{C}(r) \propto\left(\frac{r}{L}\right)^{M-1} K_{M-1}\left(\frac{r}{L}\right)
$$

- K_{M-1} is the modified Bessel function of the 2nd kind of order $M-1$, r is Euclidean distance, $L(M)$ is a scale (smoothness) parameter.
- $\widetilde{C}(r)$ is from the class of Matérn functions (Guttorp and Gneiting 2006).
- $\left(\mathcal{A}^{M}\right)^{-1}$ can be interpreted as an M-step implicitly-formulated diffusion operator.

Examples of isotropic implicit-diffusion kernels on \mathbb{S}^{2}

- Correlation kernels of $\left(\mathcal{A}^{M}\right)^{-1}$ where $\mathcal{A}=1-L^{2} \nabla^{2}$ for different M and fixed $D=\sqrt{2 M-4} L=500 \mathrm{~km}$.

Correlation function

Variance spectrum

Examples of isotropic implicit-diffusion kernels on \mathbb{S}^{2}

- Correlation kernels of $\left(\mathcal{A}^{M}\right)^{-1}$ where $\mathcal{A}=1-\rho_{1} L^{2} \nabla^{2}+L^{4} \nabla^{4}$ for different ρ_{1}, and fixed $M=2$ and $D=\sqrt{2 M-4} L=500 \mathrm{~km}$.

Correlation function

How to solve the large linear system $\mathbf{A}^{M} \boldsymbol{\psi}=\widehat{\boldsymbol{\psi}}$?

- Solve as a sequence of linear systems

$$
\left.\begin{array}{rl}
\mathrm{A} \psi_{1} & =\widehat{\psi} \\
\mathrm{A} \psi_{2} & =\psi_{1} \\
& \vdots \\
\mathrm{~A} \psi_{M} & =\psi_{M-1}
\end{array}\right\}
$$

- One possibility is to split the 2D (or 3D) implicit diffusion operator into a self-adjoint product of simpler 1D implicit diffusion operators (Purser et al. 2003; Mirouze and Weaver 2010; Mirouze 2010).
- Then use a direct solver (e.g., Cholesky factorization) to solve each of the smaller 1D problems.
- For example, in 2D we can define

$$
\mathbf{A}^{M} \leftarrow \mathbf{A}_{x}^{M / 2} \mathbf{A}_{y}^{M / 2}\left(\mathbf{A}_{y}^{*}\right)^{M / 2}\left(\mathbf{A}_{x}^{*}\right)^{M / 2}
$$

where * denotes adjoint wrt area integration on the model grid.

How many iterations should we use?

Matérn with $M=2$

Matérn with $M=10$

$2 \times 1 \mathrm{D}$ implicit diffusion with $M=2$

$2 \times 1 \mathrm{D}$ implicit diffusion with $M=10$

Diffusion-modelled correlations with varying length scales (Mirouze 2010)

Zonal length scales (degs) for temperature
(T) estimated from ensemble perturbations

T-T correlations at selected points using $3 \times 1 \mathrm{D}$ implicit diffusion

Recent Advances in Optimization, Toulouse, 24-26 July 2013

Limitations when length scale is large relative to local geometry

$$
\mathbf{A}^{M} \leftarrow \mathbf{A}_{x}^{M / 2} \mathbf{A}_{y}^{M / 2}\left(\mathbf{A}_{y}^{*}\right)^{M / 2}\left(\mathbf{A}_{x}^{*}\right)^{M / 2}
$$

Sea surface temperature analysis increments

(Courtesy of James While, Met Office)
Recent Advances in Optimization, Toulouse, 24-26 July 2013

Impact of alternating the smoothing directions more frequently

$$
\mathbf{A}^{M} \leftarrow\left(\mathbf{A}_{x} \mathbf{A}_{y} \mathbf{A}_{y}^{*} \mathbf{A}_{x}^{*}\right)^{M / 2}
$$

Sea surface temperature analysis increments

(Courtesy of James While, Met Office)
Recent Advances in Optimization, Toulouse, 24-26 July 2013

Correlations estimated directly from an ensemble

Sample correlation matrix
$\mathrm{C}_{\mathrm{sam}}=\overline{(\boldsymbol{\epsilon}-\overline{\boldsymbol{\epsilon}})(\boldsymbol{\epsilon}-\overline{\boldsymbol{\epsilon}})^{\mathrm{T}}}$ where $\boldsymbol{\epsilon}=\mathrm{C}_{\text {true }}^{1 / 2} \widehat{\boldsymbol{\epsilon}}$ and $\overline{\widehat{\boldsymbol{\epsilon}} \widehat{\boldsymbol{\epsilon}}^{\mathrm{T}}} \approx \mathbf{I}$

$$
\mathbf{c}_{i}=\overline{\left(\epsilon_{i}-\overline{\epsilon_{i}}\right)(\boldsymbol{\epsilon}-\overline{\boldsymbol{\epsilon}})}
$$

Correlations estimated directly from an ensemble

Sample correlation matrix
$\mathrm{C}_{\mathrm{sam}}=\overline{(\boldsymbol{\epsilon}-\overline{\boldsymbol{\epsilon}})(\boldsymbol{\epsilon}-\overline{\boldsymbol{\epsilon}})^{\mathrm{T}}}$ where $\boldsymbol{\epsilon}=\mathrm{C}_{\text {true }}^{1 / 2} \hat{\boldsymbol{\epsilon}}$ and $\overline{\hat{\boldsymbol{\epsilon}} \widehat{\boldsymbol{\epsilon}}^{\mathrm{T}}} \approx \mathbf{I}$

$$
\mathbf{c}_{i}=\overline{\left(\epsilon_{i}-\overline{\epsilon_{i}}\right)(\boldsymbol{\epsilon}-\overline{\boldsymbol{\epsilon}})}
$$

Modelling ensemble correlations via diffusion (Weaver and Mirouze 2013)

Estimation of the local diffusion tensor κ

$$
\kappa^{-1} \propto \overline{\nabla \widetilde{\epsilon}(\nabla \widetilde{\epsilon})^{\mathrm{T}}} \text { where } \widetilde{\epsilon}=\epsilon / \sigma \quad \text { and } \sigma^{2}=\overline{(\epsilon)^{2}}
$$

Localizing ensemble correlations via diffusion (Weaver and Piacentini 2013)

Compute Schur product of $\mathrm{C}_{\mathrm{sam}}$ with a localized correlation matrix

$$
\mathbf{C}_{\mathrm{loc}}=\mathbf{C}_{\mathrm{sam}} \circ \mathbf{C}_{\mathrm{dif}}=\overline{\operatorname{diag}(\widetilde{\boldsymbol{\epsilon}}) \mathbf{C}_{\mathrm{dif}} \operatorname{diag}(\widetilde{\boldsymbol{\epsilon}})}
$$

Outline

(1) Context of the work
(2) Minimization algorithms with the dual formulation of variational assimilation
(3) Diffusion-based correlation operators
(4) Conclusions and future directions

Highlights

- Demonstration of the practical benefits of dual-formulated CG/Lanczos algorithms (RBCG and RBLanczos) for the inner-loop minimization in two operational ocean variational DA systems (NEMOVAR and ROMS 4D-Var).
- Improved theoretical understanding of diffusion-based correlation models and their applicability to background-error covariance estimation using ensembles.
- Development of diffusion-based correlation models for NEMOVAR using implicit numerical schemes.

Current and future directions: FILAOS and AVENUE projects

- Combine ensemble (En) and variational (Var) assimilation methods with the goals of:
(1) Improving the specification of the background-error covariances;
(2) Improving the efficiency of the assimilation on massively parallel machines.
- Exploit and extend developments in ADTAO for NEMOVAR.
(1) Covariance modelling and localization using diffusion operators.
(2) Minimization algorithms with appropriate preconditioning, with applications to 1 (Gratton et al. 2013).
- Applications of EnVar to global ocean reanalysis with NEMOVAR.

Project-related references

- Balmaseda, M. A., Mogensen, K. and A. T. Weaver, 2013: Evaluation of the ECMWF Ocean Reanalysis ORAS4. Q. J. R. Meteorol. Soc., 139, 1132-1161.
- Gratton, S., Toint, P. L. and J. Tshimanga, 2013: Conjugate gradients versus multigrid solvers for diffusion-based correlation models in data assimilation. Q. J. R. Meteorol Soc.. DOI: 10.1002/qj.2050, In press.
- Gratton, S. and J. Tshimanga, 2009: An observation-space formulation of variational assimilation using a Restricted Preconditioned Conjugate-Gradient algorithm. Q. J. R. Meteorol Soc.. 135, 1573-1585.
- Gürol, S., Weaver, A. T., Moore, A. M., Piacentini, A., Arango, H. and S. Gratton, 2013: B-preconditioned minimization algorithms for variational data assimilation with the dual formulation. Q. J. R. Meteorol. Soc.. DOI:10.1002/qj.2150. In press.
- Mirouze, I., 2010: "Régularisation de problm̀es inverses à laide de léquation de diffusion généralisé". PhD thesis, Université Paul Sabatier, September 2010.
- Mirouze, I. and A. T. Weaver, 2010: Representation of correlation functions in variational assimilation using an implicit diffusion operator. Q. J. R. Meteorol. Soc., 136, 1421-1443.
- Mogensen, K. S., Balmaseda, M. A., Weaver, A. T., Martin, M. and A. Vidard, 2009: 'NEMOVAR: a variational data assimilation system from the NEMO ocean model'. In ECMWF Newsletter 120 - Summer 2009, ECMWF, Reading, U. K., pp 17-21.

Project-related references cont.

- Mogensen, K., M. A. Balmaseda and A. T. Weaver, 2012: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. ECMWF Tech. Memo., No. 668, 60 pp. Also registered as a CERFACS Technical Report No. TR-CMGC-12-30.
- Weaver, A. T. and I. Mirouze, 2013: On the diffusion equation and its application to isotropic and anisotropic correlation modelling in variational assimilation. Q. J. R. Meteorol Soc. 139, 242-260.
- Weaver, A. T. and A. Piacentini, 2012: Representing ensemble covariances with a diffusion operator. Presentation at the International Conference on Ensemble Methods in Geophysical Sciences. Toulouse, France, 12-16 November 2012.

Other references

- Chan, T. F., Chow, E., Saad, Y. and Yeung, M. C., 1999: Preserving symmetry in preconditioned Krylov subspace methods. SIAM J. Sci. Comput., 20, 568-581.
- Guttorp, P. and T. Gneiting, 2006: Miscellanea studies in the history of probability an statistics XLIX: On the Matérn correlation family. Biometrika, 93, 989-995.
- Purser, R. J., Wu, W. S., Parrish, D. F. and N. M. Roberts, 2003. Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: spatially homogeneous and isotropic Gaussian covariances. Mon. Weather Rev., 131, 1524-1535.

Recent Advances in Optimization, Toulouse, 24-26 July 2013

