A Subspace Decomposition Framework for Nonlinear Optimization: Global Convergence and Global Rate

Zaikun Zhang University of Coimbra (Joint work with S. Gratton and L. N. Vicente)

July 25, Toulouse

http//www.mat.uc.pt/~zhang

Axiom

师徒如父子;一日为师,终身为父。

(Teacher and student are like father and son; if he/she is your teacher for one day, then he/she is your father for one life.)

Axiom

师徒如父子;一日为师,终身为父。

(Teacher and student are like father and son; if he/she is your teacher for one day, then he/she is your father for one life.)

Question

Provided that you call your professor ^师 父(Academic Father), how should you call a person whose professor is also the professor of your professor?

Axiom

师徒如父子;一日为师,终身为父。

(Teacher and student are like father and son; if he/she is your teacher for one day, then he/she is your father for one life.)

Question

Provided that you call your professor ^师 父(Academic Father), how should you call a person whose professor is also the professor of your professor?

Answer

师伯 师叔

Axiom

师徒如父子;一日为师,终身为父。

(Teacher and student are like father and son; if he/she is your teacher for one day, then he/she is your father for one life.)

Question

Provided that you call your professor $m \chi$ (Academic Father), how should you call a person whose professor is also the professor of your professor?

Answer

师伯 师叔 (Academic Uncle, "older" or "younger").

Axiom

师徒如父子;一日为师,终身为父。

(Teacher and student are like father and son; if he/she is your teacher for one day, then he/she is your father for one life.)

Question

Provided that you call your professor $\frac{1}{\sqrt{2}}$ (Academic Father), how should you call a person whose professor is also the professor of your professor?

Answer

师伯 师叔 (Academic Uncle, "older" or "younger").

生日快乐, Toint 师伯!

Happy birthday, Academic (Older) Uncle Toint!

Joyeux anniversaire, Oncle Toint !

Outline

- Derivative-free optimization
- 2 Motivation and basic idea
- 3 A subspace decomposition framework
- Global convergence
- 5 Global rate
- 6 Applications to derivative-free optimization
- Very preliminary numerical results
- 8 Concluding remarks

Derivative-free optimization

In this talk, to make things simple:

• we consider unconstrained optimization problem

 $\min_{x \in \mathbb{R}^n} f(x);$

In this talk, to make things simple:

• we consider unconstrained optimization problem

 $\min_{x \in \mathbb{R}^n} f(x);$

we suppose that

In this talk, to make things simple:

• we consider unconstrained optimization problem

 $\min_{x \in \mathbb{R}^n} f(x);$

- we suppose that
 - *f* is smooth, but the derivatives are unavailable.

Derivative-free optimization

• Important & difficult

Important & difficult

We consider optimization without derivatives one of the most important, open, and challenging areas in computational science and engineering, and one with enormous practical potential.

> - A. R. Conn, K. Scheinberg, L. N. Vicente Introduction to Derivative-Free Optimization

Important & difficult

We consider optimization without derivatives one of the most important, open, and challenging areas in computational science and engineering, and one with enormous practical potential.

> - A. R. Conn, K. Scheinberg, L. N. Vicente Introduction to Derivative-Free Optimization

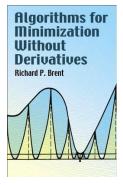
Why work on derivative-free optimization? Because the problems are important and cool.

— J. Dennis July 24th, 2013, Toulouse • Two main classes of rigorous methods in DFO

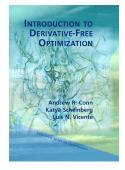
- Two main classes of rigorous methods in DFO
 - Directional methods, like direct search

- Two main classes of rigorous methods in DFO
 - Directional methods, like direct search
 - Model-based methods, like trust-region methods

Books



R. P. Brent, Algorithms for Minimization Without Derivatives, Prentice-Hall, Englewood Cliffs, NJ, 1973



A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization, MOS-SIAM Series on Optimization, SIAM, Philadelphia, 2009 • Large-scale problems?

- Large-scale problems?
 - Traditional NLP: 10,000? 100,000? 1,000,000?

- Large-scale problems?
 - Traditional NLP: 10,000? 100,000? 1,000,000?
 - Derivative-free: 100? 1000?

- Large-scale problems?
 - Traditional NLP: 10,000? 100,000? 1,000,000?
 - Derivative-free: 100? 1000?
- Large-scale derivative-free problems are very difficult:

- Large-scale problems?
 - Traditional NLP: 10,000? 100,000? 1,000,000?
 - Derivative-free: 100? 1000?
- Large-scale derivative-free problems are very difficult:
 - quadratic-model-based methods:
 - in principle, the degree of freedom of a full quadratic model is (n+1)(n+2)/2
 - in practice, we hope the algorithms finish the job with number of function evaluations of ${\cal O}(n)$

- Large-scale problems?
 - Traditional NLP: 10,000? 100,000? 1,000,000?
 - Derivative-free: 100? 1000?
- Large-scale derivative-free problems are very difficult:
 - quadratic-model-based methods:
 - in principle, the degree of freedom of a full quadratic model is (n+1)(n+2)/2
 - in practice, we hope the algorithms finish the job with number of function evaluations of ${\cal O}(n)$
 - difficult to exploit problem structure

• Basic idea:

- Basic idea:
 - divide a difficult problem into a sequence of easy problems, and solve each of them;

- Basic idea:
 - divide a difficult problem into a sequence of easy problems, and solve each of them;

more specifically,

• divide a large problem into a sequence of small problems, and solve each of them.

• Not a new idea, of course.

• Not a new idea, of course.

分而治之

Divide and conquer

• Not a new idea, of course.

分而治之

故用兵之法,十则围之,五则攻之,倍则分之 凡治众如治寡,分数是也

— Sun Tzu, The Art of War (6 BCE)

Divide and conquer

• Not a new idea, of course.

分而治之

故用兵之法,十则围之,五则攻之,倍则分之 凡治众如治寡,分数是也

— Sun Tzu, The Art of War (6 BCE)

Divide and conquer

Divide et impera.

— Julius Caesar (1 BCE)

• Subspace techniques

- Gould, Nick, A. Sartenaer, and Ph L. Toint. On iterated-subspace minimization methods for nonlinear optimization. Rutherford Appleton Laboratory, 1994.
- Yuan, Ya-xiang. Subspace techniques for nonlinear optimization. Some topics in industrial and applied mathematics 8 (2007): 206-218.

• Subspace techniques

- Gould, Nick, A. Sartenaer, and Ph L. Toint. On iterated-subspace minimization methods for nonlinear optimization. Rutherford Appleton Laboratory, 1994.
- Yuan, Ya-xiang. Subspace techniques for nonlinear optimization. Some topics in industrial and applied mathematics 8 (2007): 206-218.
- Decomposition techniques
 - Boyd, Stephen, Lin Xiao, Almir Mutapcic, and Jacob Mattingley. Notes on decomposition methods. Notes for EE364B, Stanford University (2007).

• Subspace techniques

- Gould, Nick, A. Sartenaer, and Ph L. Toint. On iterated-subspace minimization methods for nonlinear optimization. Rutherford Appleton Laboratory, 1994.
- Yuan, Ya-xiang. Subspace techniques for nonlinear optimization. Some topics in industrial and applied mathematics 8 (2007): 206-218.
- Decomposition techniques
 - Boyd, Stephen, Lin Xiao, Almir Mutapcic, and Jacob Mattingley. Notes on decomposition methods. Notes for EE364B, Stanford University (2007).
- Coordinate-search ...

A subspace decomposition framework

• Suppose that the current iterate is x_k .

A subspace decomposition framework

- Suppose that the current iterate is x_k .
- Decomposition:

- Suppose that the current iterate is x_k .
- Decomposition:

ullet select spaces $\mathcal{S}_k^{(1)}, \mathcal{S}_k^{(2)}, \dots, \mathcal{S}_k^{(m_k)}$ such that

$$\mathbb{R}^n = \sum_{i=0}^{m_k} \mathcal{S}_k^{(i)};$$

- Suppose that the current iterate is x_k .
- Decomposition:

ullet select spaces $\mathcal{S}_k^{(1)}, \mathcal{S}_k^{(2)}, \dots, \mathcal{S}_k^{(m_k)}$ such that

$$\mathbb{R}^n = \sum_{i=0}^{m_k} \mathcal{S}_k^{(i)};$$

• minimize $f(x_k + d)$ with respect to d on $S_k^{(i)}$, and obtain $d_k^{(i)}$ $(i = 1, 2, ..., m_k)$.

- Suppose that the current iterate is x_k .
- Decomposition:

ullet select spaces $\mathcal{S}_k^{(1)}, \mathcal{S}_k^{(2)}, \dots, \mathcal{S}_k^{(m_k)}$ such that

$$\mathbb{R}^n = \sum_{i=0}^{m_k} \mathcal{S}_k^{(i)};$$

- minimize $f(x_k + d)$ with respect to d on $S_k^{(i)}$, and obtain $d_k^{(i)}$ $(i = 1, 2, ..., m_k)$.
- How to obtain a single step d_k ?

- Suppose that the current iterate is x_k .
- Decomposition:

ullet select spaces $\mathcal{S}_k^{(1)}, \mathcal{S}_k^{(2)}, \dots, \mathcal{S}_k^{(m_k)}$ such that

$$\mathbb{R}^n = \sum_{i=0}^{m_k} \mathcal{S}_k^{(i)};$$

- minimize $f(x_k + d)$ with respect to d on $S_k^{(i)}$, and obtain $d_k^{(i)}$ $(i = 1, 2, ..., m_k)$.
- How to obtain a single step d_k ?

Set

$$d_k = \sum_{i=0}^{m_k} d_k^{(i)}$$
 ?

- Suppose that the current iterate is x_k .
- Decomposition:

ullet select spaces $\mathcal{S}_k^{(1)}, \mathcal{S}_k^{(2)}, \dots, \mathcal{S}_k^{(m_k)}$ such that

$$\mathbb{R}^n = \sum_{i=0}^{m_k} \mathcal{S}_k^{(i)};$$

- minimize $f(x_k + d)$ with respect to d on $S_k^{(i)}$, and obtain $d_k^{(i)}$ $(i = 1, 2, ..., m_k)$.
- Composition:

- Suppose that the current iterate is x_k .
- Decomposition:

ullet select spaces $\mathcal{S}_k^{(1)}, \mathcal{S}_k^{(2)}, \dots, \mathcal{S}_k^{(m_k)}$ such that

$$\mathbb{R}^n = \sum_{i=0}^{m_k} \mathcal{S}_k^{(i)};$$

• minimize $f(x_k + d)$ with respect to d on $S_k^{(i)}$, and obtain $d_k^{(i)}$ $(i = 1, 2, ..., m_k)$.

Composition:

set

$$S_k = \text{span}\left\{d_k^{(1)}, d_k^{(2)}, \dots, d_k^{(m_k)}\right\};$$

- Suppose that the current iterate is x_k .
- Decomposition:

ullet select spaces $\mathcal{S}_k^{(1)}, \mathcal{S}_k^{(2)}, \dots, \mathcal{S}_k^{(m_k)}$ such that

$$\mathbb{R}^n = \sum_{i=0}^{m_k} \mathcal{S}_k^{(i)};$$

• minimize $f(x_k + d)$ with respect to d on $S_k^{(i)}$, and obtain $d_k^{(i)}$ $(i = 1, 2, ..., m_k)$.

• Composition:

set

$$S_k = \text{span}\left\{d_k^{(1)}, d_k^{(2)}, \dots, d_k^{(m_k)}\right\};$$

• minimize $f(x_k + d)$ with respect to d on S_k , and obtain d_k .

• Trust-region:

 $\min f(x_k + d)$ s.t. $d \in \mathcal{S}_k^{(i)}$ $\|d\| \le \Delta_k$

• Trust-region:

$$\min f(x_k + d)$$
s.t. $d \in \mathcal{S}_k^{(i)}$
 $\|d\| \le \Delta_k$

• Levenberg-Marquardt:

$$\min_{d \in \mathcal{S}_k^{(i)}} f(x_k + d) + \frac{1}{2} \sigma_k ||d||^2$$

• Trust-region:

$$\min f(x_k + d)$$
s.t. $d \in \mathcal{S}_k^{(i)}$
 $\|d\| \le \Delta_k$

• Levenberg-Marquardt:

$$\min_{d \in \mathcal{S}_{k}^{(i)}} f(x_{k} + d) + \frac{1}{2} \sigma_{k} \|d\|^{2}$$

• How to update Δ_k or σ_k ?

• Trust-region:

$$\min f(x_k + d)$$
s.t. $d \in \mathcal{S}_k^{(i)}$
 $\|d\| \le \Delta_k$

• Levenberg-Marquardt:

$$\min_{d \in \mathcal{S}_k^{(i)}} f(x_k + d) + \frac{1}{2} \sigma_k \|d\|^2$$

• How to update Δ_k or σ_k ?

$$\rho_k = \frac{f(x_k) - f(x_k + d_k)}{\sum_{i=1}^{m_k} \left[f(x_k) - f(x_k + d_k^{(i)}) \right]}$$

Step 1. Select a constant $\eta \in [0, 1)$, pick a starting point $x_0 \in \mathbb{R}^n$, choose $\Delta_0 > 0$, and set k = 0.

Step 1. Select a constant $\eta \in [0, 1)$, pick a starting point $x_0 \in \mathbb{R}^n$, choose $\Delta_0 > 0$, and set k = 0.

Step 2. Choose subspaces $\mathcal{S}_k^{(i)}$ $(i = 1, 2, \cdots, m_k)$ of \mathbb{R}^n so that

$$\sum_{i=1}^{m_k} \mathcal{S}_k^{(i)} = \mathbb{R}^n$$

Step 1. Select a constant $\eta \in [0, 1)$, pick a starting point $x_0 \in \mathbb{R}^n$, choose $\Delta_0 > 0$, and set k = 0.

Step 2. Choose subspaces $\mathcal{S}_k^{(i)}$ $(i = 1, 2, \cdots, m_k)$ of \mathbb{R}^n so that

$$\sum_{i=1}^{m_k} \mathcal{S}_k^{(i)} = \mathbb{R}^n$$

Step 3. For $i = 1, 2, ..., m_k$, solve

$$\min f(x_k + d)$$

s.t. $d \in \mathcal{S}_k^{(i)}$
 $\|d\| \le \Delta_k,$

to get
$$d_k^{(i)}$$
.

Step 4. Obtain d_k by solving

min
$$f(x_k + d)$$

s.t. $d = \sum_{i=1}^{m_k} t^{(i)} d_k^{(i)}$
 $0 \le t^{(i)} \le 1, \quad i = 1, 2, \cdots, m_k.$

Step 4. Obtain d_k by solving

min
$$f(x_k + d)$$

s.t. $d = \sum_{i=1}^{m_k} t^{(i)} d_k^{(i)}$
 $0 \le t^{(i)} \le 1, \quad i = 1, 2, \cdots, m_k.$

Step 5. Let

$$\rho_k = \frac{f(x_k) - f(x_k + d_k)}{\sum_{i=1}^{m_k} \left[f(x_k) - f(x_k + d_k^{(i)}) \right]},$$

and set Δ_{k+1} so that

$$\Delta_{k+1} \geq \Delta_k$$
 whenever $\rho_k > \eta$.

Step 4. Obtain d_k by solving

min
$$f(x_k + d)$$

s.t. $d = \sum_{i=1}^{m_k} t^{(i)} d_k^{(i)}$
 $0 \le t^{(i)} \le 1, \quad i = 1, 2, \cdots, m_k.$

Step 5. Let

$$\rho_k = \frac{f(x_k) - f(x_k + d_k)}{\sum_{i=1}^{m_k} \left[f(x_k) - f(x_k + d_k^{(i)}) \right]},$$

and set Δ_{k+1} so that

$$\Delta_{k+1} \geq \Delta_k$$
 whenever $\rho_k > \eta$.

Step 6. Let $x_{k+1} = x_k + d_k$, increment k by 1, and go to **Step 2**.

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework)

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant $\eta \in [0, 1)$, pick a starting point $x_0 \in \mathbb{R}^n$, choose a positive number σ_0 , and set k = 0.

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant $\eta \in [0, 1)$, pick a starting point $x_0 \in \mathbb{R}^n$, choose a positive number σ_0 , and set k = 0.

Step 2. Choose nonzero subspaces $\mathcal{S}_k^{(i)}$ $(i = 1, 2, \cdots, m_k)$ of \mathbb{R}^n so that

$$\sum_{i=1}^{m_k} \mathcal{S}_k^{(i)} = \mathbb{R}^n.$$

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant $\eta \in [0, 1)$, pick a starting point $x_0 \in \mathbb{R}^n$, choose a positive number σ_0 , and set k = 0.

Step 2. Choose nonzero subspaces $\mathcal{S}_k^{(i)}$ $(i = 1, 2, \cdots, m_k)$ of \mathbb{R}^n so that

$$\sum_{i=1}^{m_k} \mathcal{S}_k^{(i)} = \mathbb{R}^n.$$

Step 3. For $i = 1, 2, \ldots, m_k$, solve

$$\min_{d \in \mathcal{S}_k^{(i)}} f(x_k + d) + \frac{1}{2} \sigma_k \|d\|^2$$

to get
$$d_k^{(i)}$$
.

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework cont.)

Step 4. Solve

$$\min_{t\in\mathbb{R}^{m_k}}f(x_k+D_kt)+\frac{1}{2}\sigma_k\|t\|^2,$$

to obtain t_k , and then set

$$d_k = D_k t_k,$$

where
$$D_k = (d_k^{(1)} \ d_k^{(2)} \ \cdots \ d_k^{(m_k)}).$$

Algorithm (Levenberg-Marquardt framework cont.)

Step 4. Solve

$$\min_{t\in\mathbb{R}^{m_k}}f(x_k+D_kt)+\frac{1}{2}\sigma_k\|t\|^2,$$

to obtain t_k , and then set

$$d_k = D_k t_k,$$

where
$$D_k = (d_k^{(1)} \ d_k^{(2)} \ \cdots \ d_k^{(m_k)}).$$

Step 5. Let

$$\rho_k = \frac{f(x_k) - f(x_k + d_k)}{\sum_{i=1}^{m_k} \left[f(x_k) - f(x_k + d_k^{(i)}) \right]},$$

and set σ_{k+1} so that

$$\sigma_{k+1} \leq \sigma_k$$
 whenever $\rho_k > \eta$.

Algorithm (Levenberg-Marquardt framework cont.)

Step 4. Solve

$$\min_{t\in\mathbb{R}^{m_k}}f(x_k+D_kt)+\frac{1}{2}\sigma_k\|t\|^2,$$

to obtain t_k , and then set

$$d_k = D_k t_k,$$

where
$$D_k = (d_k^{(1)} \ d_k^{(2)} \ \cdots \ d_k^{(m_k)}).$$

Step 5. Let

$$\rho_k = \frac{f(x_k) - f(x_k + d_k)}{\sum_{i=1}^{m_k} \left[f(x_k) - f(x_k + d_k^{(i)}) \right]},$$

and set σ_{k+1} so that

$$\sigma_{k+1} \leq \sigma_k$$
 whenever $\rho_k > \eta$.

Step 6. Let $x_{k+1} = x_k + d_k$, increment k by 1, and go to **Step 2**.

• The function f is bounded from below and twice continuously differentiable, and $\nabla^2 f$ is bounded on \mathbb{R}^n .

• The function f is bounded from below and twice continuously differentiable, and $\nabla^2 f$ is bounded on \mathbb{R}^n .

2 The sequence $\{m_k\}$ is bounded.

- The function f is bounded from below and twice continuously differentiable, and $\nabla^2 f$ is bounded on \mathbb{R}^n .
- 2 The sequence {m_k} is bounded.
- The smallest eigenvalues of $\sum_{i=1}^{m_k} P_k^{(i)}$ are bounded away from zero, where $P_k^{(i)}$ is the orthogonal projection matrix from \mathbb{R}^n onto $\mathcal{S}_k^{(i)}$.

Theorem

Suppose that the assumptions stated before hold, then the iterates $\{x_k\}$ generated by either of the frameworks satisfy

 $\lim_{k \to \infty} \|\nabla f(x_k)\| = 0.$

Theorem

Suppose that the assumptions stated before hold, and additionally

 $\Delta_{k+1} \ge \alpha \Delta_k$

for some constant $\alpha \in (0,1]$, then the iterates $\{x_k\}$ generated by the trust-region framework satisfy

$$\min_{0 \le \ell \le k} \|\nabla f(x_\ell)\| \le C_1 \sqrt{\frac{m}{k}},$$

where m is an upper bound of $\{m_k\}$.

Theorem

Suppose that the assumptions stated before hold, and additionally

 $\sigma_{k+1} \le \beta \sigma_k$

for some constant $\beta \ge 1$, then the iterates $\{x_k\}$ generated by the Levenberg-Marquardt framework satisfy

$$\min_{0 \le \ell \le k} \|\nabla f(x_\ell)\| \le C_2 \sqrt{\frac{m}{k}},$$

where m is an upper bound of $\{m_k\}$.

We have thus the worst case complexity: $O(\varepsilon^{-2}m)$

We have thus the worst case complexity: $O(\varepsilon^{-2}m)$

Using this and the WCC $O(n^2 \varepsilon^{-2})$ for subproblems,

- a reasonable choice for m is $O(\sqrt{n})$
- a reasonable subproblem solution accuracy is $O(n^{-\frac{1}{4}})$

Applications to derivative-free optimization

Properties of the framework

• It does not explicitly require derivatives.

- It does not explicitly require derivatives.
- It is naturally parallel.

- It does not explicitly require derivatives.
- It is naturally parallel.
- It is naturally multilevel.

- It does not explicitly require derivatives.
- It is naturally parallel.
- It is naturally multilevel.

₩

Our goal

Parallel and multilevel algorithms without using derivatives and capable of solving relatively large problems.

- Use the Levenberg-Marquardt framework
- Subproblem solver: NEWUOA
- Number of subspaces: $\sqrt{n/2}$
- Benchmark: NEWUOA
- Very preliminary: not parallel, not multilevel, not large-scale
- Dimension of test problems: 25, 30, 35, 40
- Denote our code as SSD

\overline{n}	25	30	35	40	
#f	8343	8926	12689	17741	NEWUOA
	3592	6222	7507	16653	SSD
f_{final}	1.61E-11	4.08E-11	4.93E-11	1.76E-10	NEWUOA
	9.74E-11	6.85E-10	5.74E-11	7.89E-13	SSD

Table : Numerical results of VARDIM

$$f(x) = \sum_{i=1}^{n} (x_i - 1)^2 + \left[\sum_{i=1}^{n} i(x_i - 1)\right]^2 + \left[\sum_{i=1}^{n} i(x_i - 1)\right]^4$$

\overline{n}	25	30	35	40	
#f	9532	10947	14427	13577	NEWUOA
	2089	2784	2348	2812	SSD
f_{final}	2.03E-04	2.48E-04	2.93E-04	3.39E-04	NEWUOA
	2.04E-04	2.50E-04	2.95E-04	3.41E-04	SSD

Table : Numerical results of PENALTY1

$$f(x) = 10^{-15} \sum_{i=1}^{n} (x_i - 1)^2 + \left(\frac{1}{4} - \sum_{i=1}^{n} x_i^2\right)^2$$

n	25	30	35	40	
#f	968	576	2052	2363	NEWUOA
	27889	53103	90304	206608	SSD
f_{final}	235	326	342	395	NEWUOA
	3.08	3.08	3.08	3.08	SSD
	134	284	233	229	

Table : Numerical results of SBRYBND

$$f(x) = \sum_{i=1}^{n} \left[(2 + 5p_i^2 x_i^2) p_i x_i + 1 - \sum_{j \in J_i} p_j x_j (1 + p_j x_j) \right]^2,$$

where $J_i = \{j \mid j \neq i, \max\{1, i-5\} \le j \le \min\{n, j+1\}\},$ and $p_i = \exp\left(6\frac{i-1}{n-1}\right).$

\overline{n}	25	30	35	40	
#f	1123	1445	1717	1859	NEWUOA
	96040	103296	127726	142272	SSD
f_{final}	8.94E-12	1.07E-11	1.13E-11	3.14E-11	NEWUOA
	2.95E-10	5.49E-10	7.26E-10	8.09E-10	SSD

Table : Numerical results of CHROSEN

$$f(x) = \sum_{i=1}^{n-1} \left[4(x_i - x_{i+1}^2)^2 + (1 - x_{i+1})^2 \right]$$

- A subspace decomposition framework (two versions) with global convergence and convergence rate
- Possible to develop parallel and multilevel methods without using derivatives

- A subspace decomposition framework (two versions) with global convergence and convergence rate
- Possible to develop parallel and multilevel methods without using derivatives
- "Clever" way of choosing subspaces

- A subspace decomposition framework (two versions) with global convergence and convergence rate
- Possible to develop parallel and multilevel methods without using derivatives
- "Clever" way of choosing subspaces ...
 - not try to cover the whole space, but ...

- A subspace decomposition framework (two versions) with global convergence and convergence rate
- Possible to develop parallel and multilevel methods without using derivatives
- "Clever" way of choosing subspaces ...
 - not try to cover the whole space, but ...
 - choose subspaces randomly

Merci! 谢谢!

zhang@mat.uc.pt

Merci