A Subspace Decomposition Framework for
 Nonlinear Optimization:
 Global Convergence and Global Rate

Zaikun Zhang
University of Coimbra

(Joint work with S. Gratton and L. N. Vicente)

July 25, Toulouse

http//www.mat.uc.pt/~zhang

Opening

Opening

Axiom

师徒如父子；一日为师，终身为父。
（Teacher and student are like father and son；if he／she is your teacher for one day，then he／she is your father for one life．）

Opening

Axiom

师徒如父子；一日为师，终身为父。
（Teacher and student are like father and son；if he／she is your teacher for one day，then he／she is your father for one life．）

Question

Provided that you call your professor 师父（Academic Father），how should you call a person whose professor is also the professor of your professor？

Opening

Axiom

师徒如父子；一日为师，终身为父。
（Teacher and student are like father and son；if he／she is your teacher for one day，then he／she is your father for one life．）

Question

Provided that you call your professor 师父（Academic Father），how should you call a person whose professor is also the professor of your professor？

Answer
 师伯 师叔

Opening

Axiom

师徒如父子；一日为师，终身为父。
（Teacher and student are like father and son；if he／she is your teacher for one day，then he／she is your father for one life．）

Question

Provided that you call your professor 师父（Academic Father），how should you call a person whose professor is also the professor of your professor？

Answer
师伯 师叔（Academic Uncle，＂older＂or＂younger＂）．

Opening

Axiom

师徒如父子；一日为师，终身为父。
（Teacher and student are like father and son；if he／she is your teacher for one day，then he／she is your father for one life．）

Question

Provided that you call your professor 师父（Academic Father），how should you call a person whose professor is also the professor of your professor？

Answer
师伯 师叔（Academic Uncle，＂older＂or＂younger＂）．

生日快乐，Toint 师伯！

Happy birthday，Academic（Older）Uncle Toint！
Joyeux anniversaire，Oncle Toint ！

Outline

(1) Derivative-free optimization
(2) Motivation and basic idea
(3) A subspace decomposition framework
(4) Global convergence
(5) Global rate

6 Applications to derivative-free optimization
(7) Very preliminary numerical results
(8) Concluding remarks

Derivative-free optimization

In this talk, to make things simple:

- we consider unconstrained optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) ;
$$

Derivative-free optimization

In this talk, to make things simple:

- we consider unconstrained optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) ;
$$

- we suppose that

Derivative-free optimization

In this talk, to make things simple:

- we consider unconstrained optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) ;
$$

- we suppose that
- f is smooth, but the derivatives are unavailable.

Derivative-free optimization

- Important \& difficult

Derivative-free optimization

- Important \& difficult

We consider optimization without derivatives one of the most important, open, and challenging areas in computational science and engineering, and one with enormous practical potential.

- A. R. Conn, K. Scheinberg, L. N. Vicente Introduction to Derivative-Free Optimization

Derivative-free optimization

- Important \& difficult

We consider optimization without derivatives one of the most important, open, and challenging areas in computational science and engineering, and one with enormous practical potential.

\author{

- A. R. Conn, K. Scheinberg, L. N. Vicente Introduction to Derivative-Free Optimization
}

Why work on derivative-free optimization? Because the problems are important and cool.
— J. Dennis
July 24th, 2013, Toulouse

Existing methods

- Two main classes of rigorous methods in DFO

Existing methods

- Two main classes of rigorous methods in DFO
- Directional methods, like direct search

Existing methods

- Two main classes of rigorous methods in DFO
- Directional methods, like direct search
- Model-based methods, like trust-region methods

Books

R. P. Brent, Algorithms for Minimization Without Derivatives, Prentice-Hall, Englewood Cliffs, NJ, 1973

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization, MOS-SIAM Series on Optimization, SIAM, Philadelphia, 2009

Difficulty of large-scale problems

- Large-scale problems?

Difficulty of large-scale problems

- Large-scale problems?
- Traditional NLP: 10,000 ? 100,000 ? $1,000,000$?

Difficulty of large-scale problems

- Large-scale problems?
- Traditional NLP: 10, 000? 100, 000? 1, 000, 000?
- Derivative-free: 100 ? 1000 ?

Difficulty of large-scale problems

- Large-scale problems?
- Traditional NLP: 10,000 ? 100,000 ? $1,000,000$?
- Derivative-free: 100 ? 1000 ?
- Large-scale derivative-free problems are very difficult:

Difficulty of large-scale problems

- Large-scale problems?
- Traditional NLP: 10,000 ? 100,000 ? $1,000,000$?
- Derivative-free: 100 ? 1000 ?
- Large-scale derivative-free problems are very difficult:
- quadratic-model-based methods:
- in principle, the degree of freedom of a full quadratic model is $(n+1)(n+2) / 2$
- in practice, we hope the algorithms finish the job with number of function evaluations of $O(n)$

Difficulty of large-scale problems

- Large-scale problems?
- Traditional NLP: 10, 000? 100, 000? 1, 000, 000?
- Derivative-free: 100 ? 1000 ?
- Large-scale derivative-free problems are very difficult:
- quadratic-model-based methods:
- in principle, the degree of freedom of a full quadratic model is $(n+1)(n+2) / 2$
- in practice, we hope the algorithms finish the job with number of function evaluations of $O(n)$
- difficult to exploit problem structure

Basic idea

- Basic idea:

Basic idea

- Basic idea:
- divide a difficult problem into a sequence of easy problems, and solve each of them;

Basic idea

- Basic idea:
- divide a difficult problem into a sequence of easy problems, and solve each of them;
more specifically,
- divide a large problem into a sequence of small problems, and solve each of them.

An old idea, very old

- Not a new idea, of course.

An old idea，very old

－Not a new idea，of course．
分而治之

Divide and conquer

An old idea，very old

－Not a new idea，of course．
分而治之

Divide and conquer

故用兵之法，十则围之，五则攻之，倍则分之凡治众如治寡，分数是也
－Sun Tzu，The Art of War
（6 BCE）

An old idea，very old

－Not a new idea，of course．
分而治之

故用兵之法，十则围之，五则攻之，倍则分之凡治众如治察，分数是也
－Sun Tzu，The Art of War （6 BCE）

Divide and conquer

Divide et impera．
－Julius Caesar
（1 BCE）

Subspace and decomposition techniques in optimization

- Subspace techniques
- Gould, Nick, A. Sartenaer, and Ph L. Toint. On iterated-subspace minimization methods for nonlinear optimization. Rutherford Appleton Laboratory, 1994.
- Yuan, Ya-xiang. Subspace techniques for nonlinear optimization. Some topics in industrial and applied mathematics 8 (2007): 206-218.

Subspace and decomposition techniques in optimization

- Subspace techniques
- Gould, Nick, A. Sartenaer, and Ph L. Toint. On iterated-subspace minimization methods for nonlinear optimization. Rutherford Appleton Laboratory, 1994.
- Yuan, Ya-xiang. Subspace techniques for nonlinear optimization. Some topics in industrial and applied mathematics 8 (2007): 206-218.
- Decomposition techniques
- Boyd, Stephen, Lin Xiao, Almir Mutapcic, and Jacob Mattingley. Notes on decomposition methods. Notes for EE364B, Stanford University (2007).

Subspace and decomposition techniques in optimization

- Subspace techniques
- Gould, Nick, A. Sartenaer, and Ph L. Toint. On iterated-subspace minimization methods for nonlinear optimization. Rutherford Appleton Laboratory, 1994.
- Yuan, Ya-xiang. Subspace techniques for nonlinear optimization. Some topics in industrial and applied mathematics 8 (2007): 206-218.
- Decomposition techniques
- Boyd, Stephen, Lin Xiao, Almir Mutapcic, and Jacob Mattingley. Notes on decomposition methods. Notes for EE364B, Stanford University (2007).
- Coordinate-search ...

A subspace decomposition framework

- Suppose that the current iterate is x_{k}.

A subspace decomposition framework

- Suppose that the current iterate is x_{k}.
- Decomposition:

A subspace decomposition framework

- Suppose that the current iterate is x_{k}.
- Decomposition:
- select spaces $\mathcal{S}_{k}^{(1)}, \mathcal{S}_{k}^{(2)}, \ldots, \mathcal{S}_{k}^{\left(m_{k}\right)}$ such that

$$
\mathbb{R}^{n}=\sum_{i=0}^{m_{k}} \mathcal{S}_{k}^{(i)} ;
$$

A subspace decomposition framework

- Suppose that the current iterate is x_{k}.
- Decomposition:
- select spaces $\mathcal{S}_{k}^{(1)}, \mathcal{S}_{k}^{(2)}, \ldots, \mathcal{S}_{k}^{\left(m_{k}\right)}$ such that

$$
\mathbb{R}^{n}=\sum_{i=0}^{m_{k}} \mathcal{S}_{k}^{(i)} ;
$$

- minimize $f\left(x_{k}+d\right)$ with respect to d on $\mathcal{S}_{k}^{(i)}$, and obtain $d_{k}^{(i)}$ $\left(i=1,2, \ldots, m_{k}\right)$.

A subspace decomposition framework

- Suppose that the current iterate is x_{k}.
- Decomposition:
- select spaces $\mathcal{S}_{k}^{(1)}, \mathcal{S}_{k}^{(2)}, \ldots, \mathcal{S}_{k}^{\left(m_{k}\right)}$ such that

$$
\mathbb{R}^{n}=\sum_{i=0}^{m_{k}} \mathcal{S}_{k}^{(i)} ;
$$

- minimize $f\left(x_{k}+d\right)$ with respect to d on $\mathcal{S}_{k}^{(i)}$, and obtain $d_{k}^{(i)}$ $\left(i=1,2, \ldots, m_{k}\right)$.
- How to obtain a single step d_{k} ?

A subspace decomposition framework

- Suppose that the current iterate is x_{k}.
- Decomposition:
- select spaces $\mathcal{S}_{k}^{(1)}, \mathcal{S}_{k}^{(2)}, \ldots, \mathcal{S}_{k}^{\left(m_{k}\right)}$ such that

$$
\mathbb{R}^{n}=\sum_{i=0}^{m_{k}} \mathcal{S}_{k}^{(i)} ;
$$

- minimize $f\left(x_{k}+d\right)$ with respect to d on $\mathcal{S}_{k}^{(i)}$, and obtain $d_{k}^{(i)}$ $\left(i=1,2, \ldots, m_{k}\right)$.
- How to obtain a single step d_{k} ?
- Set

$$
d_{k}=\sum_{i=0}^{m_{k}} d_{k}^{(i)} ?
$$

A subspace decomposition framework

- Suppose that the current iterate is x_{k}.
- Decomposition:
- select spaces $\mathcal{S}_{k}^{(1)}, \mathcal{S}_{k}^{(2)}, \ldots, \mathcal{S}_{k}^{\left(m_{k}\right)}$ such that

$$
\mathbb{R}^{n}=\sum_{i=0}^{m_{k}} \mathcal{S}_{k}^{(i)} ;
$$

- minimize $f\left(x_{k}+d\right)$ with respect to d on $\mathcal{S}_{k}^{(i)}$, and obtain $d_{k}^{(i)}$ $\left(i=1,2, \ldots, m_{k}\right)$.
- Composition:

A subspace decomposition framework

- Suppose that the current iterate is x_{k}.
- Decomposition:
- select spaces $\mathcal{S}_{k}^{(1)}, \mathcal{S}_{k}^{(2)}, \ldots, \mathcal{S}_{k}^{\left(m_{k}\right)}$ such that

$$
\mathbb{R}^{n}=\sum_{i=0}^{m_{k}} \mathcal{S}_{k}^{(i)} ;
$$

- minimize $f\left(x_{k}+d\right)$ with respect to d on $\mathcal{S}_{k}^{(i)}$, and obtain $d_{k}^{(i)}$ $\left(i=1,2, \ldots, m_{k}\right)$.
- Composition:
- set

$$
\mathcal{S}_{k}=\operatorname{span}\left\{d_{k}^{(1)}, d_{k}^{(2)}, \ldots, d_{k}^{\left(m_{k}\right)}\right\}
$$

A subspace decomposition framework

- Suppose that the current iterate is x_{k}.
- Decomposition:
- select spaces $\mathcal{S}_{k}^{(1)}, \mathcal{S}_{k}^{(2)}, \ldots, \mathcal{S}_{k}^{\left(m_{k}\right)}$ such that

$$
\mathbb{R}^{n}=\sum_{i=0}^{m_{k}} \mathcal{S}_{k}^{(i)} ;
$$

- minimize $f\left(x_{k}+d\right)$ with respect to d on $\mathcal{S}_{k}^{(i)}$, and obtain $d_{k}^{(i)}$ $\left(i=1,2, \ldots, m_{k}\right)$.
- Composition:
- set

$$
\mathcal{S}_{k}=\operatorname{span}\left\{d_{k}^{(1)}, d_{k}^{(2)}, \ldots, d_{k}^{\left(m_{k}\right)}\right\}
$$

- minimize $f\left(x_{k}+d\right)$ with respect to d on \mathcal{S}_{k}, and obtain d_{k}.

Localization

Localization

- Trust-region:

$$
\begin{array}{cl}
\min & f\left(x_{k}+d\right) \\
\text { s.t. } & d \in \mathcal{S}_{k}^{(i)} \\
& \|d\| \leq \Delta_{k}
\end{array}
$$

Localization

- Trust-region:

$$
\begin{array}{cc}
\min & f\left(x_{k}+d\right) \\
\text { s.t. } d \in \mathcal{S}_{k}^{(i)} \\
& \|d\| \leq \Delta_{k}
\end{array}
$$

- Levenberg-Marquardt:

$$
\min _{d \in \mathcal{S}_{k}^{(i)}} f\left(x_{k}+d\right)+\frac{1}{2} \sigma_{k}\|d\|^{2}
$$

Localization

- Trust-region:

$$
\begin{array}{cl}
\min & f\left(x_{k}+d\right) \\
\text { s.t. } d \in \mathcal{S}_{k}^{(i)} \\
& \|d\| \leq \Delta_{k}
\end{array}
$$

- Levenberg-Marquardt:

$$
\min _{d \in \mathcal{S}_{k}^{(i)}} f\left(x_{k}+d\right)+\frac{1}{2} \sigma_{k}\|d\|^{2}
$$

- How to update Δ_{k} or σ_{k} ?

Localization

- Trust-region:

$$
\begin{array}{cl}
\min & f\left(x_{k}+d\right) \\
\text { s.t. } d \in \mathcal{S}_{k}^{(i)} \\
& \|d\| \leq \Delta_{k}
\end{array}
$$

- Levenberg-Marquardt:

$$
\min _{d \in \mathcal{S}_{k}^{(i)}} f\left(x_{k}+d\right)+\frac{1}{2} \sigma_{k}\|d\|^{2}
$$

- How to update Δ_{k} or σ_{k} ?

$$
\rho_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k}+d_{k}\right)}{\sum_{i=1}^{m_{k}}\left[f\left(x_{k}\right)-f\left(x_{k}+d_{k}^{(i)}\right)\right]}
$$

Trust-region framework

Algorithm (Trust-region framework)

Trust-region framework

Algorithm (Trust-region framework)

Step 1. Select a constant $\eta \in[0,1)$, pick a starting point $x_{0} \in \mathbb{R}^{n}$, choose $\Delta_{0}>0$, and set $k=0$.

Trust-region framework

Algorithm (Trust-region framework)

Step 1. Select a constant $\eta \in[0,1)$, pick a starting point $x_{0} \in \mathbb{R}^{n}$, choose $\Delta_{0}>0$, and set $k=0$.

Step 2. Choose subspaces $\mathcal{S}_{k}^{(i)}\left(i=1,2, \cdots, m_{k}\right)$ of \mathbb{R}^{n} so that

$$
\sum_{i=1}^{m_{k}} \mathcal{S}_{k}^{(i)}=\mathbb{R}^{n}
$$

Trust-region framework

Algorithm (Trust-region framework)

Step 1. Select a constant $\eta \in[0,1)$, pick a starting point $x_{0} \in \mathbb{R}^{n}$, choose $\Delta_{0}>0$, and set $k=0$.

Step 2. Choose subspaces $\mathcal{S}_{k}^{(i)}\left(i=1,2, \cdots, m_{k}\right)$ of \mathbb{R}^{n} so that

$$
\sum_{i=1}^{m_{k}} \mathcal{S}_{k}^{(i)}=\mathbb{R}^{n}
$$

Step 3. For $i=1,2, \ldots, m_{k}$, solve

$$
\begin{array}{cc}
\min & f\left(x_{k}+d\right) \\
\text { s.t. } d \in \mathcal{S}_{k}^{(i)} \\
& \|d\| \leq \Delta_{k},
\end{array}
$$

to get $d_{k}^{(i)}$.

Trust-region framework

Algorithm (Trust-region framework cont.)

Step 4. Obtain d_{k} by solving

$$
\begin{array}{ll}
\min & f\left(x_{k}+d\right) \\
\text { s.t. } d & =\sum_{i=1}^{m_{k}} t^{(i)} d_{k}^{(i)} \\
& 0 \leq t^{(i)} \leq 1, \quad i=1,2, \cdots, m_{k}
\end{array}
$$

Trust-region framework

Algorithm (Trust-region framework cont.)

Step 4. Obtain d_{k} by solving

$$
\begin{array}{ll}
\min & f\left(x_{k}+d\right) \\
\text { s.t. } & d=\sum_{i=1}^{m_{k}} t^{(i)} d_{k}^{(i)} \\
& 0 \leq t^{(i)} \leq 1, \quad i=1,2, \cdots, m_{k}
\end{array}
$$

Step 5. Let

$$
\rho_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k}+d_{k}\right)}{\sum_{i=1}^{m_{k}}\left[f\left(x_{k}\right)-f\left(x_{k}+d_{k}^{(i)}\right)\right]},
$$

and set Δ_{k+1} so that

$$
\Delta_{k+1} \geq \Delta_{k} \text { whenever } \rho_{k}>\eta .
$$

Trust-region framework

Algorithm (Trust-region framework cont.)

Step 4. Obtain d_{k} by solving

$$
\begin{array}{ll}
\min & f\left(x_{k}+d\right) \\
\text { s.t. } & d=\sum_{i=1}^{m_{k}} t^{(i)} d_{k}^{(i)} \\
& 0 \leq t^{(i)} \leq 1, \quad i=1,2, \cdots, m_{k}
\end{array}
$$

Step 5. Let

$$
\rho_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k}+d_{k}\right)}{\sum_{i=1}^{m_{k}}\left[f\left(x_{k}\right)-f\left(x_{k}+d_{k}^{(i)}\right)\right]},
$$

and set Δ_{k+1} so that

$$
\Delta_{k+1} \geq \Delta_{k} \text { whenever } \rho_{k}>\eta .
$$

Step 6. Let $x_{k+1}=x_{k}+d_{k}$, increment k by 1 , and go to Step 2.

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework)

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant $\eta \in[0,1)$, pick a starting point $x_{0} \in \mathbb{R}^{n}$, choose a positive number σ_{0}, and set $k=0$.

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant $\eta \in[0,1)$, pick a starting point $x_{0} \in \mathbb{R}^{n}$, choose a positive number σ_{0}, and set $k=0$.

Step 2. Choose nonzero subspaces $\mathcal{S}_{k}^{(i)}\left(i=1,2, \cdots, m_{k}\right)$ of \mathbb{R}^{n} so that

$$
\sum_{i=1}^{m_{k}} \mathcal{S}_{k}^{(i)}=\mathbb{R}^{n}
$$

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant $\eta \in[0,1)$, pick a starting point $x_{0} \in \mathbb{R}^{n}$, choose a positive number σ_{0}, and set $k=0$.

Step 2. Choose nonzero subspaces $\mathcal{S}_{k}^{(i)}\left(i=1,2, \cdots, m_{k}\right)$ of \mathbb{R}^{n} so that

$$
\sum_{i=1}^{m_{k}} \mathcal{S}_{k}^{(i)}=\mathbb{R}^{n}
$$

Step 3. For $i=1,2, \ldots, m_{k}$, solve

$$
\min _{d \in \mathcal{S}_{k}^{(i)}} f\left(x_{k}+d\right)+\frac{1}{2} \sigma_{k}\|d\|^{2}
$$

to get $d_{k}^{(i)}$.

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework cont.)

Step 4. Solve

$$
\min _{t \in \mathbb{R}^{m_{k}}} f\left(x_{k}+D_{k} t\right)+\frac{1}{2} \sigma_{k}\|t\|^{2}
$$

to obtain t_{k}, and then set

$$
d_{k}=D_{k} t_{k}
$$

where $D_{k}=\left(d_{k}^{(1)} d_{k}^{(2)} \cdots d_{k}^{\left(m_{k}\right)}\right)$.

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework cont.)

Step 4. Solve

$$
\min _{t \in \mathbb{R}^{m_{k}}} f\left(x_{k}+D_{k} t\right)+\frac{1}{2} \sigma_{k}\|t\|^{2}
$$

to obtain t_{k}, and then set

$$
d_{k}=D_{k} t_{k},
$$

where $D_{k}=\left(d_{k}^{(1)} d_{k}^{(2)} \cdots d_{k}^{\left(m_{k}\right)}\right)$.
Step 5. Let

$$
\rho_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k}+d_{k}\right)}{\sum_{i=1}^{m_{k}}\left[f\left(x_{k}\right)-f\left(x_{k}+d_{k}^{(i)}\right)\right]},
$$

and set σ_{k+1} so that

$$
\sigma_{k+1} \leq \sigma_{k} \text { whenever } \rho_{k}>\eta
$$

Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework cont.)

Step 4. Solve

$$
\min _{t \in \mathbb{R}^{m_{k}}} f\left(x_{k}+D_{k} t\right)+\frac{1}{2} \sigma_{k}\|t\|^{2}
$$

to obtain t_{k}, and then set

$$
d_{k}=D_{k} t_{k},
$$

where $D_{k}=\left(d_{k}^{(1)} d_{k}^{(2)} \cdots d_{k}^{\left(m_{k}\right)}\right)$.
Step 5. Let

$$
\rho_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k}+d_{k}\right)}{\sum_{i=1}^{m_{k}}\left[f\left(x_{k}\right)-f\left(x_{k}+d_{k}^{(i)}\right)\right]},
$$

and set σ_{k+1} so that

$$
\sigma_{k+1} \leq \sigma_{k} \text { whenever } \rho_{k}>\eta .
$$

Step 6. Let $x_{k+1}=x_{k}+d_{k}$, increment k by 1 , and go to Step 2.

Assumptions

Assumption

Assumptions

Assumption

(1) The function f is bounded from below and twice continuously differentiable, and $\nabla^{2} f$ is bounded on \mathbb{R}^{n}.

Assumptions

Assumption

(1) The function f is bounded from below and twice continuously differentiable, and $\nabla^{2} f$ is bounded on \mathbb{R}^{n}.
(2) The sequence $\left\{m_{k}\right\}$ is bounded.

Assumptions

Assumption

(1) The function f is bounded from below and twice continuously differentiable, and $\nabla^{2} f$ is bounded on \mathbb{R}^{n}.
(2) The sequence $\left\{m_{k}\right\}$ is bounded.
(3) The smallest eigenvalues of $\sum_{i=1}^{m_{k}} P_{k}^{(i)}$ are bounded away from zero, where $P_{k}^{(i)}$ is the orthogonal projection matrix from \mathbb{R}^{n} onto $\mathcal{S}_{k}^{(i)}$.

Global convergence

Theorem

Suppose that the assumptions stated before hold, then the iterates $\left\{x_{k}\right\}$ generated by either of the frameworks satisfy

$$
\lim _{k \rightarrow \infty}\left\|\nabla f\left(x_{k}\right)\right\|=0
$$

Global rate

Theorem

Suppose that the assumptions stated before hold, and additionally

$$
\Delta_{k+1} \geq \alpha \Delta_{k}
$$

for some constant $\alpha \in(0,1]$, then the iterates $\left\{x_{k}\right\}$ generated by the trust-region framework satisfy

$$
\min _{0 \leq \ell \leq k}\left\|\nabla f\left(x_{\ell}\right)\right\| \leq C_{1} \sqrt{\frac{m}{k}}
$$

where m is an upper bound of $\left\{m_{k}\right\}$.

Global rate

Theorem

Suppose that the assumptions stated before hold, and additionally

$$
\sigma_{k+1} \leq \beta \sigma_{k}
$$

for some constant $\beta \geq 1$, then the iterates $\left\{x_{k}\right\}$ generated by the Levenberg-Marquardt framework satisfy

$$
\min _{0 \leq \ell \leq k}\left\|\nabla f\left(x_{\ell}\right)\right\| \leq C_{2} \sqrt{\frac{m}{k}}
$$

where m is an upper bound of $\left\{m_{k}\right\}$.

Number of subspaces and subproblem solution precision

We have thus the worst case complexity: $O\left(\varepsilon^{-2} m\right)$

Number of subspaces and subproblem solution precision

We have thus the worst case complexity: $O\left(\varepsilon^{-2} m\right)$

Using this and the WCC $O\left(n^{2} \varepsilon^{-2}\right)$ for subproblems,

- a reasonable choice for m is $O(\sqrt{n})$
- a reasonable subproblem solution accuracy is $O\left(n^{-\frac{1}{4}}\right)$

Applications to derivative-free optimization

Properties of the framework

Applications to derivative-free optimization

Properties of the framework

- It does not explicitly require derivatives.

Applications to derivative-free optimization

Properties of the framework

- It does not explicitly require derivatives.
- It is naturally parallel.

Applications to derivative-free optimization

Properties of the framework

- It does not explicitly require derivatives.
- It is naturally parallel.
- It is naturally multilevel.

Applications to derivative-free optimization

Properties of the framework

- It does not explicitly require derivatives.
- It is naturally parallel.
- It is naturally multilevel.

Our goal

Parallel and multilevel algorithms without using derivatives and capable of solving relatively large problems.

Very preliminary numerical results

- Use the Levenberg-Marquardt framework
- Subproblem solver: NEWUOA
- Number of subspaces: $\sqrt{n / 2}$
- Benchmark: NEWUOA
- Very preliminary: not parallel, not multilevel, not large-scale ...
- Dimension of test problems: $25,30,35,40$
- Denote our code as SSD

VARDIM

Table: Numerical results of VARDIM

n	25	30	35	40	
$\# f$	8343	8926	12689	17741	NEWUOA
	3592	6222	7507	16653	SSD
$f_{\text {final }}$	$1.61 \mathrm{E}-11$	$4.08 \mathrm{E}-11$	$4.93 \mathrm{E}-11$	$1.76 \mathrm{E}-10$	NEWUOA
	$9.74 \mathrm{E}-11$	$6.85 \mathrm{E}-10$	$5.74 \mathrm{E}-11$	$7.89 \mathrm{E}-13$	SSD

$$
f(x)=\sum_{i=1}^{n}\left(x_{i}-1\right)^{2}+\left[\sum_{i=1}^{n} i\left(x_{i}-1\right)\right]^{2}+\left[\sum_{i=1}^{n} i\left(x_{i}-1\right)\right]^{4}
$$

PENALTY1

Table: Numerical results of PENALTY1

n	25	30	35	40	
$\# f$	9532	10947	14427	13577	NEWUOA
	2089	2784	2348	2812	SSD
$f_{\text {final }}$	$2.03 \mathrm{E}-04$	$2.48 \mathrm{E}-04$	$2.93 \mathrm{E}-04$	$3.39 \mathrm{E}-04$	NEWUOA
	$2.04 \mathrm{E}-04$	$2.50 \mathrm{E}-04$	$2.95 \mathrm{E}-04$	$3.41 \mathrm{E}-04$	SSD

$$
f(x)=10^{-15} \sum_{i=1}^{n}\left(x_{i}-1\right)^{2}+\left(\frac{1}{4}-\sum_{i=1}^{n} x_{i}^{2}\right)^{2}
$$

Table : Numerical results of SBRYBND

n	25	30	35	40	
$\#$	968	576	2052	2363	NEWUOA
	27889	53103	90304	206608	SSD
	235	326	342	395	NEWUOA
$f_{\text {final }}$	3.08	3.08	3.08	3.08	SSD
	134	284	233	229	

$$
f(x)=\sum_{i=1}^{n}\left[\left(2+5 p_{i}^{2} x_{i}^{2}\right) p_{i} x_{i}+1-\sum_{j \in J_{i}} p_{j} x_{j}\left(1+p_{j} x_{j}\right)\right]^{2},
$$

where $J_{i}=\{j \mid j \neq i, \max \{1, i-5\} \leq j \leq \min \{n, j+1\}\}$, and

$$
p_{i}=\exp \left(6 \frac{i-1}{n-1}\right)
$$

CHROSEN

Table: Numerical results of CHROSEN

n	25	30	35	40	
$\# f$	1123	1445	1717	1859	NEWUOA
	96040	103296	127726	142272	SSD
$f_{\text {final }}$	$8.94 \mathrm{E}-12$	$1.07 \mathrm{E}-11$	$1.13 \mathrm{E}-11$	$3.14 \mathrm{E}-11$	NEWUOA
	$2.95 \mathrm{E}-10$	$5.49 \mathrm{E}-10$	$7.26 \mathrm{E}-10$	$8.09 \mathrm{E}-10$	SSD

$$
f(x)=\sum_{i=1}^{n-1}\left[4\left(x_{i}-x_{i+1}^{2}\right)^{2}+\left(1-x_{i+1}\right)^{2}\right]
$$

Concluding remarks

- A subspace decomposition framework (two versions) with global convergence and convergence rate
- Possible to develop parallel and multilevel methods without using derivatives

Concluding remarks

- A subspace decomposition framework (two versions) with global convergence and convergence rate
- Possible to develop parallel and multilevel methods without using derivatives
- "Clever" way of choosing subspaces...

Concluding remarks

- A subspace decomposition framework (two versions) with global convergence and convergence rate
- Possible to develop parallel and multilevel methods without using derivatives
- "Clever" way of choosing subspaces...
- not try to cover the whole space, but ...

Concluding remarks

- A subspace decomposition framework (two versions) with global convergence and convergence rate
- Possible to develop parallel and multilevel methods without using derivatives
- "Clever" way of choosing subspaces...
- not try to cover the whole space, but ...
- choose subspaces randomly

Merci!

Merci! 谢谢!

zhang@mat.uc.pt

