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Motivation

Why look at old, slow, simple algorithms?

Often good for machine learning and big-data applications.

Often a good fit for modern computers (multicore, NUMA, clusters)
— parallel, asynchronous versions are possible.

Easy to implement.

Interesting new analysis, tied to plausible models of parallel
computation and data.

“Asynchronicity is the key to speedup on modern architectures,” says Bill
Gropp (SIAM CS&E Plenary, 2013).
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Stochastic Gradient

Typical form of f in learning problems:

f (x) =
1

m

m∑
i=1

fi (x),

where each fi is convex, and depends on a single item of data.

In classical SG, choose index ik ∈ {1, 2, . . . ,m} uniformly at random at
iteration k, set

xk+1 = xk − αk∇fik (xk), for some αk > 0.

When f is strongly convex, the analysis of convergence of E (‖xk − x∗‖2) is
elementary (Nemirovski et al, 2009).

Averaging of iterates xk and gradient estimates ∇fik (xk) (primal and dual
averaging) can be applied to make behavior “smoother” and more robust.
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Convergence of Classical SG

Define µ (convexity modulus), M, Lipschitz constant L:

∇f (x)−∇f (x ′)]T (x − x ′) ≥ µ‖x − x ′‖2,

1

m

m∑
i=1

‖∇fi (x)‖2 ≤ M2,

‖∇f (x)−∇f (x ′)‖ ≤ L‖x − x ′‖,
for all x , x ′ of interest. Obtain convergence in expected square error:

ak :=
1

2
E (‖xk − x∗‖2).

Elementary argument shows a recurrence:

ak+1 ≤ (1− 2µαk)ak +
1

2
α2
kM2.

When we set αk = 1/(kµ), an inductive argument reveals a 1/k rate:

ak ≤
Q

2k
, for Q := max

(
‖x1 − x∗‖2,

M2

µ2

)
.
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Constant Step Size: αk ≡ α

We can also obtain a “1/k rate” for f strongly convex, for constant
stepsize αk ≡ α, when desired threshold ε for ak is specified a priori.

From earlier analysis, have

ak+1 ≤ (1− 2µα)ak +
1

2
α2M2

which easily yields

ak ≤ (1− 2µα)ka0 +
αM2

4µ
.

Given ε > 0, choose α and K so that ak ≤ ε for all k ≥ K . Choose so that
both terms in the bound above are less than ε/2:

α :=
2εµ

M2
, K :=

M2

4εµ2
log
(a0

2ε

)
.
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Parallel Stochastic Approximation

Several approaches tried for parallel stochastic approximation.

Dual Averaging (AIG): Average gradient estimates evaluated in
parallel on different cores. Requires message passing /
synchronization (Dekel et al, 2011; Duchi et al, 2010).

Round-Robin (RR): Cores evaluate ∇fi in parallel and update
centrally stored x in round-robin fashion. Requires synchronization
(Langford et al, 2009).

Asynchronous: Hogwild!: Each core grabs the centrally-stored x
and evaluates ∇fi (x) for some random i , then writes the updates
back into x (Niu et al, 2011). Downpour SGD: Similar idea for cluster
(Dean et al, 2012).

Hogwild!: Each processor runs independently:

1 Sample ik from {1, 2, . . . ,m};
2 Read current state of x from central memory, evalute g := ∇fik (x);

3 for nonzero components gv do xv ← xv − αgv ;
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Hogwild! Convergence

Updates can be “old” by the time they are applied, but we assume a
bound of τ cycles on their age.

Processors can overwrite each other’s work, but sparsity of the ∇fi
helps — updates don’t interfere too much with each other. Partial
separability.

Define quantities that capture the interconnectedness of the functions fi :

ρi = number of indices j such that fi and fj depend on overlapping
components of x .

ρ̄ =
∑m

i=1 ρi/m2: average rate of overlapping subvectors.
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Hogwild! Convergence (Niu, Recht, Ré, Wright, 2011; Richtarik ,2013)

Given ε ∈ (0, a0L), and setting

αk ≡
µε

(1 + 2τ ρ̄)LM2m2

we have for

k ≥ (1 + 2τ ρ̄)LM2m2

µ2ε
log

(
2La0

ε
− 1

)
that

min
0≤j≤k

E (f (xj)− f (x∗)) ≤ ε,

Recovers the sublinear 1/k convergence rate seen in regular SGD, with the
delay τ and overlap measure ρ both appearing linearly.
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Hogwild! Performance

Hogwild! compared with averaged gradient (AIG) and round-robin (RR).
Experiments run on a 12-core machine in 2011. (10 cores used for gradient
evaluations, 2 cores for data shuffling.)
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Hogwild! Performance
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Stochastic Coordinate Descent

Consider min f (x), where f : Rn → Rn is smooth and convex.

In SCD, at iteration j , pick an index ij ∈ {1, 2, . . . , n} and take a step in
component xij . (We’ll consider a short steepest-descent step.)

Many extensions possible:

Block SCD

Regularized: f (x) +ψ(x) (need ψ to be separable to align with choice
of coordinate blocks).

Constraints: min f (x) s.t. x ∈ Ω.
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Stochastic Coordinate Descent: Key Constants

For simplicity, describe single-coordinate case (not blocks).

Need (many!) constants that characterize the problem:

ei : ith unit coordinate vector in Rn;

Li : component Lipschitz constant (“(i , i) element of Hessian”)

‖∇i f (x + tei )−∇i f (x)‖ ≤ Li t;

Lmax = maxi=1,2,...,n Li (“max diagonal of Hessian”);

Lres = restricted Lipschitz constant: ‖∇f (x)−∇f (x + tei )‖ ≤ Lrest
(“max row-norm of Hessian”)

R = supk dist(xk ,S): maximum distance of iterates from solution set.

‖w‖L :=
(∑n

i=1 Liw
2
i

)1/2
;

RL(x0) := maxy maxx∗∈S {‖y − x∗‖ : f (y) ≤ f (xo)}.
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Diagonalicity of Hessian

The ratio Lres/Lmax is particularly important — it measures the degree of
diagonal dominance in the Hessian ∇2f (x) (Diagonalicity).

By convexity, we have

1 ≤ Lres

Lmax
≤
√

n.

Closer to 1 if Hessian is nearly diagonally dominant (eigenvectors close to
principal coordinate axes). Closer to

√
n otherwise.

If A is m × n Gaussian random matrix and f (x) = (1/2)‖Ax − b‖2
2, the

ratio is 1 + O(
√

n/m) (good case!)

Smaller Lres/Lmax ⇒ easier to solve with coordinate descent!
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Diagonalicity illustrated
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Stochastic (Serial) SCD: (Richtarik and Takac, 2012) (Nesterov, 2012)

Iteration j :

Choose partition ij ∈ {1, 2, . . . ,m} with equal probability;
Set xj+1 = xj −∇ij f (xj)/Lij .

For convex f , have high probability convergence of f to within a specified
threshold ε of f (x∗) in O(1/ε) iterations.

Given desired precision ε and error prob ρ, define

K :=
2nR2

L(x0)

ε
log

f (x0)− f ∗

ερ
,

Have high-probability convergence in K iterations:

P(f (xj)− f ∗ ≤ ε) ≥ 1− ρ, for j ≥ K .

If f is strongly convex with respect to ‖ · ‖L, with modulus µL in this
norm, there is expected convergence at a linear rate:

E [f (xj)− f ∗] ≤
(

1− µL
4n

)j
(f (x0)− f ∗).
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Asynchronous Unconstrained SCD

Similar computation model to Hogwild!: asynchronous with maximum
delay τ . Consider single-coordinate form.

At each iteration j :

Choose ij with equal probability from {1, 2, . . . , n};
Update the ij component:

xj+1 = xj −
γ

Lmax
∇ij f (xk(j)),

where k(j) is some iterate prior to j but no more than τ cycles old:
j − k(j) ≤ τ . Here γ is a constant steplength.

Each core runs this process concurrently and asynchronously.
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Asynchronous USCD: Sublinear (1/k) Rate (Richtarik, 2012)

In the case of (single-coordinate) asynchronous SGD, given tolerance ε, set

γ ≡ µLmaxnε

(n + 2τ)L2M2
.

Then for

K ≥ (n + 2τ)LM2

µ2ε
log

(
2LD0

ε
− 1

)
we have a “morally 1/k” rate:

min
0≤j≤K

E [f (xj)− f ∗] ≤ ε.

Here, µ (convexity modulus of f ), M (uniform bound on ‖∇f (x)‖), L
(Lipschitz for ∇f ) are defined as earlier.
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Asynchronous USCD: Linear Convergence (Liu, Wright, 2013)

Choose some ρ > 1 and pick γ small enough to ensure that

ρ−1 ≤
E(‖∇f (xj+1)‖2)

E(‖∇f (xj)‖2)
≤ ρ.

Not too much change in gradient over each iteration, so not too much
price to pay for using old information, in the asynchronous setting.

Can choose γ small enough to satisfy this property but large enough to get
a linear rate.
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Gory Details: Essentially Strongly Convex f

Essentially strongly convexity parameter µ:

f (x)− f (y) ≥ 〈∇f (y), x − y〉+
µ

2
‖x − y‖2

for all x , y ∈ Ω with PS(x) = PS(y). Weaker than usual strong convexity.1

For any ρ > 1, define

ψ = 1 +
2τρτLres√

nLmax

and

γ ≤ min

{
1

ψ
,

(ρ− 1)
√

nLmax

2ρτ+1Lres
,

(ρ− 1)
√

nLmax

Lresρτ (2 + Lres√
nLmax

)

}
.

Linear rate:

E(f (xj)− f ∗) ≤
(

1− µγ

nLmax
(2− ψγ)

)j

(f (x0)− f ∗).

1Example: f (Ax) is essentially strongly convex if f (.) is strongly convex.
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A Particular Choice

Consider the regime in which

τ + 1 ≤
√

nLmax

2eLres
,

and define ρ = 1 + 2eLres√
nLmax

. Thus ρτ+1 ≤ e and γ = 1/ψ = O(1). Get

E(f (xj)− f ∗) ≤
(

1− µ

2nLmax

)j

(f (x0)− f ∗).

Converges to precision ε with probability at least 1− η for

K ≥ 2nLmax

µ

∣∣∣∣log
f (x0)− f ∗

ηε

∣∣∣∣ .
The regime on τ is somewhat restrictive, but the degradation as τ exceeds
this bound is not too severe. (Choose smaller γ.)

If f (x) = ‖Ax − b‖2 where A ∈ Rm×n is a Gaussian random matrix, then
Lres/Lmax is bounded by 1 + O(

√
n/m).
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Discussion

Recall that short-step steepest descent on a strongly convex f gives linear
convergence with rate approx:

1− 2

(L/µ) + 1
≈ 1− 2µ

L
.

By comparison, n steps of asynchronous short-step steepest descent gives
decrease factor approx:

1− µ

2Lmax
.

When Lmax ∼ L, suggests that about 4 times as many iterations would be
needed by SCD. But we can run it in parallel!

Bound on τ is a measure of potential parallelization. When ratio Lres/Lmax

is favorable, get τ = O(
√

n). Thus, expect linear rate on up to O(
√

n)
cores running asynchronously in parallel.
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Gory Details: Weakly Convex f (µ = 0): Sublinear (1/k)

Defining ψ and γ as above, have

E(f (xj)− f ∗) ≤ 1

(f (x0)− f ∗)−1 + γ(2−γψ)
2nLmaxR2 j

.

Assuming τ + 1 ≤
√
nLmax

2eLres
and setting ρ and γ as above, have

E(f (xj)− f ∗) ≤ 1

(f (x0)− f ∗)−1 + j
4nLmaxR2

.

Roughly “1/k” behavior. To achieve precision ε with probability at least
1− η, need

K ≥ 4nLmaxR2

(
1

ηε
− 1

f (x0)− f ∗

)
.
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Asynchronous Constrained SCD (CSCD)

min f (x) subject to x ∈ Ω,

where Ω is separable Ω = Ω1 × Ω2 × · · ·Ωn.

At each iteration j :

Choose ij with equal probability from {1, 2, . . . , n};
Update the ij component:

xj+1 = PΩj

(
xj −

γ

Lmax
∇ij f (xk(j))

)
,

where k(j) is some iterate prior to j but no more than τ cycles old:
j − k(j) ≤ τ . Here γ is a constant steplength.

Each core runs this process concurrently and asynchronously.
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Asynchronous CSCD: Linear Convergence (Liu, Wright, 2013)

For purposes of analysis, define

x̄j+1 = arg min
x∈Ω
〈∇f (xk(j)), x − xj〉+

Lmax

2γ
‖x − xj‖2,

which would be obtained by “stepping in all components at once.”

Motivation similar to ARK analysis: Choose some ρ > (1− 2/
√

n)−1 > 0
and pick γ small enough to ensure that

E(‖xj−1 − x̄j)‖2) ≤ ρE(‖xj − x̄j+1‖2).

The condition is analogous to the “not much change in gradient”
condition from the unconstrained case.

Can choose γ small enough to satisfy this, but large enough to get a linear
rate.
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Gory Details for f essentially strongly convex: Linear rate

For any ρ > (1− 2/
√

n)−1 > 0, define

ψ = 1 +
Lresτρ

τ

√
nLmax

(
2 +

Lmax√
nLres

+
2τ

n

)
.

and choose

γ ≤ min

{
1

ψ
,

(
1− 1

ρ
− 2√

n

) √
nLmax

4Lresτρτ

}
.

We have for any j ≥ 0

E(f (xj)− f ∗) ≤
(

1− µ

n(µ+ γ−1Lmax)

)j (LmaxR2

2γ
+ (f (x0)− f ∗)

)
,

Wright (UW-Madison) Random Parallel Optimization July 2013 27 / 52



A Particular Choice

Consider the regime in which

τ(τ + 1) ≤
√

nLmax

4eLres
,

and define

ρ = 1 +
4eτLres√

nLmax
.

Thus ρτ+1 ≤ e and γ = 1/2, and the rate simplifies to:

E(f (xj)− f ∗) ≤
(

1− µ

n(µ+ 2Lmax)

)j

(LmaxR2 + f (x0)− f ∗).

yielding convergence to precision ε with probability at least 1− η for

K ≥ n(µ+ 2Lmax)

µ

∣∣∣∣log
LmaxR2 + f (x0)− f ∗

ηε

∣∣∣∣ .
The regime on τ is somewhat restrictive, but the degradation as τ exceeds
this bound is not too severe. (Choose smaller γ.)
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Discussion

Linear convergence rate is roughly the same for the separable constrained
case as for the unconstrained case BUT the restrictions on τ are tighter.
For favorable ratio Lres/Lmax, have τ = O(n1/4), rather than O(n1/2).

Wright (UW-Madison) Random Parallel Optimization July 2013 29 / 52



Gory Details for weakly convex f : Sublinear (1/k)

Defining ψ and γ as above, have

E(f (xj)− f ∗) ≤ n(LmaxR2 + f (x0)− f ∗)

j + n
.

Assuming τ(τ + 1) ≤
√
nLmax

4eLres
and setting ρ and γ as above, have

E(f (xj)− f ∗) ≤ n(LmaxR2 + 2γ(f (x0)− f ∗))

2γ(j + n)
.

Roughly “1/k” behavior. To achieve precision ε with probability at least
1− η in K iterations, K needs to satisfy

K ≥ n(LmaxR2 + f (x0)− f ∗)

ηε
− n.
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Implemented on 4-socket, 40-core Intel Xeon

min
x

‖Ax − b‖2 + 0.5‖x‖2

where A ∈ Rm×n is a Gaussian random matrix (m = 6000, n = 20000,
columns are normalized to 1). Lres/Lmax ≈ 2.2. Choose γ = 1.
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Constrained: Implemented on 4-socket, 40-core Intel Xeon

min
x≥0

(x − z)T (ATA + 0.5I )(x − z) ,

where A ∈ Rm×n is a Gaussian random matrix (m = 6000, n = 20000,
columns are normalized to 1) and z is a Gaussian random vector.
Lres/Lmax ≈ 2.2. Choose γ = 1.

0 5 10 15 20 25 30

# epochs
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

re
si

du
al

t=1
t=2
t=4
t=8
t=16
t=32

0 5 10 15 20 25 30 35 40

threads
0

5

10

15

20

25

30

35

40

sp
ee

du
p

ideal
observed

Wright (UW-Madison) Random Parallel Optimization July 2013 32 / 52



SCD: Extensions

Approaches above are extendible for

blocks of coordinates: partition indices {1, 2, . . . , n} into m disjoint
blocks [1], [2], , . . . , [m].

regularizers separable by coordinates or blocks: f (x) + λψ(x), where
ψ(x) = ψ1(x[1]) + ψ2(x[2]) + . . .+ ψm(x[m]).

(Already done by Richtarik and Takac, in various settings.)

Avron, Druinsky, Gupta (2013) solve Ax = b, where A is symmetric
positive definite. As well as the “Hogwild!” model of asynchronous
computation, they propose an “inconsistent read” model. Linear
convergence.
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Kaczmarz for Ax = b.

Consider linear equations Ax = b, where the equations are consistent and
matrix A is m × n, not necessarily square or full rank. Write

A =


aTi
aT2
...

aTm

 , where ‖ai‖2 = 1, i = 1, 2, . . . ,m.

Iteration j of Kacmarz:

Select row index ij ∈ {1, 2, . . . ,m} randomly with equal probability.
Set

xj+1 ← xj − (aTij xj − bij )aij .

Equivalent to applying SG to

f (x) :=
1

2m

m∑
i=1

(aTi x − bi )
2 =

1

2m
‖Ax − b‖2

2,

with steplength αk ≡ 1.
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Randomized Kaczmarz Convergence

Strohmer and Vershynin (2009) get a linear rate:

E
[
‖xj+1 − P(xj+1)‖2

2 | xj
]
≤
(

1− λmin,nz

m

)
‖xj − P(xj)‖2

2,

where P denotes projection onto solution subspace, and λmax and λmin,nz

denote largest and smallest nonzero eigenvvalues of ATA.

We can obtain essentially the same linear rate by analyzing SG applied to
the sum-of-squares form, following standard analysis but using special
structure, namely, all fi have zero gradients:

∇fi (x∗) = ai (aTi x∗ − bi ) = 0, i = 1, 2, . . . ,m.
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Elementary SG analysis for min ‖Ax − b‖2.

Assume A scaled so that ‖ai‖ = 1 for all i . λmin,nz denotes minimum
nonzero eigenvalue of ATA. P(·) is projection onto solution set.

Choose steplength αk ≡ 1, we have

1

2
‖xj+1 − P(xj+1)‖2 ≤ 1

2
‖xj − aij (aTij xj − bij )− P(xj)‖2

=
1

2
‖xj − P(xj)‖2 − 1

2
(aTij xj − bij )

2.

Taking expectations:

E

[
1

2
‖xj+1 − P(xj+1)‖2 | xj

]
≤ 1

2
‖xj − P(xj)‖2 − 1

2
E
[
(aTij xj − bij )

2
]

=
1

2
‖xj − P(xj)‖2 − 1

2m
‖Axj − b‖2

≤
(

1− λmin,nz

m

)
1

2
‖xj − P(xj)‖2.
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Asynchronous Kaczmarz (Liu, Wright, 2013)

At each iteration j :

Select ij from {1, 2, . . . ,m} with equal probability;

Select tj from the support of aij with equal probability;

Update:
xj+1 = xj − γ‖aij‖0(aTij xk(j) − bij )Etj aij ,

where

k(j) is some iterate prior to j but no more than τ cycles old:
j − k(j) ≤ τ ;

γ is a constant steplength;

Et is the n × n matrix of all zeros, except for 1 in the (t, t) location.

As in Hogwild!, different cores run this process concurrently, updating
an x accessible to all.
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ARK Analysis: Linear Convergence

Choice of γ follows a familiar strategy, but details differ.

Choose some ρ > 1 (typically ρ = 1 + O(1/m)) and choose γ small
enough to ensure that

ρ−1E(‖Axj − b‖2) ≤ E(‖Axj+1 − b‖2) ≤ ρE(‖Axj − b‖2).

Not too much change in the expected residual on any one iteration — for
the usual reasons.

Depends on parameters

χ := maxi=1,2,...,m ‖ai‖0 (maximum nonzero row count);

α := maxi ,t ‖ai‖0‖AEtai‖ ≤ χ‖A‖.
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Gory Details

Choose any ρ > 1 and define γ via the following:

ψ = χ+
2λmaxτρ

τ

m

γ ≤ min

{
1

ψ
,

m(ρ− 1)

2λmaxρτ+1
, m

√
ρ− 1

ρτ (mα2 + λ2
maxτρ

τ )

}

Then have

ρ−1E(‖Axj − b‖2) ≤ E(‖Axj+1 − b‖2) ≤ ρE(‖Axj − b‖2)

E(‖xj+1 − P(xj+1)‖2) ≤
(

1− λmin,nzγ

mχ
(2− γψ)

)
E(‖xj − P(xj)‖2),

A particular choice of ρ leads to simplified results, in a reasonable regime.
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A Particular Choice

Assume
2eλmax(τ + 1) ≤ m

and set ρ = 1 + 2eλmax/m. Can show that γ = 1/ψ for this case, so
expected convergence is

E(‖xj+1 − P(xj+1)‖2) ≤
(

1− λmin,nz

m(χ+ 1)

)
E(‖xj − P(xj)‖2).

Converges to precision ε with probability at least 1− η in

K ≥ m(χ+ 1)

λmin,nz

∣∣∣∣log
‖x0 − P(x0)‖2

ηε

∣∣∣∣ iterations.

In the regime 2eλmax(τ + 1) ≤ m considered here the delay τ doesn’t
really interfere with convergence rate.
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Discussion

For random matrices A with unit rows, we have λmax ≈ (1 + O(m/n)),
with high probability.

Conditions on τ are less strict than for the SCD algorithms. For random
matrices A, with m and n of the same order, have τ = O(m) = O(n).

(Recall τ = O(n1/4) for CSCD and τ = O(n1/2) for USCD.)
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Asynchronous Kaczmarz Results

Applied asynchronous parallel Kaczmarz to Ax = b where A is
100, 000× 80, 000 and 3% dense. (1.8GB total)
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Asynchronous Kaczmarz: Timings
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Extreme Linear Programming

State-of-the-art solvers for large linear programs (LPs) are based on
simplex and interior-point methods. An alternative approach based on

augmented Lagrangian / proximal-point

iterative solvers for the bounded-QP subproblems (SOR, CG)

were studied in the late 1980s

O. L. Mangasarian and R. DeLeone, “Serial and Parallel Solution of
Large-Scale Linear Program by Augmented Lagrangian Successive
Overrelaxations,” 1987.

S. J. Wright, “Implementing Proximal-Point Methods for Linear
Programming,” JOTA, 1990

These showed some promise on random, highly degenerate problems, but
were terrible on the netlib test set and other problems arising in practice.
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But this approach has potential appeal for:

Cases in which only crude approximate LP solutions are needed.

No matrix factorizations or multiplications are required. (Thus may
be good for special problems, at extreme scale.)

Multicore implementation is easy, when asynchronous solver is used
on the QP subproblems.
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Basics of the Approach

Primal-dual pair:
min
x

cT x s.t. Ax = b, x ≥ 0

max
u

bTu s.t. ATu ≤ c.

“Proximal method of multipliers” subproblem is a bound-constrained
convex QP:

x(β) := arg min
x≥0

cT x − ūT (Ax − b) +
β

2
‖Ax − b‖2 +

1

2β
‖x − x̄‖2

2,

where (x̄ , ū) is an estimate of the primal-dual solution and β is a penalty
parameter.

Can solve a sequence of these, with updates to ū and x̄ , and possible
increases in β, in the familiar style of augmented Lagrangian.

Solve the QP using SCD on 32 cores.
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A Perturbation Result

Make use of Renegar’s measures δP and δD of relative distance to primal
and dual infeasibility.

Theorem

Suppose that δP and δD are both positive, and let (x∗, u∗) be any
primal-dual solution pair. If we define C∗ := max(‖x∗ − x̄‖, ‖u∗ − ū‖),
then the unique solution x(β) of the QP subproblem satisfies

‖Ax(β)− b‖ ≤ (1/β)(1 +
√

2)C∗, ‖x(β)− x∗‖ ≤
√

6C∗.

If in addition we have

β ≥ 10C∗
‖d‖min(δP , δD)

,

then

|cT x∗ − cT x(β)| ≤ 1

β

[
25C∗

2δPδD
+ 6C 2

∗ +
√

6‖x̄‖C∗
]
.
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LP Rounding Approximations

There are numerous NP-hard problems for which approximate solutions can
be found using linear programming followed by rounding. Typical process:

Construct a MIP formulation;

Relax to an LP (replace binary variables by [0, 1] intervals);

Solve the LP approximately;

Use LP solution to construct a feasible MIP solution (“rounding”).

Examples: Vertex cover, set cover, set packing, multiway cut, maximal
independent set.
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Vertex Cover

Given a graph with edge set E , vertex set V , seek a subset of vertices such
that every edge touches the subset. Cost to select a vertex v is cv .

Binary programming formulation:

min
∑
v∈V

cvxv s.t. xu + xv ≥ 1 for (u, v) ∈ E ; xv ∈ {0, 1} for all v ∈ V .

Relax the binary constraint to xv ∈ [0, 1] to get an LP. Very large, but
matrix A is highly sparse and structured.
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Sample Results

instance vertex cover multiway cuts

n size(A) n size(A)

frb59-26-1 126K 616K 1.3M 3.6M
Amazon 203K 956K 6.8M 21.3 M
DBLP 146K 770K 10.7M 33.7M
Google+ 82K 1.5M 7.6M 24.1M

Table: Problem Sizes
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Computation Times (Seconds)

Run on 32 cores Intel machine for max of one hour. Compared with Cplex
IP and LP solvers. Times shown for reaching solutions of similar quality.

instance Cplex IP Cplex LP Us

frb59-26-1 VC - 5.1 0.65
Amazon VC 44 22 4.7
DBLP VC 23 21 3.2

Google+ VC - 62 6.2
frb59-26-1 MC 54 360 29
Amazon MC - - 131
DBLP MC - - 158

Google+ MC - - 570

(Cplex IP sometimes faster than LP because the IP preprocessing can
drastically simplify the problem, for some data sets.)

Wright (UW-Madison) Random Parallel Optimization July 2013 51 / 52



Conclusions

Old methods are interesting again, because of modern computers and
modern applications (particularly in machine learning).

We can analyze asynchronous parallel algorithms, with a computing
model that approximates reality pretty well (but there are others too).

Disruptive?

FIN
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