

Recovery policies for Krylov solver resiliency

Sparse day 2013 Toulouse, France.

Emmanuel AGULLO, Luc GIRAUD, Abdou GUERMOUCHE, Jean ROMAN,

Mawussi ZOUNON

PROJECT-TEAM HiePACS Joint lab Inria-CERFACS FRANCE

- ★ HPC systems are not fault-free.
- ★ A faulty processor loose all its data.
- ★ Applications have to be resilient.

- ★ HPC systems are not fault-free.
- ★ A faulty processor loose all its data.
- ★ Applications have to be resilient.

Resilience: Ability to compute a correct output in presence of faults.

nnia

- ★ HPC systems are not fault-free.
- ★ A faulty processor loose all its data.
- ★ Applications have to be resilient.

Resilience: Ability to compute a correct output in presence of faults.

- * Goal: Keep converging in presence of fault.
- * Method: Re-generate lost data without Checkpoint/Restart strategy.
- ★ Approach: Numerical algorithm.
- ★ Context: Krylov solvers.

Outline

- 1. Faults in HPC Systems
- 2. Iterative methods for sparse linear systems
- 3. Our model assumptions
- 4. Interpolation methods
- 5. Numerical experiments
- 6. Concluding remarks and perspectives

Outline

- 1. Faults in HPC Systems
- 2. Iterative methods for sparse linear systems
- 3. Our model assumptions
- 4. Interpolation methods
- 5. Numerical experiments
- 6. Concluding remarks and perspectives

Framework

Forecast for exascale systems

- ★ Mean Time Between Failure (MTBF): less then one hour.
- Checkpoint overhead:
 - 30 minutes per checkpoint.
 - 1 Terabyte/second.
- Limitation of classical checkpointing.
- Explore fault-tolerant schemes with less/no overhead.
- Numerical algorithms to deal with overhead issue.

Faults in this presentation

core crashes (memory, caches, network connections, ...

Framework

Forecast for exascale systems

- ★ Mean Time Between Failure (MTBF): less then one hour.
- Checkpoint overhead:
 - 30 minutes per checkpoint.
 - 1 Terabyte/second.
- Limitation of classical checkpointing.
- * Explore fault-tolerant schemes with less/no overhead.
- Numerical algorithms to deal with overhead issue.

Faults in this presentation

core crashes (memory, caches, network connections, ...

Framework

Forecast for exascale systems

- ★ Mean Time Between Failure (MTBF): less then one hour.
- Checkpoint overhead:
 - 30 minutes per checkpoint.
 - 1 Terabyte/second.
- Limitation of classical checkpointing.
- ★ Explore fault-tolerant schemes with less/no overhead.
- ★ Numerical algorithms to deal with overhead issue.

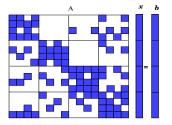
Faults in this presentation

* core crashes (memory, caches, network connections, ...)

Outline

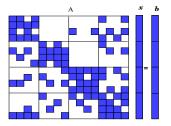
1. Faults in HPC Systems

- 2. Iterative methods for sparse linear systems
- 3. Our model assumptions
- 4. Interpolation methods
- 5. Numerical experiments
- 6. Concluding remarks and perspectives



Ax = b.

We have to design fault tolerant solver for sparse linear system.

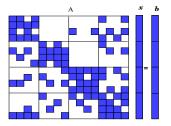


Ax = b.

We have to design fault tolerant solver for sparse linear system.

Two classes of iterative methods

- ★ Stationary methods (Jacobi, Gauss-Seidel, ...).
- ★ Krylov subspace methods (CG, GMRES, Bi-CGStab, ...).



$$Ax = b$$
.

We have to design fault tolerant solver for sparse linear system.

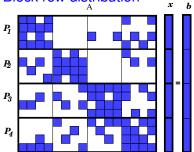
Two classes of iterative methods

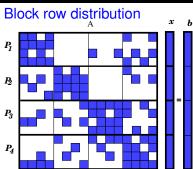
- ★ Stationary methods (Jacobi, Gauss-Seidel, ...).
- ★ Krylov subspace methods (CG, GMRES, Bi-CGStab, ...).
- ★ Krylov methods have attractive potential for Extreme-scale.

Outline

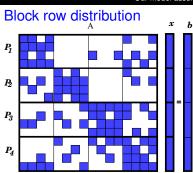
- 1. Faults in HPC Systems
- 2. Iterative methods for sparse linear systems
- 3. Our model assumptions
- 4. Interpolation methods
- 5. Numerical experiments
- 6. Concluding remarks and perspectives

Block row distribution $\underset{\scriptscriptstyle A}{^{\rm Block}}$

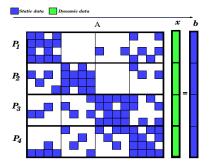




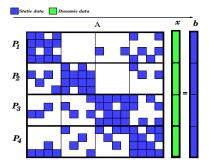
- ⋆ Static data.
- ⋆ Dynamic data.



- ★ Static data.
- ⋆ Dynamic data.

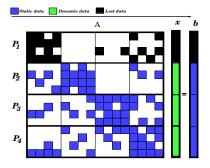


- ★ Static data.
- ⋆ Dynamic data.



- ★ Static data.
- ⋆ Dynamic data.

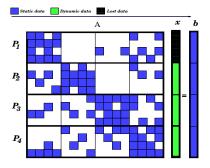
Let's Assume that P_1 fails.



We distinguish two categories of data:

- ★ Static data.
- ⋆ Dynamic data.

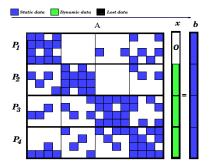
Let's Assume that P_1 fails.



- * Static data.
- ⋆ Dynamic data.

Let's Assume that P_1 fails.

- ★ Failed processor is replaced.
- ★ Static data are restored.



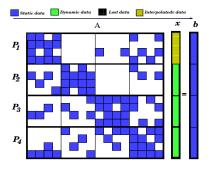
We distinguish two categories of data:

- * Static data.
- ⋆ Dynamic data.

Let's Assume that P_1 fails.

- ★ Failed processor is replaced.
- ★ Static data are restored.

* Reset: Set (x_1) to initial value.



We distinguish two categories of data:

- ★ Static data.
- ⋆ Dynamic data.

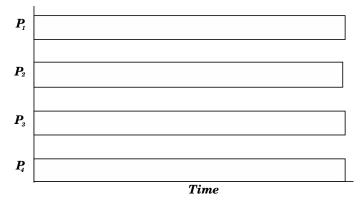
Let's Assume that P_1 fails.

- ★ Failed processor is replaced.
- ★ Static data are restored.

Our algorithms aim at recovering x_1 .

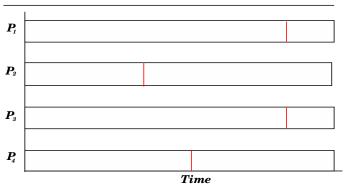
Joint lab Inria-CERFACS team HiePACS -Recovery policies for Krylov solver resiliency June 17, 2013-9

***** Reset: Set (x_1) to initial value.



- ★ Matlab prototype.
- ★ Simulation of parallel environment.

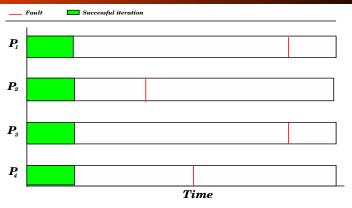
____ Fault



- ★ Matlab prototype.
- ★ Simulation of parallel environment.

- ★ Generation of fault trace.
- ★ Realistic probability distribution.

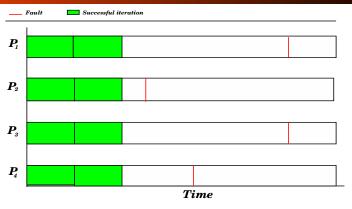
Overview of our fault tolerant algorithm



- ★ Matlab prototype.
- ★ Simulation of parallel environment.

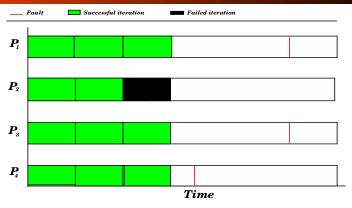
- Generation of fault trace.
- ★ Realistic probability distribution.

Overview of our fault tolerant algorithm



- ★ Matlab prototype.
- ★ Simulation of parallel environment.

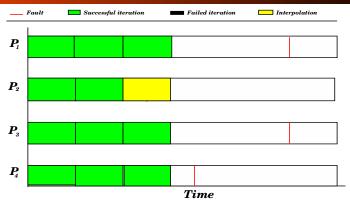
- ★ Generation of fault trace.
- ★ Realistic probability distribution.



- * Matlab prototype.
- ★ Simulation of parallel environment.

- ★ Generation of fault trace.
- ★ Realistic probability distribution.

Overview of our fault tolerant algorithm



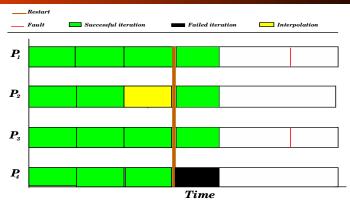
- Matlab prototype.
- * Simulation of parallel environment.

- Generation of fault trace.
- ★ Realistic probability distribution.



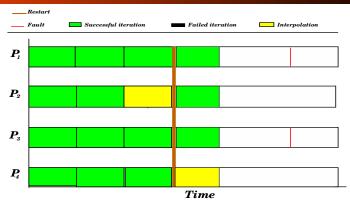
- ★ Matlab prototype.
- ★ Simulation of parallel environment.

- ★ Generation of fault trace.
- ★ Realistic probability distribution.



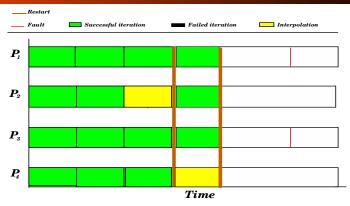
- ★ Matlab prototype.
- ★ Simulation of parallel environment.

- ★ Generation of fault trace.
- ★ Realistic probability distribution.



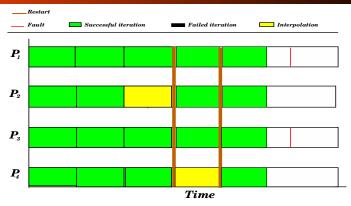
- ★ Matlab prototype.
- * Simulation of parallel environment.

- ★ Generation of fault trace.
- ★ Realistic probability distribution.



- ★ Matlab prototype.
- ★ Simulation of parallel environment.

- ★ Generation of fault trace.
- ★ Realistic probability distribution.



- ★ Matlab prototype.
- ★ Simulation of parallel environment.

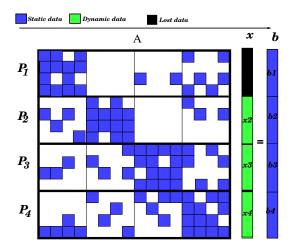
- ★ Generation of fault trace.
- ★ Realistic probability distribution.

Outline

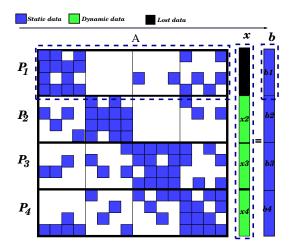
- 1. Faults in HPC Systems
- 2. Iterative methods for sparse linear systems
- 3. Our model assumptions
- 4. Interpolation methods
- 5. Numerical experiments
- 6. Concluding remarks and perspectives

Interpolation methods

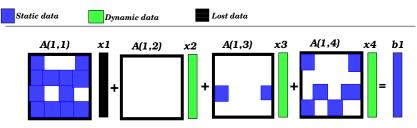
Linear Interpolation (LI) [Julien Langou et al, SIAM J. Sci, 2007]



Linear Interpolation (LI) [Julien Langou et al, SIAM J. Sci, 2007]

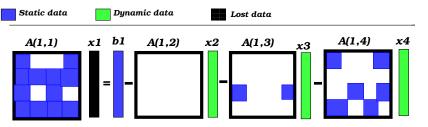


Linear Interpolation (LI) [Julien Langou et al, SIAM J. Sci, 2007]



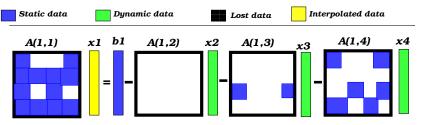
 $A_{(1,1)}x_1 + A_{(1,2)}x_2 + A_{(1,3)}x_3 + A_{(1,4)}x_4 = b_1.$

Linear Interpolation (LI) [Julien Langou et al, SIAM J. Sci, 2007]



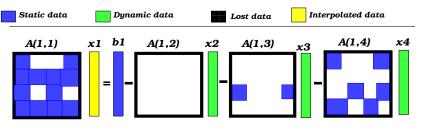
 $A_{(1,1)}x_1 = b_1 - A_{(1,2)}x_2 - A_{(1,3)}x_3 - A_{(1,4)}x_4.$

Linear Interpolation (LI) [Julien Langou et al, SIAM J. Sci, 2007]



 $A_{(1,1)}x_1 = b_1 - A_{(1,2)}x_2 - A_{(1,3)}x_3 - A_{(1,4)}x_4.$

Linear Interpolation (LI) [Julien Langou et al, SIAM J. Sci, 2007]



$$A_{(1,1)}x_1 = b_1 - A_{(1,2)}x_2 - A_{(1,3)}x_3 - A_{(1,4)}x_4.$$

$$A_{(i,i)}x_i^{(new)} = b_i - \sum_{i \neq j} A_{(i,j)}x_j.$$

Proposition

Let *A* be symmetric positive definite (SPD). The recovered entries defined by LI strategie are always uniquely defined. Furthermore, let $e^{(fail)} = x^{sol} - x^{(fail)}$, denotes the forward error associated with the current iterate, and $e^{(new)}$ be the forward error associated with the new initial guess recovered using the LI strategy, we have

$$\|e^{(new)}\|_{A}^{2} \leq \|e^{(fail)}\|_{A}^{2}.$$

Linear Interpolation (LI)

Proposition

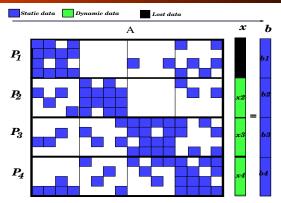
Let *A* be symmetric positive definite (SPD). The recovered entries defined by LI strategie are always uniquely defined. Furthermore, let $e^{(fail)} = x^{sol} - x^{(fail)}$, denotes the forward error associated with the current iterate, and $e^{(new)}$ be the forward error associated with the new initial guess recovered using the LI strategy, we have

$$\|e^{(new)}\|_{A}^{2} \leq \|e^{(fail)}\|_{A}^{2}.$$

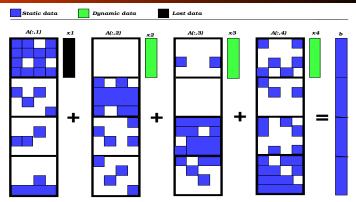
Corollary

The initial guess generated by LI after a fault does ensure that the A-norm of the forward error associated with the iterates computed by restarted CG or PCG is monotonically decreasing.

Least squares interpolation (LSI)

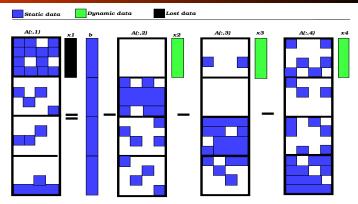


Least squares interpolation (LSI)



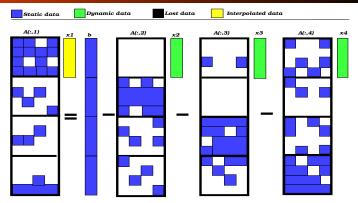
 $A_{(:,1)}x_1 + A_{(:,2)}x_2 + A_{(:,3)}x_3 + A_{(:,4)}x_4 = b.$

Least squares interpolation (LSI)



$$x_{1} = \underset{x}{argmin} \| (b - A_{(:,2)}x_{2} - A_{(:,3)}x_{3} - A_{(:,4)}x_{4}) - A_{(:,1)}x \|_{2}$$

Least squares interpolation (LSI)



$$x_{1} = \underset{x}{argmin} \| (b - A_{(:,2)}x_{2} - A_{(:,3)}x_{3} - A_{(:,4)}x_{4}) - A_{(:,1)}x \|_{2}$$

Least squares interpolation (LSI)

Proposition

The recovered entries defined by LSI strategie are always uniquely defined. Furthermore Let $r^{(fail)} = b - Ax^{(fail)}$ denote the residual associated with the iterate when the fault occurs, and $r^{(new)}$ be the residual associated with the initial guess generated with the LSI strategy, we have

$$||r^{(new)}||_2 \le ||r^{(fail)}||_2.$$

Least squares interpolation (LSI)

Proposition

The recovered entries defined by LSI strategie are always uniquely defined. Furthermore Let $r^{(fail)} = b - Ax^{(fail)}$ denote the residual associated with the iterate when the fault occurs, and $r^{(new)}$ be the residual associated with the initial guess generated with the LSI strategy, we have

$$\|r^{(new)}\|_2 \le \|r^{(fail)}\|_2.$$

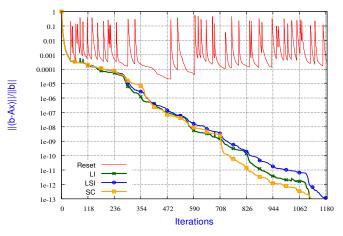
Corollary

The initial guess generated by LSI after a fault does ensure the monotonic decrease of the residual norm of minimal residual Krylov subspace methods such as GMRES and MinRES after a restarting due to a failure.

Outline

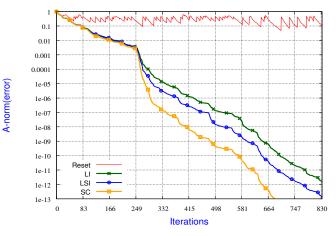
- 1. Faults in HPC Systems
- 2. Iterative methods for sparse linear systems
- 3. Our model assumptions
- 4. Interpolation methods
- 5. Numerical experiments
- 6. Concluding remarks and perspectives

Preconditioned GMRES



Right block diagonal Preconditioned GMRES on UF Averous/epb0 using 16 cores with 44 faults

PCG



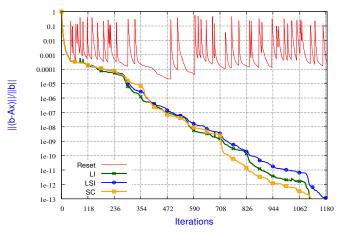
PCG on a 7-point stencil 3D Poisson equation using 16 cores with 70 faults

Impact of restart strategy

- Interpolate/restart strategy.
- When restarting, we loose krylov subspace built before fault.
- ★ Consequence: Delay of convergence.
- Restarting mechanism is naturally implemented in GMRES to reduce the computational resource consumption.
- ★ CG and BiCGStab do not need to be restarted.

Numerical experiments

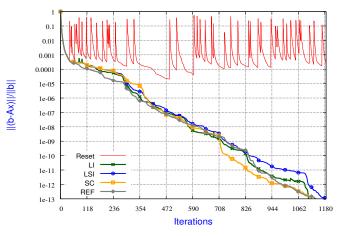
Impact of restart strategy on GMRES



Right block diagonal Preconditioned GMRES on UF Averous/epb0 using 16 cores with 44 faults

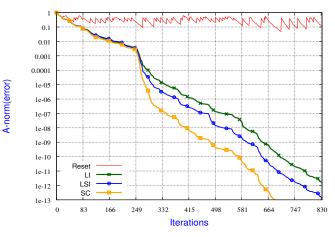
Numerical experiments

Impact of restart strategy on GMRES



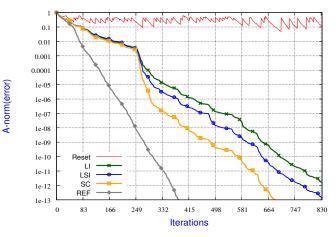
Right block diagonal Preconditioned GMRES on UF Averous/epb0 using 16 cores with 44 faults

Impact of restart strategy on PCG



PCG on a 7-point stencil 3D Poisson equation using 16 cores with 70 faults

Impact of restart strategy on PCG



PCG on a 7-point stencil 3D Poisson equation using 16 cores with 70 faults

Outline

- 1. Faults in HPC Systems
- 2. Iterative methods for sparse linear systems
- 3. Our model assumptions
- 4. Interpolation methods
- 5. Numerical experiments
- 6. Concluding remarks and perspectives

Concluding remarks

Concluding remarks

- We have designed techniques to interpolate meaningfull lost data.
- Our techniques preserve some of the key monotonicy of Krylov solvers.
- The restarting effect remains reasonable within the GMRES context.
- ★ No fault, no overhead.
- ★ Generalised to multiple faults.

Perspectives

ĺn

- ★ Study of others resilience schemes.
- ★ Best combination of interpolation and selective checkpoint.
- Real implementation subjected to fault tolerant MPI implementation.

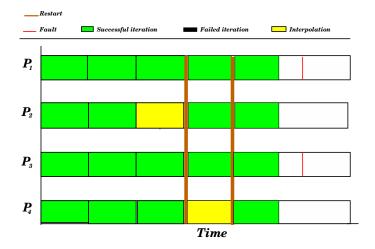
une 17, 2013- 🔀

Thank you for listening

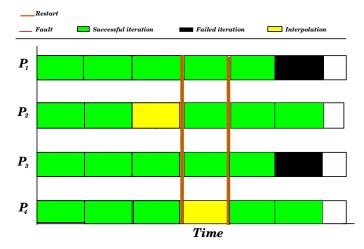
http://hiepacs.bordeaux.inria.fr/

PACS -Recovery policies for Krylov solver resiliency June 17, 2013- 24

Multiple Faults

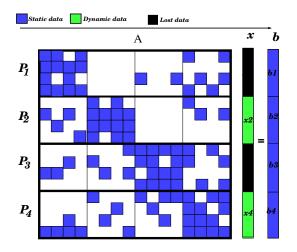


Multiple Faults



Multiple faults: more than one fault at the same iteration.

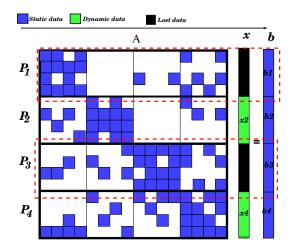
Multiple Faults



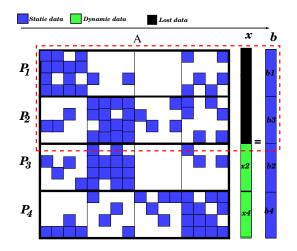
* x_3 is needed to interpolate x_1 , vice-versa.

* How to deal with data dependency?

Assembled recovery: LI-A/LSI-A

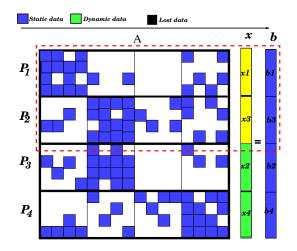


Assembled recovery: LI-A/LSI-A



Failed blocks are assembled.

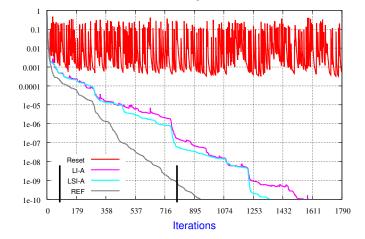
Assembled recovery: LI-A/LSI-A



Failed blocks are assembled.

Assembled recovery: LI-A/LSI-A

GMRES-Matrix:Averous_epb0(n=1794,nnz=7764) P=34 -mtbf=.66Mflops (SF=213, MF=2)



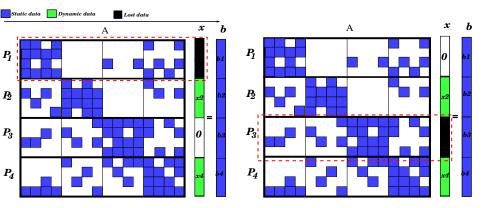
2 multiple faults.

||q||/|q-xH|

Ínría

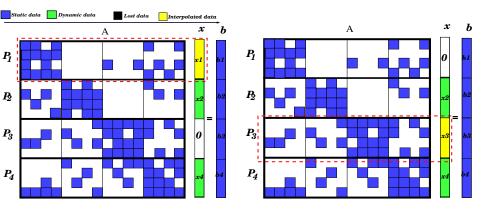
 \star 56th iteration and 784th iteration.

Parallel recovery: LI-P/LSI-P



Interpolate x_3 assuming that x_1 is equal to zero subvector. Interpolate x_1 assuming that x_3 is equal to zero subvector.

Parallel recovery: LI-P/LSI-P



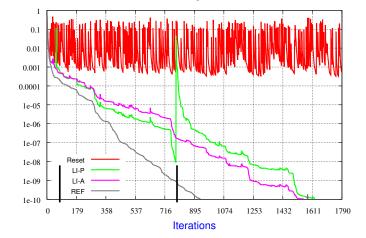
Interpolate x_3 assuming that x_1 is equal to zero subvector. Interpolate x_1 assuming that x_3 is equal to zero subvector.

LI-P

||Ax-b||/||b||

Ínría

GMRES-Matrix:Averous_epb0(n=1794,nnz=7764) P=34 -mtbf=.66Mflops (SF=213, MF=2)



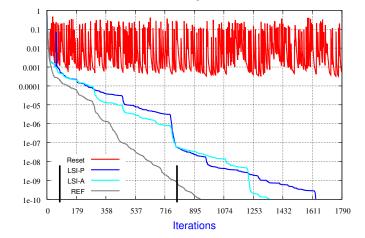
- * 2 multiple faults.
- \star 56th iteration and 784th iteration.

LSI-P

||Ax-b||/||b||

Ínría

GMRES-Matrix:Averous_epb0(n=1794,nnz=7764) P=34 -mtbf=.66Mflops (SF=213, MF=2)



- 2 multiple faults.
- \star 56th iteration and 784th iteration.