Block Low-Rank (BLR) approximations to improve multifrontal sparse solvers

Joint work with Patrick Amestoy , Cleve Ashcraft, Olivier Boiteau, Alfredo Buttari and Jean-Yves L'Excellent, PhD started on October 1st, 2010 and financed by EDF.

Clément Weisbecker, ENSEEIHT-IRIT, University of Toulouse, France Sparse Days 2013 — C.E.R.F.A.C.S., Toulouse, France, June 18th 2013

Block Low-Rank approximations to improve multifrontal sparse solvers

Multifrontal solver

- direct solver for large linear systems
- objective: A = LU

Low-rank approximations

- compression and flop reduction
- accuracy controlled by a numerical parameter

⇒ Combine these two notions to improve multifrontal solvers (in the context of MUMPS)

The multifrontal method

Nested dissection

Elimination tree

Nested dissection Elimination tree Fully-summed variables (FS) = separator

Nested dissection Elimination tree Non fully-summed variables (NFS) = border

Nested dissection Elimination tree Non fully-summed variables (NFS) = border ⇒ stack of CBs

Low-rank approximations

Low-rank block (Bebendorf)

Consider a block *B* of size $m \times n$ and k_{ε} its approximated numerical rank at accuracy ε . *B* is said to be **low-rank** if it can be written as

 $B = X \cdot Y + E$ with $||E||_2 \le \varepsilon$ and $k_{\varepsilon}(m+n) < mn$

If *B* is low-rank, storing it as *X*, *Y* saves storage and allows faster operations. *X*, *Y* can be computed using rank-revealing *QR*, SVD...

Low-rank product: $X_1(Y_1^T X_2) Y_2^T$

Can we exploit low-rankness in multifrontal methods?

• Fronts are not low-rank but in many applications they exhibit some low-rank blocks.

Idea: find and compress low rank blocks within frontal matrices. Problem: how to identify low-rank blocks?

 $\Rightarrow \text{ Define a } clustering C \text{ to obtain low-rank blocks } A_b$ (b = $\sigma \times \tau \subset I \times I$).

 \Rightarrow Admissibility condition [Börm, Grasedyck, Hackbusch] expresses correlation between distance and rank:

 \Rightarrow Admissibility condition [Börm, Grasedyck, Hackbusch] expresses correlation between distance and rank:

 \Rightarrow Admissibility condition [Börm, Grasedyck, Hackbusch] expresses correlation between distance and rank:

 \Rightarrow Admissibility condition [Börm, Grasedyck, Hackbusch] expresses correlation between distance and rank:

 \Rightarrow Admissibility condition [Börm, Grasedyck, Hackbusch] expresses correlation between distance and rank:

 \Rightarrow Admissibility condition [Börm, Grasedyck, Hackbusch] expresses correlation between distance and rank:

- There are different low-rank representations (heuristics to exploit low-rank blocks): $\mathcal{H}, \mathcal{H}^2$ [Bebendof, Börm, Hackbush, Grasedyck,...], Hierarchical/Sequential Semiseparable (HSS/SSS) [Chandrasekaran, Dewilde, Gu, Li, Xia,...], BLR [Amestoy et al.], etc.
- Some representations are simpler and apply to broader classes of problems but provide less gain in memory/operations, while some others are more complex but allow for further gains in complexity.
- We focus on **Block Low-Rank** (BLR).

HSS vs BLR

HSS =	D_1	$X_1 B_1 Y_2^T$	$X_1 R_1 B_3 W_4^T Y_4^T$	$X_1 R_1 B_3 W_5^T Y_5^T$
	$X_2 B_2 Y_1^T$	D_2	$X_2 R_2 B_3 W_4^T Y_4^T$	$X_2 R_2 B_3 W_5^T Y_5^T$
	$\overline{X_4 R_4 B_6 W_1^T Y_1^T}$	$X_4 R_4 B_6 W_2^T Y_2^T$	D_4	$X_4 B_4 Y_5^T$
	$X_5 R_5 B_6 W_1^T Y_1^T$	$X_5 R_5 B_6 W_2^T Y_2^T$	$X_5 B_5 Y_4^T$	<i>D</i> ₅

$$BLR = \begin{bmatrix} D_1 & X_{12}Y_{12}^T & X_{13}Y_{13}^T & X_{14}Y_{14}^T \\ \hline X_{21}Y_{21}^T & D_2 & X_{23}Y_{23}^T & X_{24}Y_{24}^T \\ \hline X_{31}Y_{31}^T & X_{32}Y_{32}^T & D_3 & X_{34}Y_{34}^T \\ \hline X_{41}Y_{41}^T & X_{42}Y_{42}^T & X_{43}Y_{43}^T & D_4 \end{bmatrix}$$

- \Rightarrow particular case of $\mathcal H\text{-matrices}$
- \Rightarrow no tree
- \Rightarrow natural matrix structure

Comparative study: compression rates

Compression rates of the frontal matrix at the root of a multifrontal tree, on two 3D stencils (discretization of a 128 x 128 x 128 cube)

Comparative study: compression cost

Compression cost of the frontal matrix at the root of a multifrontal tree, on two 3D stencils (discretization of a 128 x 128 x 128 cube)

Clustering variables

Constraint : the admissibility condition should be satisfied

large diameters fraction of memory used 83%

small diameters fraction of memory used 57%

- Designed to catch the geometry of the problem
- Computed with the graph instead of the mesh
- Coupled with a third party partitioning tool

- Designed to catch the geometry of the problem
- Computed with the graph instead of the mesh
- Coupled with a third party partitioning tool

1. The separator

- Designed to catch the geometry of the problem
- Computed with the graph instead of the mesh
- Coupled with a third party partitioning tool

- 1. The separator
- 2. The halo

- Designed to catch the geometry of the problem
- Computed with the graph instead of the mesh
- Coupled with a third party partitioning tool

- 1. The separator
- 2. The halo
- 3. Extraction of the halo

- Designed to catch the geometry of the problem
- Computed with the graph instead of the mesh
- Coupled with a third party partitioning tool

- 1. The separator
- 2. The halo
- 3. Extraction of the halo
- 4. Partition of the halo

- Designed to catch the geometry of the problem
- Computed with the graph instead of the mesh
- Coupled with a third party partitioning tool

- 1. The separator
- 2. The halo
- 3. Extraction of the halo
- 4. Partition of the halo
- 5. Partition of the separator (block size is fixed)

 \Rightarrow front = separator + border

- ⇒ front = separator + border
- 1- separator : halo

- ⇒ front = separator + border
- 1- separator : halo
- 2- border? 2 choices:

- ⇒ front = separator + border
- 1- separator : halo
- 2- border? 2 choices:

EXPLICIT

- ⇒ front = separator + border
- 1- separator : halo
- 2- border? 2 choices:

EXPLICIT

- ⇒ front = separator + border
- 1- separator : halo
- 2- border? 2 choices:

EXPLICIT

INHERITED (top down)

- ⇒ front = separator + border
- 1- separator : halo
- 2- border? 2 choices:

EXPLICIT

INHERITED (top down)

- ⇒ front = separator + border
- 1- separator : halo
- 2- border? 2 choices:

EXPLICIT

INHERITED (top down)

- ⇒ front = separator + border
- 1- separator : halo
- 2- border? 2 choices:

EXPLICIT

INHERITED (top down)

• optimal × optimal = optimal block

- optimal × optimal = optimal block
- small × optimal = large enough block

- optimal × optimal = optimal block
- small × optimal = large enough block
- small × small = too small block

• optimal × optimal = optimal block

- small × optimal = large enough block
- small × small = too small block

 \Rightarrow reclustering strategies

Block Low-Rank multifrontal method

ank
3
)n-
2
<i>i</i> ²

task	operation type	dense	low-rank
Factor (F)	$B = LU^T$	$(2/3)n^3$	$(2/3)n^3$
Compress (C)	$C = XY^T$	kn^2	—
Solve (S)	$D = X(Y^T L^{-1})$	n^3	kn^2
CB update (U)	$D = D - X_1(Y_1^T X_2) Y_2^T$	$2n^{3}$	$2kn^2$

Standard FR algorithm:

F Factor

S Solve

U Update

task	operation type	dense	low-rank
Factor (F)	$B = LU^T$	$(2/3)n^3$	$(2/3)n^3$
Compress (C)	$C = XY^T$	kn^2	
Solve (S)	$D = X(Y^T L^{-1})$	n^3	kn^2
CB update (U)	$D = D - X_1(Y_1^T X_2) Y_2^T$	$2n^{3}$	$2kn^2$

Standard FR algorithm:

F Factor

S Solve

U Update

task	operation type	dense	low-rank
Factor (F)	$B = LU^T$	$(2/3)n^3$	$(2/3)n^3$
Compress (C)	$C = XY^T$	kn^2	
Solve (S)	$D = X(Y^T L^{-1})$	n^3	kn^2
CB update (U)	$D = D - X_1(Y_1^T X_2) Y_2^T$	$2n^{3}$	$2kn^2$

Standard FR algorithm:

F Factor

S Solve

U Update

20/39

task	operation type	dense	low-rank
Factor (F)	$B = LU^T$	$(2/3)n^3$	$(2/3)n^3$
Compress (C)	$C = XY^T$	kn^2	
Solve (S)	$D = X(Y^T L^{-1})$	n^3	kn^2
CB update (U)	$D = D - X_1(Y_1^T X_2) Y_2^T$	$2n^{3}$	$2kn^2$

Standard FR algorithm:

F Factor

S Solve

U Update

20/39

task	operation type	dense	low-rank
Factor (F)	$B = LU^T$	$(2/3)n^3$	$(2/3)n^3$
Compress (C)	$C = XY^T$	kn^2	
Solve (S)	$D = X(Y^T L^{-1})$	n^3	kn^2
CB update (U)	$D = D - X_1(Y_1^T X_2) Y_2^T$	$2n^{3}$	$2kn^2$

BLR FSCU algorithm:

F Factor

S Solve

U Update

task	operation type	dense	low-rank
Factor (F)	$B = LU^T$	$(2/3)n^3$	$(2/3)n^3$
Compress (C)	$C = XY^T$	kn^2	—
Solve (S)	$D = X(Y^T L^{-1})$	n^3	kn^2
CB update (U)	$D = D - X_1(Y_1^T X_2) Y_2^T$	$2n^{3}$	$2kn^2$

BLR FSCU algorithm:

F Factor

S Solve

U Update

task	operation type	dense	low-rank
Factor (F)	$B = LU^T$	$(2/3)n^3$	$(2/3)n^3$
Compress (C)	$C = XY^T$	kn^2	—
Solve (S)	$D = X(Y^T L^{-1})$	n^3	kn^2
CB update (U)	$D = D - X_1(Y_1^T X_2) Y_2^T$	$2n^{3}$	$2kn^2$

BLR FSCU algorithm:

F Factor

S Solve

U Update

20/39

task	operation type	dense	low-rank
Factor (F)	$B = LU^T$	$(2/3)n^3$	$(2/3)n^3$
Compress (C)	$C = XY^T$	kn^2	—
Solve (S)	$D = X(Y^T L^{-1})$	n^3	kn^2
CB update (U)	$D = D - X_1 (Y_1^T X_2) Y_2^T$	$2n^{3}$	$2kn^2$

BLR FS**C**U algorithm:

F Factor

S Solve **C Compress** U Update

task	operation type	dense	low-rank
Factor (F)	$B = LU^T$	$(2/3)n^3$	$(2/3)n^3$
Compress (C)	$C = XY^T$	kn^2	
Solve (S)	$D = X(Y^T L^{-1})$	n^3	kn^2
CB update (U)	$D = D - X_1(Y_1^T X_2) Y_2^T$	$2n^{3}$	$2kn^2$

BLR FSCU algorithm:

F Factor

S Solve C Compress **U Update**

ha ali		ماممم	laur an alu
Cask	operation type	dense	low-rank
Factor (F)	$B = LU^T$	$(2/3)n^3$	$(2/3)n^3$
Compress (C)	$C = XY^T$	kn^2	
Solve (S)	$D = X(Y^T L^{-1})$	n^3	kn^2
CB update (U)	$D = D - X_1(Y_1^T X_2) Y_2^T$	$2n^{3}$	$2kn^2$

FCSU version more efficient less stability

task	operation type	dense	low-rank
Factor (F)	$B = LU^T$	$(2/3)n^3$	$(2/3)n^3$
Compress (C)	$C = XY^T$	kn^2	
Solve (S)	$D = X(Y^T L^{-1})$	n^3	kn^2
CB update (U)	$D = D - X_1(Y_1^T X_2) Y_2^T$	$2n^{3}$	$2kn^2$

F Factor

S Solve C Compress U Update **FSUC version** no flop reduction more stability

task	operation type	dense	low-rank
Factor (F)	$B = LU^T$	$(2/3)n^3$	$(2/3)n^3$
Compress (C)	$C = XY^T$	kn^2	
Solve (S)	$D = X(Y^T L^{-1})$	n^3	kn^2
CB update (U)	$D = D - X_1(Y_1^T X_2) Y_2^T$	$2n^{3}$	$2kn^2$

U Update

Experiments

Set of problems

Name	Ргор.	Arith.	N (×10 ⁶)	NZ (×10 ⁹)	mem. LU (GB)	flops LU (×10 ¹²)	CSR	appli.
			(///0/)	(//10)	(00)	(,,		
Curl 5000 ²	2D/sym.	D	50	0.2	29	5	2E-15	∇
Geoazur 128 ³	3D/unsym.	Z	2	55	54	60	3E-4	wave prop.
EDF_A_MECA_R12	2D/sym.	D	134	1	151	200	4E-15	mechanics
EDF_D_THER_R7	3D/sym	D	8	118	229	100	8E-15	thermics

- CSR = Componentwise Scaled Residual
- Code_Aster tpl101{a,d} test cases (refined)
- large matrices
- applicative problems

memory:

- |L| = fraction of FR factors storage obtained with BLR (%)
- |CB| = fraction of FR maximum size of CB stack obtained with BLR (%)

flops:

• fraction of FR operations needed for the BLR factorization (in percent or absolute data, including the compression cost)

Clustering strategy

	memory			flo	ops		tin	ne	
	1	21	C	B	- fa	cto	clust	ering	full rank
clustering	inh	exp	inh	exp	inh	exp	inh	exp	analysis
Cur15000	63.7%	62.4%	7.0%	5.5%	10.9%	11.1%	13 s	27 s	897 s
Geoazur128	79.0%	77.0%	47.0%	45.0%	60.8%	59.1%	5 s	42 s	62 s
TH_RAFF7	34.1%	30.7%	17.5%	16.2%	7.2%	6.6%	34 s	206 s	387 s
ME_RAFF12	52.9%	51.1%	4.8%	4.1%	6.1%	6.1%	121 s	239 s	1971 s

- "inherited" version is more than 2 times faster
- same results on L₁₁
- comparable results on *L*₂₁
- a little less good on CBs

 \Rightarrow inherited clustering used for all the experiments

Global ordering of the matrix: general results

Results with different orderings on Geoazur128 problem.

		FR			LR		
ordering	тгу	flops	peak	L	CB	flops	
AMD	109GB	3.9E + 14	92GB	73.5%	40.0%	59.4%	
AMF	72GB	1.8E + 14	45GB	69.9%	53.5%	48.3%	
PORD	55GB	1.0E + 14	28GB	70.4%	49.0%	48.9%	
METIS	46GB	6.2E + 13	20GB	78.7%	46.4%	62.6%	
SCOTCH	49GB	6.6E + 13	21GB	79.4%	48.1%	63.4%	

Global ordering of the matrix: general results

Results with different orderings on Geoazur128 problem.

		FR			LR	
ordering	тгу	flops	peak	L	CB	flops
AMD	109GB	3.9E + 14	92GB	73.5%	40.0%	59.4%
AMF	72GB	1.8E + 14	45GB	69.9%	53.5%	48.3%
PORD	55GB	1.0E + 14	28GB	70.4%	49.0%	48.9%
METIS	46GB	6.2E + 13	20GB	78.7%	46.4%	62.6%
SCOTCH	49GB	6.6E + 13	21GB	79.4%	48.1%	63.4%

Global ordering of the matrix: SCOTCH tree

[visualization tool developed by M. Bremond]

Influence of the size of the problem

 \Rightarrow different refinements of problem EDF_A_MECA done with Homard

		mer	nory	flops
Refinement	Ν	L	CB	facto
R8	2, 101, 258	71%	43%	37%
R11	33, 570, 826	59%	29%	12%
R12	134, 250, 506	53%	24%	7%

- the larger the problem, the more efficient the method
- target = challenging problems

Scalability with respect to the size of the problem

 \Rightarrow Laplacian problem, $\varepsilon = 10^{-14}$

 $\Rightarrow O(N^{4/3})$ complexity (= HSS)

Global results: 2D problems

Global results: 3D problems

Application to geophysics (1)

- Helmholtz equation for seismic modeling (SEISCOPE project)
- EAGE overthrust ground model
- single precision computations

fqcy	Flops LU	Mem LU	Peak memory
2 Hz	8.957E+11	3 GB	4 GB
4 Hz	1.639E+13	22 GB	25 GB
8 Hz	5.769E+14	247 GB	283 GB

Application to geophysics (2)

		flops	men	погу
ε	fqcy	facto	L	CB
(10^{-5})	2 Hz	41.8 %	61.8 %	32.3%
	4 Hz	27.4 %	50.0 %	24.4%
	8 Hz	21.8 %	41.6 %	23.9%
(10^{-4})	2 Hz	32.9 %	53.4 %	23.9%
	4 Hz	20.0 %	42.2 %	21.7%
	8 Hz	15.2 %	28.9 %	19.4%
(10^{-3})	2 Hz	24.6 %	44.7 %	16.8%
	4 Hz	13.8 %	34.5 %	19.0%
	8 Hz	9.8 %	21.3 %	15.9%

Preconditioning with BLR: set of problems

	Ν	NZ	Cond.	application
Piston	1.3E+6	54.7E+6	5.1E+5	external pressure force on the top
perf001d	2.0E+6	75.8E+6	1.5E+11	"cavity" hook subjected to internal pressure force (challenging for EDF)

- CG preconditioned with MUMPS single precision with BLR
- preliminary study

33/39

perf001d, FR SP = 50 iterations

	BLR SP				BLR DP			
ε	#it	L	CB	flops	#it	L	CB	flops
10^{-10}	-	_	_	_	2	64.2%	18.3%	31.0%
10^{-9}	_	-	-	_	2	62.2%	16.1%	28.8%
10^{-8}	67	59.4%	18.9%	26.7%	3	58.7%	13.7%	25.5%
10^{-7}	68	56.9%	16.9%	24.3%	4	56.4%	11.4%	23.4%
10^{-6}	66	52.4%	15.2%	20.2%	8	51.9%	9.6 %	19.7%
10^{-5}	67	49.1%	14.1%	17.1%	19	48.6%	8.6 %	17.0%
10^{-4}	81	45.1%	13.5%	14.1%	68	44.4%	8.0 %	14.1%

perf001d, FR SP = 50 iterations

	BLR SP				BLR DP			
ε	#it	L	CB	flops	#it	L	CB	flops
10^{-10}	-	_	_	_	2	64.2%	18.3%	31.0%
10^{-9}	-	-	-	_	2	62.2%	16.1%	28.8%
10^{-8}	67	59.4%	18.9%	26.7%	3	58.7%	13.7%	25.5%
10^{-7}	68	56.9%	16.9%	24.3%	4	56.4%	11.4%	23.4%
10^{-6}	66	52.4%	15.2%	20.2%	8	51.9%	9.6 %	19.7%
10^{-5}	67	49.1%	14.1%	17.1%	19	48.6%	8.6 %	17.0%
10^{-4}	81	45.1%	13.5%	14.1%	68	44.4%	8.0 %	14.1%

perf001d, FR SP = 50 iterations

	BLR SP				BLR DP			
ε	#it	L	CB	flops	#it	L	CB	flops
10 ⁻¹⁰	-	_	_	_	2	64.2%	18.3%	31.0%
10^{-9}	-	_	-	_	2	62.2%	16.1%	28.8%
10^{-8}	67	59.4%	18.9%	26.7%	3	58.7%	13.7%	25.5%
10^{-7}	68	56.9%	16.9%	24.3%	4	56.4%	11.4%	23.4%
10^{-6}	66	52.4%	15.2%	20.2%	8	51.9%	9.6 %	19.7%
10^{-5}	67	49.1%	14.1%	17.1%	19	48.6%	8.6 %	17.0%
10^{-4}	81	45.1%	13.5%	14.1%	68	44.4%	8.0 %	14.1%

perf001d, FR SP = 50 iterations

	BLR SP				BLR DP			
ε	#it	L	CB	flops	#it	L	CB	flops
10^{-10}	-	_	_	_	2	64.2%	18.3%	31.0%
10^{-9}	-	-	-	-	2	62.2%	16.1%	28.8%
10^{-8}	67	59.4%	18.9%	26.7%	3	58.7%	13.7%	25.5%
10^{-7}	68	56.9%	16.9%	24.3%	4	56.4%	11.4%	23.4%
10^{-6}	66	52.4%	15.2%	20.2%	8	51.9%	9.6 %	19.7%
10^{-5}	67	49.1%	14.1%	17.1%	19	48.6%	8.6 %	17.0%
10^{-4}	81	45.1%	13.5%	14.1%	68	44.4%	8.0 %	14.1%

• is it the right definition of *optimality*?

Preconditioning with BLR: perf001d timings

Preconditioning with BLR: Piston timings

- efficient method on various applicative problems
- considerable memory reduction & substantial decrease in computations $\Rightarrow O(N^{4/3})$ complexity on a Laplacian, comparable to HSS
- can be used as a preconditioner or as a direct solver
- good potential for parallelism
- code is stable on tested problems

- MPI
- study on larger and more difficult problems
- error propagation study ⇒ absolute or relative dropping parameter ? relative to what ? (work with S. Gratton, M. Ngom and D. Titley-Peloquin started)

Aknowledgements

- O. Boiteau, B. Quinnez and N. Tardieu (EDF R&D)
- **S. Operto**, **R. Brossier** and **J. Virieux** (SEISCOPE Project) for their contribution to the geophysics study
- the Toulouse Computing Center (CICT) and N. Renon
- S. Li, A. Napov and F.-H. Rouet (LBNL Berkeley)

Details on this work can be found in:

P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L'Excellent and C. Weisbecker, Improving multifrontal methods by means of block low-rank representations, IRIT technical report RT/APO/12/6, INRIA technical report INRIA/RR-8199, submitted to SIAM SISC, http://weisbecker.perso. enseeiht.fr/documents/RT_APO_12_6_BLR.pdf, 2012.

Thank you ! Any questions?

