
A Subspace Decomposition Framework
for

Nonlinear Optimization:
Global Convergence and Global Rate

Zaikun Zhang
University of Coimbra

(Joint work with S. Gratton and L. N. Vicente)

July 25, Toulouse

http//www.mat.uc.pt/~zhang

1/30

http//www.mat.uc.pt/~zhang

Opening

Axiom

(Teacher and student are like father and son; if he/she is your teacher for
one day, then he/she is your father for one life.)

Opening 2/30

Opening

Axiom

(Teacher and student are like father and son; if he/she is your teacher for
one day, then he/she is your father for one life.)

Opening 2/30

Opening

Axiom

(Teacher and student are like father and son; if he/she is your teacher for
one day, then he/she is your father for one life.)

Question

Provided that you call your professor (Academic Father), how should
you call a person whose professor is also the professor of your professor?

Opening 2/30

Opening

Axiom

(Teacher and student are like father and son; if he/she is your teacher for
one day, then he/she is your father for one life.)

Question

Provided that you call your professor (Academic Father), how should
you call a person whose professor is also the professor of your professor?

Answer

Opening 2/30

Opening

Axiom

(Teacher and student are like father and son; if he/she is your teacher for
one day, then he/she is your father for one life.)

Question

Provided that you call your professor (Academic Father), how should
you call a person whose professor is also the professor of your professor?

Answer

(Academic Uncle, “older” or “younger”).

Opening 2/30

Opening

Axiom

(Teacher and student are like father and son; if he/she is your teacher for
one day, then he/she is your father for one life.)

Question

Provided that you call your professor (Academic Father), how should
you call a person whose professor is also the professor of your professor?

Answer

(Academic Uncle, “older” or “younger”).

Happy birthday, Academic (Older) Uncle Toint!

Joyeux anniversaire, Oncle Toint !

Opening 2/30

Outline

1 Derivative-free optimization

2 Motivation and basic idea

3 A subspace decomposition framework

4 Global convergence

5 Global rate

6 Applications to derivative-free optimization

7 Very preliminary numerical results

8 Concluding remarks

Outline 3/30

Derivative-free optimization

In this talk, to make things simple:

we consider unconstrained optimization problem

min
x∈Rn

f(x);

we suppose that

f is smooth, but the derivatives are unavailable.

Derivative-free optimization 4/30

Derivative-free optimization

In this talk, to make things simple:

we consider unconstrained optimization problem

min
x∈Rn

f(x);

we suppose that

f is smooth, but the derivatives are unavailable.

Derivative-free optimization 4/30

Derivative-free optimization

In this talk, to make things simple:

we consider unconstrained optimization problem

min
x∈Rn

f(x);

we suppose that

f is smooth, but the derivatives are unavailable.

Derivative-free optimization 4/30

Derivative-free optimization

Important & difficult

Derivative-free optimization 5/30

Derivative-free optimization

Important & difficult

We consider optimization without derivatives one of
the most important, open, and challenging areas in computational
science and engineering, and one with enormous practical potential.

— A. R. Conn, K. Scheinberg, L. N. Vicente
Introduction to Derivative-Free Optimization

Derivative-free optimization 5/30

Derivative-free optimization

Important & difficult

We consider optimization without derivatives one of
the most important, open, and challenging areas in computational
science and engineering, and one with enormous practical potential.

— A. R. Conn, K. Scheinberg, L. N. Vicente
Introduction to Derivative-Free Optimization

Why work on derivative-free optimization? Because the problems are
important and cool.

— J. Dennis
July 24th, 2013, Toulouse

Derivative-free optimization 5/30

Existing methods

Two main classes of rigorous methods in DFO

Directional methods, like direct search

Model-based methods, like trust-region methods

Derivative-free optimization 6/30

Existing methods

Two main classes of rigorous methods in DFO

Directional methods, like direct search

Model-based methods, like trust-region methods

Derivative-free optimization 6/30

Existing methods

Two main classes of rigorous methods in DFO

Directional methods, like direct search

Model-based methods, like trust-region methods

Derivative-free optimization 6/30

Books

R. P. Brent, Algorithms for
Minimization Without Derivatives,
Prentice-Hall, Englewood Cliffs, NJ,
1973

A. R. Conn, K. Scheinberg, and L. N.
Vicente, Introduction to
Derivative-Free Optimization,
MOS-SIAM Series on Optimization,
SIAM, Philadelphia, 2009

Derivative-free optimization 7/30

Difficulty of large-scale problems

Large-scale problems?

Traditional NLP: 10, 000? 100, 000? 1, 000, 000?

Derivative-free: 100? 1000?

Large-scale derivative-free problems are very difficult:

quadratic-model-based methods:

in principle, the degree of freedom of a full quadratic model is
(n+ 1)(n+ 2)/2

in practice, we hope the algorithms finish the job with number of
function evaluations of O(n)

difficult to exploit problem structure

Motivation and basic idea 8/30

Difficulty of large-scale problems

Large-scale problems?

Traditional NLP: 10, 000? 100, 000? 1, 000, 000?

Derivative-free: 100? 1000?

Large-scale derivative-free problems are very difficult:

quadratic-model-based methods:

in principle, the degree of freedom of a full quadratic model is
(n+ 1)(n+ 2)/2

in practice, we hope the algorithms finish the job with number of
function evaluations of O(n)

difficult to exploit problem structure

Motivation and basic idea 8/30

Difficulty of large-scale problems

Large-scale problems?

Traditional NLP: 10, 000? 100, 000? 1, 000, 000?

Derivative-free: 100? 1000?

Large-scale derivative-free problems are very difficult:

quadratic-model-based methods:

in principle, the degree of freedom of a full quadratic model is
(n+ 1)(n+ 2)/2

in practice, we hope the algorithms finish the job with number of
function evaluations of O(n)

difficult to exploit problem structure

Motivation and basic idea 8/30

Difficulty of large-scale problems

Large-scale problems?

Traditional NLP: 10, 000? 100, 000? 1, 000, 000?

Derivative-free: 100? 1000?

Large-scale derivative-free problems are very difficult:

quadratic-model-based methods:

in principle, the degree of freedom of a full quadratic model is
(n+ 1)(n+ 2)/2

in practice, we hope the algorithms finish the job with number of
function evaluations of O(n)

difficult to exploit problem structure

Motivation and basic idea 8/30

Difficulty of large-scale problems

Large-scale problems?

Traditional NLP: 10, 000? 100, 000? 1, 000, 000?

Derivative-free: 100? 1000?

Large-scale derivative-free problems are very difficult:

quadratic-model-based methods:

in principle, the degree of freedom of a full quadratic model is
(n+ 1)(n+ 2)/2

in practice, we hope the algorithms finish the job with number of
function evaluations of O(n)

difficult to exploit problem structure

Motivation and basic idea 8/30

Difficulty of large-scale problems

Large-scale problems?

Traditional NLP: 10, 000? 100, 000? 1, 000, 000?

Derivative-free: 100? 1000?

Large-scale derivative-free problems are very difficult:

quadratic-model-based methods:

in principle, the degree of freedom of a full quadratic model is
(n+ 1)(n+ 2)/2

in practice, we hope the algorithms finish the job with number of
function evaluations of O(n)

difficult to exploit problem structure

Motivation and basic idea 8/30

Basic idea

Basic idea:

divide a difficult problem into a sequence of easy problems, and solve
each of them;

divide a large problem into a sequence of small problems, and solve
each of them.

Motivation and basic idea 9/30

Basic idea

Basic idea:

divide a difficult problem into a sequence of easy problems, and solve
each of them;

divide a large problem into a sequence of small problems, and solve
each of them.

Motivation and basic idea 9/30

Basic idea

Basic idea:

divide a difficult problem into a sequence of easy problems, and solve
each of them;

more specifically,

divide a large problem into a sequence of small problems, and solve
each of them.

Motivation and basic idea 9/30

An old idea, very old

Not a new idea, of course.

Motivation and basic idea 10/30

An old idea, very old

Not a new idea, of course.

Divide and conquer

Motivation and basic idea 10/30

An old idea, very old

Not a new idea, of course.

— Sun Tzu, The Art of War
(6 BCE)

Divide and conquer

Motivation and basic idea 10/30

An old idea, very old

Not a new idea, of course.

— Sun Tzu, The Art of War
(6 BCE)

Divide and conquer

Divide et impera.

— Julius Caesar
(1 BCE)

Motivation and basic idea 10/30

Subspace and decomposition techniques in optimization

Subspace techniques

Gould, Nick, A. Sartenaer, and Ph L. Toint. On iterated-subspace
minimization methods for nonlinear optimization. Rutherford Appleton
Laboratory, 1994.

Yuan, Ya-xiang. Subspace techniques for nonlinear optimization. Some
topics in industrial and applied mathematics 8 (2007): 206-218.

Decomposition techniques

Boyd, Stephen, Lin Xiao, Almir Mutapcic, and Jacob Mattingley.
Notes on decomposition methods. Notes for EE364B, Stanford
University (2007).

Coordinate-search . . .

Motivation and basic idea 11/30

Subspace and decomposition techniques in optimization

Subspace techniques

Gould, Nick, A. Sartenaer, and Ph L. Toint. On iterated-subspace
minimization methods for nonlinear optimization. Rutherford Appleton
Laboratory, 1994.

Yuan, Ya-xiang. Subspace techniques for nonlinear optimization. Some
topics in industrial and applied mathematics 8 (2007): 206-218.

Decomposition techniques

Boyd, Stephen, Lin Xiao, Almir Mutapcic, and Jacob Mattingley.
Notes on decomposition methods. Notes for EE364B, Stanford
University (2007).

Coordinate-search . . .

Motivation and basic idea 11/30

Subspace and decomposition techniques in optimization

Subspace techniques

Gould, Nick, A. Sartenaer, and Ph L. Toint. On iterated-subspace
minimization methods for nonlinear optimization. Rutherford Appleton
Laboratory, 1994.

Yuan, Ya-xiang. Subspace techniques for nonlinear optimization. Some
topics in industrial and applied mathematics 8 (2007): 206-218.

Decomposition techniques

Boyd, Stephen, Lin Xiao, Almir Mutapcic, and Jacob Mattingley.
Notes on decomposition methods. Notes for EE364B, Stanford
University (2007).

Coordinate-search . . .

Motivation and basic idea 11/30

A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

A subspace decomposition framework 12/30

A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

A subspace decomposition framework 12/30

A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

A subspace decomposition framework 12/30

A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

A subspace decomposition framework 12/30

A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

How to obtain a single step dk ?

Set

dk =

mk∑
i=0

d
(i)
k ?

A subspace decomposition framework 12/30

A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

How to obtain a single step dk ?

Set

dk =

mk∑
i=0

d
(i)
k ?

A subspace decomposition framework 12/30

A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

Composition:

set
Sk = span

{
d
(1)
k , d

(2)
k , . . . , d

(mk)
k

}
;

minimize f(xk + d) with respect to d on Sk, and obtain dk.

A subspace decomposition framework 12/30

A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

Composition:

set
Sk = span

{
d
(1)
k , d

(2)
k , . . . , d

(mk)
k

}
;

minimize f(xk + d) with respect to d on Sk, and obtain dk.

A subspace decomposition framework 12/30

A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

Composition:

set
Sk = span

{
d
(1)
k , d

(2)
k , . . . , d

(mk)
k

}
;

minimize f(xk + d) with respect to d on Sk, and obtain dk.

A subspace decomposition framework 12/30

Localization

Trust-region:

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k

Levenberg-Marquardt:

min
d∈S(i)k

f(xk + d) +
1

2
σk‖d‖2

How to update ∆k or σk?

A subspace decomposition framework 13/30

Localization

Trust-region:

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k

Levenberg-Marquardt:

min
d∈S(i)k

f(xk + d) +
1

2
σk‖d‖2

How to update ∆k or σk?

A subspace decomposition framework 13/30

Localization

Trust-region:

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k

Levenberg-Marquardt:

min
d∈S(i)k

f(xk + d) +
1

2
σk‖d‖2

How to update ∆k or σk?

A subspace decomposition framework 13/30

Localization

Trust-region:

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k

Levenberg-Marquardt:

min
d∈S(i)k

f(xk + d) +
1

2
σk‖d‖2

How to update ∆k or σk?

A subspace decomposition framework 13/30

Localization

Trust-region:

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k

Levenberg-Marquardt:

min
d∈S(i)k

f(xk + d) +
1

2
σk‖d‖2

How to update ∆k or σk?

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k)
]

A subspace decomposition framework 13/30

Trust-region framework

Algorithm (Trust-region framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose
∆0 > 0, and set k = 0.

Step 2. Choose subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k,

to get d
(i)
k .

A subspace decomposition framework 14/30

Trust-region framework

Algorithm (Trust-region framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose
∆0 > 0, and set k = 0.

Step 2. Choose subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k,

to get d
(i)
k .

A subspace decomposition framework 14/30

Trust-region framework

Algorithm (Trust-region framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose
∆0 > 0, and set k = 0.

Step 2. Choose subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k,

to get d
(i)
k .

A subspace decomposition framework 14/30

Trust-region framework

Algorithm (Trust-region framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose
∆0 > 0, and set k = 0.

Step 2. Choose subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k,

to get d
(i)
k .

A subspace decomposition framework 14/30

Trust-region framework

Algorithm (Trust-region framework cont.)

Step 4. Obtain dk by solving

min f(xk + d)

s.t. d =

mk∑
i=1

t(i)d
(i)
k

0 ≤ t(i) ≤ 1, i = 1, 2, · · · ,mk.

Step 5. Let

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k)
] ,

and set ∆k+1 so that

∆k+1 ≥ ∆k whenever ρk > η.

Step 6. Let xk+1 = xk + dk, increment k by 1, and go to Step 2.

A subspace decomposition framework 15/30

Trust-region framework

Algorithm (Trust-region framework cont.)

Step 4. Obtain dk by solving

min f(xk + d)

s.t. d =

mk∑
i=1

t(i)d
(i)
k

0 ≤ t(i) ≤ 1, i = 1, 2, · · · ,mk.

Step 5. Let

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k)
] ,

and set ∆k+1 so that

∆k+1 ≥ ∆k whenever ρk > η.

Step 6. Let xk+1 = xk + dk, increment k by 1, and go to Step 2.

A subspace decomposition framework 15/30

Trust-region framework

Algorithm (Trust-region framework cont.)

Step 4. Obtain dk by solving

min f(xk + d)

s.t. d =

mk∑
i=1

t(i)d
(i)
k

0 ≤ t(i) ≤ 1, i = 1, 2, · · · ,mk.

Step 5. Let

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k)
] ,

and set ∆k+1 so that

∆k+1 ≥ ∆k whenever ρk > η.

Step 6. Let xk+1 = xk + dk, increment k by 1, and go to Step 2.

A subspace decomposition framework 15/30

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose a
positive number σ0, and set k = 0.

Step 2. Choose nonzero subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min
d∈S(i)

k

f(xk + d) +
1

2
σk‖d‖2

to get d
(i)
k .

A subspace decomposition framework 16/30

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose a
positive number σ0, and set k = 0.

Step 2. Choose nonzero subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min
d∈S(i)

k

f(xk + d) +
1

2
σk‖d‖2

to get d
(i)
k .

A subspace decomposition framework 16/30

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose a
positive number σ0, and set k = 0.

Step 2. Choose nonzero subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min
d∈S(i)

k

f(xk + d) +
1

2
σk‖d‖2

to get d
(i)
k .

A subspace decomposition framework 16/30

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose a
positive number σ0, and set k = 0.

Step 2. Choose nonzero subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min
d∈S(i)

k

f(xk + d) +
1

2
σk‖d‖2

to get d
(i)
k .

A subspace decomposition framework 16/30

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework cont.)

Step 4. Solve

min
t∈Rmk

f(xk +Dkt) +
1

2
σk‖t‖2,

to obtain tk, and then set

dk = Dktk,

where Dk = (d
(1)
k d

(2)
k · · · d(mk)

k).

Step 5. Let

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k)
] ,

and set σk+1 so that

σk+1 ≤ σk whenever ρk > η.

Step 6. Let xk+1 = xk + dk, increment k by 1, and go to Step 2.

A subspace decomposition framework 17/30

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework cont.)

Step 4. Solve

min
t∈Rmk

f(xk +Dkt) +
1

2
σk‖t‖2,

to obtain tk, and then set

dk = Dktk,

where Dk = (d
(1)
k d

(2)
k · · · d(mk)

k).

Step 5. Let

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k)
] ,

and set σk+1 so that

σk+1 ≤ σk whenever ρk > η.

Step 6. Let xk+1 = xk + dk, increment k by 1, and go to Step 2.

A subspace decomposition framework 17/30

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework cont.)

Step 4. Solve

min
t∈Rmk

f(xk +Dkt) +
1

2
σk‖t‖2,

to obtain tk, and then set

dk = Dktk,

where Dk = (d
(1)
k d

(2)
k · · · d(mk)

k).

Step 5. Let

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k)
] ,

and set σk+1 so that

σk+1 ≤ σk whenever ρk > η.

Step 6. Let xk+1 = xk + dk, increment k by 1, and go to Step 2.

A subspace decomposition framework 17/30

Assumptions

Assumption

1 The function f is bounded from below and twice continuously
differentiable, and ∇2f is bounded on Rn.

2 The sequence {mk} is bounded.

3 The smallest eigenvalues of
∑mk

i=1 P
(i)
k are bounded away from zero,

where P
(i)
k is the orthogonal projection matrix from Rn onto S(i)k .

Global convergence 18/30

Assumptions

Assumption

1 The function f is bounded from below and twice continuously
differentiable, and ∇2f is bounded on Rn.

2 The sequence {mk} is bounded.

3 The smallest eigenvalues of
∑mk

i=1 P
(i)
k are bounded away from zero,

where P
(i)
k is the orthogonal projection matrix from Rn onto S(i)k .

Global convergence 18/30

Assumptions

Assumption

1 The function f is bounded from below and twice continuously
differentiable, and ∇2f is bounded on Rn.

2 The sequence {mk} is bounded.

3 The smallest eigenvalues of
∑mk

i=1 P
(i)
k are bounded away from zero,

where P
(i)
k is the orthogonal projection matrix from Rn onto S(i)k .

Global convergence 18/30

Assumptions

Assumption

1 The function f is bounded from below and twice continuously
differentiable, and ∇2f is bounded on Rn.

2 The sequence {mk} is bounded.

3 The smallest eigenvalues of
∑mk

i=1 P
(i)
k are bounded away from zero,

where P
(i)
k is the orthogonal projection matrix from Rn onto S(i)k .

Global convergence 18/30

Global convergence

Theorem

Suppose that the assumptions stated before hold, then the iterates {xk}
generated by either of the frameworks satisfy

lim
k→∞

‖∇f(xk)‖ = 0.

Global convergence 19/30

Global rate

Theorem

Suppose that the assumptions stated before hold, and additionally

∆k+1 ≥ α∆k

for some constant α ∈ (0, 1], then the iterates {xk} generated by the
trust-region framework satisfy

min
0≤`≤k

‖∇f(x`)‖ ≤ C1

√
m

k
,

where m is an upper bound of {mk}.

Global rate 20/30

Global rate

Theorem

Suppose that the assumptions stated before hold, and additionally

σk+1 ≤ βσk

for some constant β ≥ 1, then the iterates {xk} generated by the
Levenberg-Marquardt framework satisfy

min
0≤`≤k

‖∇f(x`)‖ ≤ C2

√
m

k
,

where m is an upper bound of {mk}.

Global rate 21/30

Number of subspaces and subproblem solution precision

We have thus the worst case complexity: O(ε−2m)

Using this and the WCC O(n2ε−2) for subproblems,

a reasonable choice for m is O(
√
n)

a reasonable subproblem solution accuracy is O(n−
1
4)

Global rate 22/30

Number of subspaces and subproblem solution precision

We have thus the worst case complexity: O(ε−2m)

Using this and the WCC O(n2ε−2) for subproblems,

a reasonable choice for m is O(
√
n)

a reasonable subproblem solution accuracy is O(n−
1
4)

Global rate 22/30

Applications to derivative-free optimization

Properties of the framework

It does not explicitly require derivatives.

It is naturally parallel.

It is naturally multilevel.

Applications to derivative-free optimization 23/30

Applications to derivative-free optimization

Properties of the framework

It does not explicitly require derivatives.

It is naturally parallel.

It is naturally multilevel.

Applications to derivative-free optimization 23/30

Applications to derivative-free optimization

Properties of the framework

It does not explicitly require derivatives.

It is naturally parallel.

It is naturally multilevel.

Applications to derivative-free optimization 23/30

Applications to derivative-free optimization

Properties of the framework

It does not explicitly require derivatives.

It is naturally parallel.

It is naturally multilevel.

Applications to derivative-free optimization 23/30

Applications to derivative-free optimization

Properties of the framework

It does not explicitly require derivatives.

It is naturally parallel.

It is naturally multilevel.

⇓

Our goal

Parallel and multilevel algorithms without using derivatives and capable of
solving relatively large problems.

Applications to derivative-free optimization 23/30

Very preliminary numerical results

Use the Levenberg-Marquardt framework

Subproblem solver: NEWUOA

Number of subspaces:
√
n/2

Benchmark: NEWUOA

Very preliminary: not parallel, not multilevel, not large-scale . . .

Dimension of test problems: 25, 30, 35, 40

Denote our code as SSD

Very preliminary numerical results 24/30

VARDIM

Table : Numerical results of VARDIM

n 25 30 35 40

#f
8343 8926 12689 17741 NEWUOA

3592 6222 7507 16653 SSD

ffinal
1.61E-11 4.08E-11 4.93E-11 1.76E-10 NEWUOA

9.74E-11 6.85E-10 5.74E-11 7.89E-13 SSD

f(x) =
n∑

i=1

(xi − 1)2 +
[n∑

i=1

i(xi − 1)
]2

+
[n∑

i=1

i(xi − 1)
]4

Very preliminary numerical results 25/30

PENALTY1

Table : Numerical results of PENALTY1

n 25 30 35 40

#f
9532 10947 14427 13577 NEWUOA

2089 2784 2348 2812 SSD

ffinal
2.03E-04 2.48E-04 2.93E-04 3.39E-04 NEWUOA

2.04E-04 2.50E-04 2.95E-04 3.41E-04 SSD

f(x) = 10−15
n∑

i=1

(xi − 1)2 +
(1

4
−

n∑
i=1

x2i

)2

Very preliminary numerical results 26/30

SBRYBND

Table : Numerical results of SBRYBND

n 25 30 35 40

#f
968 576 2052 2363 NEWUOA

27889 53103 90304 206608 SSD

ffinal

235 326 342 395 NEWUOA

3.08 3.08 3.08 3.08 SSD

134 284 233 229

f(x) =

n∑
i=1

[
(2 + 5p2ix

2
i)pixi + 1−

∑
j∈Ji

pjxj(1 + pjxj)
]2
,

where Ji = {j | j 6= i,max{1, i− 5} ≤ j ≤ min{n, j + 1}}, and

pi = exp
(

6 i−1
n−1

)
.

Very preliminary numerical results 27/30

CHROSEN

Table : Numerical results of CHROSEN

n 25 30 35 40

#f
1123 1445 1717 1859 NEWUOA

96040 103296 127726 142272 SSD

ffinal
8.94E-12 1.07E-11 1.13E-11 3.14E-11 NEWUOA

2.95E-10 5.49E-10 7.26E-10 8.09E-10 SSD

f(x) =

n−1∑
i=1

[
4(xi − x2i+1)

2 + (1− xi+1)
2
]

Very preliminary numerical results 28/30

Concluding remarks

A subspace decomposition framework (two versions) with global
convergence and convergence rate

Possible to develop parallel and multilevel methods without using
derivatives

“Clever” way of choosing subspaces . . .

not try to cover the whole space, but . . .

choose subspaces randomly

Concluding remarks 29/30

Concluding remarks

A subspace decomposition framework (two versions) with global
convergence and convergence rate

Possible to develop parallel and multilevel methods without using
derivatives

“Clever” way of choosing subspaces . . .

not try to cover the whole space, but . . .

choose subspaces randomly

Concluding remarks 29/30

Concluding remarks

A subspace decomposition framework (two versions) with global
convergence and convergence rate

Possible to develop parallel and multilevel methods without using
derivatives

“Clever” way of choosing subspaces . . .

not try to cover the whole space, but . . .

choose subspaces randomly

Concluding remarks 29/30

Concluding remarks

A subspace decomposition framework (two versions) with global
convergence and convergence rate

Possible to develop parallel and multilevel methods without using
derivatives

“Clever” way of choosing subspaces . . .

not try to cover the whole space, but . . .

choose subspaces randomly

Concluding remarks 29/30

Merci!

Merci!
zhang@mat.uc.pt

Merci 30/30

zhang@mat.uc.pt

	Derivative-free optimization
	Motivation and basic idea
	A subspace decomposition framework
	Global convergence
	Global rate
	Applications to derivative-free optimization
	Very preliminary numerical results
	Concluding remarks

