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F HPC systems are not fault-free.
F A faulty processor loose all its data.
F Applications have to be resilient.
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Resilience: Ability to compute a correct output in presence of faults.

F Goal: Keep converging in presence of fault.
F Method: Re-generate lost data without Checkpoint/Restart strategy.
F Approach: Numerical algorithm.
F Context: Krylov solvers.

F HPC systems are not fault-free.
F A faulty processor loose all its data.
F Applications have to be resilient.
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Faults in HPC Systems

Framework

Forecast for exascale systems
F Mean Time Between Failure (MTBF): less then one hour.
F Checkpoint overhead:

I 30 minutes per checkpoint.
I 1 Terabyte/second.

F Limitation of classical checkpointing.
F Explore fault-tolerant schemes with less/no overhead.
F Numerical algorithms to deal with overhead issue.

Faults in this presentation
F core crashes (memory, caches, network connections, . . . )
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x bA

=

Ax = b.
We have to design fault tolerant solver
for sparse linear system.
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F Krylov subspace methods (CG, GMRES, Bi-CGStab, . . . ).
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x bA

=

Ax = b.
We have to design fault tolerant solver
for sparse linear system.

Two classes of iterative methods
F Stationary methods (Jacobi, Gauss-Seidel, . . . ).
F Krylov subspace methods (CG, GMRES, Bi-CGStab, . . . ).

F Krylov methods have attractive potential for Extreme-scale.
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We distinguish two categories of data:

F Static data.
F Dynamic data.
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F Reset: Set (x1) to initial value.
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We distinguish two categories of data:

F Static data.
F Dynamic data.

Let’s Assume that P1 fails.
F Failed processor is replaced.
F Static data are restored.

F Reset: Set (x1) to initial value.

Our algorithms aim at recovering x1.
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Interpolation methods

Linear Interpolation (LI)

Proposition
Let A be symmetric positive definite (SPD).The recovered
entries defined by LI strategie are always uniquely defined.
Furthermore, let e(fail) = xsol − x(fail), denotes the forward error
associated with the current iterate, and e(new) be the forward
error associated with the new initial guess recovered using the
LI strategy, we have

‖e(new)‖2
A ≤ ‖e

(fail)‖2
A.
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associated with the current iterate, and e(new) be the forward
error associated with the new initial guess recovered using the
LI strategy, we have

‖e(new)‖2
A ≤ ‖e

(fail)‖2
A.

Corollary
The initial guess generated by LI after a fault does ensure that
the A-norm of the forward error associated with the iterates
computed by restarted CG or PCG is monotonically decreasing.
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Interpolation methods

Least squares interpolation (LSI)

Proposition
The recovered entries defined by LSI strategie are always
uniquely defined. Furthermore Let r(fail) = b− Ax(fail) denote the
residual associated with the iterate when the fault occurs, and
r(new) be the residual associated with the initial guess generated
with the LSI strategy, we have

‖r(new)‖2 ≤ ‖r
(fail)‖2.
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residual associated with the iterate when the fault occurs, and
r(new) be the residual associated with the initial guess generated
with the LSI strategy, we have

‖r(new)‖2 ≤ ‖r
(fail)‖2.

Corollary
The initial guess generated by LSI after a fault does ensure the
monotonic decrease of the residual norm of minimal residual
Krylov subspace methods such as GMRES and MinRES after a
restarting due to a failure.
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Numerical experiments
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Numerical experiments

Impact of restart strategy

F Interpolate/restart strategy.

F When restarting, we loose krylov subspace built before
fault.

F Consequence: Delay of convergence.

F Restarting mechanism is naturally implemented in GMRES
to reduce the computational resource consumption.

F CG and BiCGStab do not need to be restarted.
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Numerical experiments

Impact of restart strategy on GMRES
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Numerical experiments

Impact of restart strategy on PCG
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Concluding remarks

Concluding remarks
F We have designed techniques to interpolate meaningfull

lost data.
F Our techniques preserve some of the key monotonicy of

Krylov solvers.
F The restarting effect remains reasonable within the

GMRES context.
F No fault, no overhead.
F Generalised to multiple faults.

Perspectives
F Study of others resilience schemes.
F Best combination of interpolation and selective checkpoint.
F Real implementation subjected to fault tolerant MPI
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Thank you for listening
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http://hiepacs.bordeaux.inria.fr/
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Multiple Faults
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Multiple faults: more than one fault at the same iteration.
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Multiple Faults
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F x3 is needed to interpolate x1, vice-versa.
F How to deal with data dependency?
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Assembled recovery: LI-A/LSI-A
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Assembled recovery: LI-A/LSI-A
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F 2 multiple faults.
F 56th iteration and 784th iteration.
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Parallel recovery: LI-P/LSI-P
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LI-P
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F 2 multiple faults.
F 56th iteration and 784th iteration.
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LSI-P
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