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Introduction

* HPC systems are not fault-free.
* A faulty processor loose all its data.

HARDWARE ERROR * Applications have to be resilient.
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Introduction

* HPC systems are not fault-free.
* A faulty processor loose all its data.

HARDWARE ERROR * Applications have to be resilient.

Resilience: Ability to compute a correct output in presence of faults.

Goal: Keep converging in presence of fault.

Method: Re-generate lost data without Checkpoint/Restart strategy.
Approach: Numerical algorithm.

Context: Krylov solvers.

* % % %

l &L?,{a,— Joint lab Inria-CERFACS team HiePACS -Recovery policies for Krylov solver resiliency June 17, 2013- 2



. Faults in HPC Systems

—

N

Iterative methods for sparse linear systems

3. Our model assumptions

N

. Interpolation methods

5. Numerical experiments

»

. Concluding remarks and perspectives

. &zz&’a_..— Joint lab Inria-CERFACS team HiePACS -Recovery policies for Krylov solver resiliency June 17, 2013- 3



Faults in HPC Systems

Outline

1. Faults in HPC Systems
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Faults in HPC Systems
Framework

Forecast for exascale systems
* Mean Time Between Failure (MTBF): less then one hour.
* Checkpoint overhead:

» 30 minutes per checkpoint.
» 1 Terabyte/second.
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Forecast for exascale systems
* Mean Time Between Failure (MTBF): less then one hour.
* Checkpoint overhead:

» 30 minutes per checkpoint.
» 1 Terabyte/second.

*

Limitation of classical checkpointing.
Explore fault-tolerant schemes with less/no overhead.
Numerical algorithms to deal with overhead issue.

*

*
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Faults in HPC Systems
Framework

Forecast for exascale systems
* Mean Time Between Failure (MTBF): less then one hour.

* Checkpoint overhead:

» 30 minutes per checkpoint.
» 1 Terabyte/second.

*

Limitation of classical checkpointing.
Explore fault-tolerant schemes with less/no overhead.
Numerical algorithms to deal with overhead issue.

*

*

Faults in this presentation
* core crashes (memory, caches, network connections, .. .) }
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lterative methods for sparse linear systems

Ax = b.

We have to design fault tolerant solver
for sparse linear system.
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lterative methods for sparse linear systems

Ax = b.

We have to design fault tolerant solver
for sparse linear system.

Two classes of iterative methods
* Stationary methods (Jacobi, Gauss-Seidel, .. .).

* Krylov subspace methods (CG, GMRES, Bi-CGStab, .. .).
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lterative methods for sparse linear systems

Ax = b.

We have to design fault tolerant solver
for sparse linear system.

Two classes of iterative methods
*

* Krylov subspace methods (CG, GMRES, Bi-CGStab, .. .).

* Krylov methods have attractive potential for Extreme-scale.
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3. Our model assumptions
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r model assumptions

Block row dlstrlbutlon

B
1’3
Fy
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Our model assumptions

Block row dlstrlbutlon

R We distinguish two categories of data:
» Static data.

5 i » Dynamic data.

B,
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Our model assumptions

Block row dlstrlbutlon

R We distinguish two categories of data:
= Static data.

5 i » Dynamic data.

B,
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Our model assumptions

Wlstatic data [ Dynamic data
A X b

P,
i We distinguish two categories of data:

* Static data.
*» Dynamic data.
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Our model assumptions

Wlstatic data [ Dynamic data

5

A X b

i We distinguish two categories of data:

* Static data.
*» Dynamic data.

Let's Assume that P, fails.
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Our model assumptions

Wsatic data [T] Dynamic data Wl Lost data

A X b
]

We distinguish two categories of data:
B

* Static data.

B » Dynamic data.

Let's Assume that P, fails.
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Our model assumptions

Wl static data  [] Dynamic data [l Lost data

A X b

5

We distinguish two categories of data:
B

* Static data.

B » Dynamic data.

Let’'s Assume that P, fails.
* Failed processor is replaced.
* Static data are restored.
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Our model assumptions

Wl static data  [] Dynamic data [l Lost data
A X b

P,
We distinguish two categories of data:

* Static data.
» Dynamic data.

Let's Assume that P, fails.

* Failed processor is replaced. » Reset: Set (x;) to initial value.
» Static data are restored.
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Our model assumptions

Wl static dota [T pmamic duta [l tovtdata [ inerpotateds data

A
%
Let's Assume that P, fails.

» Failed processor is replaced. » Reset: Set (x;) to initial value.
» Static data are restored.

x

5

* * Static data.
» Dynamic data.

B

Fy

b
‘ We distinguish two categories of data:

Our algorithms aim at recovering x;.
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Our model assumptions

Overview of our fault tolerant algorithm

Ny

P,

N

Time

* Matlab prototype.
* Simulation of parallel
environment.
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Our model assumptions

Overview of our fault tolerant algorithm

—— Fault

F,
|

: |

P,

3 | ]

i |

Time

* Matlab prototype. * Generation of fault trace.
* Simulation of parallel » Realistic probability distribution.

environment.
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Our model assumptions
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— Fault [ Successful iteration
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Our model assumptions

Overview of our fault tolerant algorithm

— Fault [ Successful iteration WM Failed iteration [ Interpolation

P,
e L
i |
Time
* Matlab prototype. * Generation of fault trace.
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environment.
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Our model assumptions

Overview of our fault tolerant algorithm

Restart

— Fault [ Successful iteration WM Failed iteration [ Interpolation

P,

P

&N

Time

* Matlab prototype. * Generation of fault trace.

* Simulation of parallel * Realistic probability distribution.
environment.
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Our model assumptions

Overview of our fault tolerant algorithm

Restart

— Fault [ Successful iteration WM Failed iteration [ Interpolation
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P

Time

* Matlab prototype. * Generation of fault trace.

* Simulation of parallel * Realistic probability distribution.
environment.
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4. Interpolation methods

Joint lab Inria-CERFACS team HiePACS -Recovery policies for Krylov solver resiliency June 17, 2013- 11




Interpolation methods

Linear Interpolation (LI) [Julien Langou et al, SIAM J. Sci, 2007]

Wlstatic data [] Dynamic data W zost data

A
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Interpolation methods

Linear Interpolation (LI) [Julien Langou et al, SIAM J. Sci, 2007]

[Wlstatic data [] Dynamic data Wl o5t data
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Interpolation methods

Linear Interpolation (LI) [Julien Langou et al, SIAM J. Sci, 2007]

.Static data l:l Dynamic data . Lost data

A(1,1) x1  A1,2) x2 A(1,3) x3 Al4 x4 bl

EI+ '

A(171)X1+ A(172)X2+ A(173)X3 + A(174)X4 = bl .
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Interpolation methods

Linear Interpolation (LI) [Julien Langou et al, SIAM J. Sci, 2007]

- Static data l:l Dynamic data - Lost data

A(1,1) x1 bl  A1,2) x2 A(1,3) 3 Al,4) x4

BT

Aq Xt =br - A )% - A 3)%s - A a)Xa-
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Interpolation methods

Linear Interpolation (LI) [Julien Langou et al, SIAM J. Sci, 2007]

- Static data |:| Dynamic data - Lost data l:‘ Interpolated data

A(1,1) x1 bl  A@1,2) x2  A(1,3) x3 A(l1,4) x4

Aq Xt =br - A )% - A 3)%s - A a)Xa-

Joint lab Inria-CERFACS team HiePACS -Recovery policies for Krylov solver resiliency June 17, 2013- 12



Interpolation methods

Linear Interpolation (LI) [Julien Langou et al, SIAM J. Sci, 2007]

- Static data |:| Dynamic data - Lost data l:‘ Interpolated data

A(1,1) x1 bl  A@1,2) x2  A(1,3) x3 A(l1,4) x4

Aq Xt =br - A )% - A 3)%s - A a)Xa-

A(i,i)xz(nEW) =bi— Y AjpX-
i
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Interpolation methods

Linear Interpolation (LI)

Proposition

Let A be symmetric positive definite (SPD).The recovered
entries defined by LI strategie are always uniquely defined.
Furthermore, let e\ = yo! — x(fail) 'denotes the forward error
associated with the current iterate, and ¢("") be the forward
error associated with the new initial guess recovered using the
LI strategy, we have

2 iy 112
ey < [leVD1;.
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Interpolation methods

Linear Interpolation (LI)

Proposition

Let A be symmetric positive definite (SPD).The recovered
entries defined by LI strategie are always uniquely defined.
Furthermore, let e\ = xo! — x(fail) 'denotes the forward error
associated with the current iterate, and ¢("*) be the forward
error associated with the new initial guess recovered using the
LI strategy, we have

2 iy 112
ey < [leD1.

Corollary

The initial guess generated by LI after a fault does ensure that
the A-norm of the forward error associated with the iterates
computed by restarted CG or PCG is monotonically decreasing.
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Interpolation methods

Least squares interpolation (LSI)

Wlstatic data [T] Dynamic data Ml zost data

A
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Least squares interpolation (LSI)

Ml static data

Interpolation methods

A1)
|
L

x1 A,

D Dynamic data - Lost data
2) x2 A(:,3) x3 Ai4) x4 b
+ + =

+

L

Cn

A(:,l)x1+ A(:72)X2+ A(;,3)X3 + A(:,4)X4 = b.
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Interpolation methods

Least squares interpolation (LSI)

Wl static data [ |Pynamic data Wl o5t data

Ak

xl—argmmH(b A yXa — A 3)X3 — A ayXa) — Agnxll,-
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Interpolation methods

Least squares interpolation (LSI)

Wl static data Dnynamic data -Lost data I:l Interpolated data

A(:,3) x3

Ak

xl—argmmH(b A yXa — A 3)X3 — A ayXa) — Agnxll,-
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Interpolation methods

Least squares interpolation (LSI)

Proposition

The recovered entries defined by LS| strategie are always
uniquely defined. Furthermore Let r@) = p — Ax\%!) denote the
residual associated with the iterate when the fault occurs, and
r("ew) be the residual associated with the initial guess generated
with the LSI strategy, we have

1|y < [l
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Interpolation methods

Least squares interpolation (LSI)

Proposition

The recovered entries defined by LSI strategie are always
uniquely defined. Furthermore Let r@) = p — Ax(“!) denote the
residual associated with the iterate when the fault occurs, and
r("e¥) be the residual associated with the initial guess generated
with the LSI strategy, we have

[ P lra %

Corollary

The initial guess generated by LSI after a fault does ensure the
monotonic decrease of the residual norm of minimal residual
Krylov subspace methods such as GMRES and MinRES after a
restarting due to a failure.

v
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Numerical experiments

5. Numerical experiments
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Numerical experiments

Preconditioned GMRES
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Numerical experiments
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Numerical experiments
Impact of restart strategy

Interpolate/restart strategy.

*

*

When restarting, we loose krylov subspace built before
fault.

*

Consequence: Delay of convergence.

*

Restarting mechanism is naturally implemented in GMRES
to reduce the computational resource consumption.

CG and BiCGStab do not need to be restarted.

*
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Numerical experiments

Impact of restart strategy on GMRES
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Numerical experiments

Impact of restart strategy on GMRES
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Numerical experiments

Impact of restart strategy on PCG
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Numerical experiments

Impact of restart strategy on PCG
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6. Concluding remarks and perspectives
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Concluding remarks and perspectives
Concluding remarks

Concluding remarks

» We have designed techniques to interpolate meaningfull
lost data.

» Our techniques preserve some of the key monotonicy of
Krylov solvers.

» The restarting effect remains reasonable within the
GMRES context.

* No fault, no overhead.
» Generalised to multiple faults.

Perspectives
» Study of others resilience schemes.
» Best combination of interpolation and selective checkpoint.

» Real implementation subjected to fault tolerant MPI
I&} implementation.




Thank you for listening

rd

S http://hiepacs.bordeaux.inria.fr/
V2577
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Concluding remarks and perspectives

Multiple Faults

Restart

___ Fault [ Successful iteration W Failed iteration [ Interpolation

P,

P,

N

Time
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Concluding remarks and perspectives

Multiple Faults

Restart

___ Fault = Successful iteration W Failed iteration [ Interpolation

P

P,

N

Time

Multiple faults: more than one fault at the same iteration.
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Concluding remarks and perspectives

Multiple Faults

Wlstatic data [] Dynamic data W o5t data

A

x b
B

S

P,

* x3 is needed to interpolate x;, vice-versa.
* How to deal with data dependency?

=
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Concluding remarks and perspectives

Assembled recovery: LI-A/LSI-A

Wlstatic data [] Dynamic data Wl o5t data
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Concluding remarks and perspectives

Assembled recovery: LI-A/LSI-A

[Wlstatic data [] Dynamic data W o5t data

Failed blocks are assembled.
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Concluding remarks and perspectives
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Concluding remarks and perspectives

Assembled recovery: LI-A/LSI-A

GMRES-Matrix:Averous_epb0(n=1794,nnz=7764)
P=34 -mtbf=.66Mflops (SF=213, MF=2)
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Iterations

* 2 multiple faults.
* 56™ jteration and 784™ iteration.

. &z{a,— Joint lab Inria-CERFACS team HiePACS -Recovery policies for Krylov solver resiliency June 17, 2013- 27



Concluding remarks and perspectives

Parallel recovery: LI-P/LSI-P

Wl static data [T] Dynamic data Wl o5t data

S

Interpolate x; assuming that x; is equal to zero subvector.
Interpolate x; assuming that x; is equal to zero subvector.
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Concluding remarks and perspectives

Parallel recovery: LI-P/LSI-P

Wl static data [T] Dynamic data Mot data [ Jrnerpotated data

S

b

Interpolate x; assuming that x; is equal to zero subvector.
Interpolate x; assuming that x; is equal to zero subvector.
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GMRES-Matrix:Averous_epb0(n=1794,nnz=7764)
P=34 -mtbf=.66Mflops (SF=213, MF=2)
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Iterations
* 2 multiple faults.
* 56™ jteration and 784™ iteration.
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GMRES-Matrix:Averous_epb0(n=1794,nnz=7764)
P=34 -mtbf=.66Mflops (SF=213, MF=2)
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Iterations

* 2 multiple faults.
* 56™ jteration and 784™ iteration.
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