Solution of 3D-Helmholtz equation in the frequency domain, using Krylov methods preconditioned by multigrid.

XAVIER PINEL [CERFACS, TOULOUSE]
IN COLLABORATION WITH:
HENRI CALANDRA [TOTAL, PAU]
IAIN DUFF SERGE GRATTON XAVIER VASSEUR [CERFACS, TOULOUSE]

Gene Golub Day

February 29 2008
Outline

1 Motivations
 - Depth migration in geophysics

2 Wave propagation modelling
 - Continuous problem
 - Discrete problem

3 Solution method components: Iterative method and multigrid
 - Classical GMRES / Restarted GMRES
 - Multigrid

4 Solution strategy
 - State of the art
 - Our approach

5 Numerical experiments
 - Three-dimensional problems

6 Perspectives and conclusions
Outline

1. Motivations
 - Depth migration in geophysics

2. Wave propagation modelling
 - Continuous problem
 - Discrete problem

3. Solution method components: Iterative method and multigrid
 - Classical GMRES / Restarted GMRES
 - Multigrid

4. Solution strategy
 - State of the art
 - Our approach

5. Numerical experiments
 - Three-dimensional problems

6. Perspectives and conclusions
Depth migration in geophysics

- Search for the location and the amplitude of reflecting layers that is of crucial interest in oil exploration
- Acquisition principle of a marine survey

Goal of the long-term project: deduce an interpretative map of the subsoil only from large-scale massively parallel computer simulations
Heterogeneous velocity field 540×600 from TOTAL
Main features and challenges

Modelling
- Wave propagation problems modelled by the Helmholtz equation with absorbing boundary conditions
- Simulations should be made for multiple Dirac sources and for multiple frequencies
- Large computational domain [truncation of an infinite domain in the x- and y- directions]

Numerical methods
- Robust Helmholtz solution method required especially for large wavenumbers
- Able to solve multiple right-hand side and left-hand side problems
- Must be efficient on massively parallel computers due to huge problem size
Outline

1. Motivations
 - Depth migration in geophysics

2. Wave propagation modelling
 - Continuous problem
 - Discrete problem

3. Solution method components: Iterative method and multigrid
 - Classical GMRES / Restarted GMRES
 - Multigrid

4. Solution strategy
 - State of the art
 - Our approach

5. Numerical experiments
 - Three-dimensional problems

6. Perspectives and conclusions

Multigrid for geophysics applications
Helmholtz problem

Continuous problem

- Helmholtz equation in the frequency domain \[k = \frac{\omega}{v} \] : wavenumber:

\[-\Delta u - \frac{\omega^2}{v^2} u = g \quad \text{in} \quad \Omega\]

- with Perfectly Matched Layer (PML) [Berenger, 1994]

Notations

\(\omega = 2\pi f \) is the angular frequency, \(v \) the velocity of the wave, \(u \) the pressure of the wave, \(g \) represents the source term
Outline

1 Motivations
 • Depth migration in geophysics

2 Wave propagation modelling
 • Continuous problem
 • Discrete problem

3 Solution method components: Iterative method and multigrid
 • Classical GMRES / Restarted GMRES
 • Multigrid

4 Solution strategy
 • State of the art
 • Our approach

5 Numerical experiments
 • Three-dimensional problems

6 Perspectives and conclusions
Finite difference frequency domain approach

Finite difference methods
- Ω is always box shaped
- Second-order finite difference discretization methods on non-equidistant grids
- Seven-point discretization in three dimensions

Accuracy requirement for second order schemes
- Accuracy requirement for second order discretization: $k h \leq \frac{\pi}{5}$ for 10 points per wavelength
- Rule of thumb: $k h$ is kept constant to $0.625 \times \frac{3}{4}$ e.g. $k = 480$ induces $h = \frac{1}{1024}$
- This leads to a large complex sparse linear system!
Outline

1. Motivations
 - Depth migration in geophysics

2. Wave propagation modelling
 - Continuous problem
 - Discrete problem

3. Solution method components: Iterative method and multigrid
 - Classical GMRES / Restarted GMRES
 - Multigrid

4. Solution strategy
 - State of the art
 - Our approach

5. Numerical experiments
 - Three-dimensional problems

6. Perspectives and conclusions

Multigrid for geophysics applications
Classical GMRES

- The solution x_m of $Ax = b$ is sought in the Krylov subspace:

 $$x_0 + K_m(A, r_0) = x_0 + \text{Span} \{ r_0, Ar_0, A^2r_0, \ldots, A^{m-1}r_0 \} = x_0 + \text{Span} \{ V_m \},$$

 minimizing $\| r_m \|_2 = \| b - Ax_m \|_2$, r_0: initial residual.

- Arnoldi’s relation: $AV_m = V_{m+1}H_m$.

- Convergence reached in $n \ (\text{dim}(A))$ iterations at most.

- $O(nm^2)$ complexity.

Practicable GMRES variants

- Restart GMRES: Alternative in memory ,CPU to the classical GMRES.

- Principle: restart GMRES(m), m small, up to the convergence.

- FGMRES: Enables preconditioner to vary at each iteration.
Outline

1. Motivations
 - Depth migration in geophysics

2. Wave propagation modelling
 - Continuous problem
 - Discrete problem

3. Solution method components: Iterative method and multigrid
 - Classical GMRES / Restarted GMRES
 - Multigrid

4. Solution strategy
 - State of the art
 - Our approach

5. Numerical experiments
 - Three-dimensional problems

6. Perspectives and conclusions
Multigrid

- Multigrid: multiscale solver designed for elliptic operators.
- Main advantages: Scalable in memory, $O(n)$ complexity for elliptic operators if n denotes the number of unknowns
- **Smoothing** reduces high frequency components of the error
- **Coarse grid approximation** handles the low frequency components

Relaxation methods

![Diagram of V-cycle and W-cycle](image)

Figure: Left: two-grid V-cycle, right: three-grid W-cycle
Outline

1. Motivations
 - Depth migration in geophysics

2. Wave propagation modelling
 - Continuous problem
 - Discrete problem

3. Solution method components: Iterative method and multigrid
 - Classical GMRES / Restarted GMRES
 - Multigrid

4. Solution strategy
 - State of the art
 - Our approach

5. Numerical experiments
 - Three-dimensional problems

6. Perspectives and conclusions
State of the art

- **Sparse multifrontal direct methods:**
 - Very robust but too greedy in memory for large-scale problems, limit size: $409 \times 109 \times 102$ (192 procs) [Operto et al., 2004].

- **Multigrid methods:**
 - **Smoothing difficulty:** standard smoothers unstable for indefinite problems
 - **Coarse grid correction difficulty:** coarse grids approximations of the discrete Helmholtz operator are poor.
 - Multigrid method on the original Helmholtz problem [Elman, 2001].
 - use of Krylov methods as smoother.
 - use of a large coarse grid and multigrid as a preconditioner.
 - Geometric multigrid preconditioner on a complex shifted Helmholtz operator [Riyanti et al. 2007], limit size: $517 \times 293 \times 326$.
 - Standard smoothers are effective thanks to the shift.
 - h-ellipticity is preserved on all the grid hierarchy.
Outline

1. Motivations
 - Depth migration in geophysics

2. Wave propagation modelling
 - Continuous problem
 - Discrete problem

3. Solution method components: Iterative method and multigrid
 - Classical GMRES / Restarted GMRES
 - Multigrid

4. Solution strategy
 - State of the art
 - Our approach

5. Numerical experiments
 - Three-dimensional problems

6. Perspectives and conclusions

State of the art
Our approach

Multigrid for geophysics applications
Two-grid preconditioner for the original Helmholtz problem

Intention
- Our intention is to use a two-level hierarchy to avoid both smoothing and coarse grid correction difficulties.
- Use of direct or iterative methods on coarse grid level.

[Duff, Gratton, Pinel, Vasseur, 2007]
- Large coarse grid multigrid preconditioner method acting on the original Helmholtz problem
- Multigrid is **not** a convergent method but acts as a preconditioner for the original (unshifted) Helmholtz operator
- Clustered eigenspectrum of AC^{-1} around 1 and capture the isolated eigenvalues with Krylov subspace methods
Outline

1. Motivations
 - Depth migration in geophysics

2. Wave propagation modelling
 - Continuous problem
 - Discrete problem

3. Solution method components: Iterative method and multigrid
 - Classical GMRES / Restarted GMRES
 - Multigrid

4. Solution strategy
 - State of the art
 - Our approach

5. Numerical experiments
 - Three-dimensional problems

6. Perspectives and conclusions

Three-dimensional problems
Three-dimensional for a constant wavenumber

Discretization

- Helmholtz equation in the frequency domain:
 \[-\Delta u - k^2 u = g \quad \text{in} \quad \Omega = [0, 1]^3\]

- with Perfectly Matched Layer formulation [Operto et al., 2002].

- PML width: 1/8, Dirac source term located at \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2})\).
Overview

Numerical methods

- **FGMRES(5)** [Saad, 1993] as a Krylov subspace method for solving $Ax = b$.

 - Stopping criterion: $\frac{\|r^{(it)}\|_2^2}{\|r^{(0)}\|_2^2} \leq 10^{-6}$

 - Zero initial guess: $r^{(0)} = b$

Two grid properties

- Matrix-free implementation.

- Smoother: Two iterations of GMRES preconditioned by a symmetric Gauss-Seidel iteration.

- Direct coarse grid approximation.

- Linear interpolation and adjoint as restriction.
BLUE GENE/L machine at CERFACS

Configuration

- 1024 bi-processor nodes.
- Processors: Power PC440 700 Mhz.
- Memory: 512 Mbytes per processor.
- Used with 1GB memory per processor.
Motivations
Wave propagation modelling
Solution method components: Iterative method and multigrid
Solution strategy
Numerical experiments
Perspectives and conclusions

Three-dimensional problems

Direct method on the coarse grid

Experiments on 128 processors

- Distributed MUMPS implementation [Amestoy et al, 2000].

<table>
<thead>
<tr>
<th>Grid</th>
<th>k</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>64^3</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96^3</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128^3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192^3</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Table: Iterations of FGMRES(5) versus grid sizes and wavenumbers

- Problem gets harder with increasing wavenumbers on a fixed grid [Elman, 2001].
- Slight increase of the iterations when $kh = constant$ (diagonal).
Iterative method on the coarse grid

<table>
<thead>
<tr>
<th>Grid</th>
<th>procs</th>
<th>k</th>
<th>It</th>
<th>Time (s)</th>
<th>Time/it (s)</th>
<th>It</th>
<th>Time (s)</th>
<th>Time/it (s)</th>
<th>It</th>
<th>Time (s)</th>
<th>Time/it (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>128³</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>95.63</td>
<td>23.90</td>
<td>5</td>
<td>131.10</td>
<td>26.22</td>
<td>8</td>
<td>217.10</td>
<td>27.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256³</td>
<td>16</td>
<td></td>
<td>5</td>
<td>129.72</td>
<td>25.94</td>
<td>6</td>
<td>175.67</td>
<td>29.27</td>
<td>5</td>
<td>147.17</td>
<td>29.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>512³</td>
<td>128</td>
<td></td>
<td>6</td>
<td>155.39</td>
<td>25.89</td>
<td>18</td>
<td>519.92</td>
<td>28.88</td>
<td>11</td>
<td>318.15</td>
<td>28.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024³</td>
<td>1024</td>
<td></td>
<td>9</td>
<td>270.58</td>
<td>30.06</td>
<td>74</td>
<td>2240.08</td>
<td>30.27</td>
<td>60</td>
<td>1823.02</td>
<td>30.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coarse grid solver GMRES(10) preconditioned by one Gauss-Seidel cycle.
History of convergence: 1024^3 grid with $k = 480$
Heterogeneous velocity field: Seg-salt

$200 \times 100 \times 200$, $h = 40m$, $f=3.125Hz$

8 processors run on KALI

- Velocity varies from $1500m/s$ to $4482m/s$.
- Plot of one plane of the solution for $y=34$.
- 18 iterations of FGMRES(5), time 824.49 s.
Conclusions

Summary

- Two-grid preconditioner: efficient as a preconditioner in combination with GMRES based Krylov subspace methods.
- Scalability in memory and in frequency studied for a basic algorithm and some variants.
- Two-grid: Algorithm able to solve linear system of size larger than one billion.

Perspectives

- Analysis of efficiency on massively parallel architectures.
- Multiple left-hand side issues.
- Helmholtz with Robin boundary conditions for comparison with published material.
- Integrate this solution method in the reverse time migration framework.