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W. Müller • H. Pohlmann • D. Salas y Melia • E. Sanchez • D. Smith •

L. Terray • K. Wyser • S. Yang

Received: 20 January 2014 / Accepted: 28 April 2014 / Published online: 9 May 2014
! Springer-Verlag Berlin Heidelberg 2014

Abstract A multi-model ensemble of decadal prediction
experiments, performed in the framework of the EU-fun-

ded COMBINE (Comprehensive Modelling of the Earth

System for Better Climate Prediction and Projection) Pro-
ject following the 5th Coupled Model Intercomparison

Project protocol is examined. The ensemble combines a

variety of dynamical models, initialization and perturbation
strategies, as well as data assimilation products employed

to constrain the initial state of the system. Taking advan-

tage of the multi-model approach, several aspects of dec-
adal climate predictions are assessed, including predictive

skill, impact of the initialization strategy and the level of

uncertainty characterizing the predicted fluctuations of key
climate variables. The present analysis adds to the growing

evidence that the current generation of climate models

adequately initialized have significant skill in predicting
years ahead not only the anthropogenic warming but also

part of the internal variability of the climate system. An

important finding is that the multi-model ensemble mean
does generally outperform the individual forecasts, a well-

documented result for seasonal forecasting, supporting the

need to extend the multi-model framework to real-time
decadal predictions in order to maximize the predictive

capabilities of currently available decadal forecast systems.

The multi-model perspective did also allow a more robust
assessment of the impact of the initialization strategy on

the quality of decadal predictions, providing hints of an

improved forecast skill under full-value (with respect to
anomaly) initialization in the near-term range, over the

Indo-Pacific equatorial region. Finally, the consistency

across the different model predictions was assessed. Spe-
cifically, different systems reveal a general agreement in

predicting the near-term evolution of surface temperatures,

displaying positive correlations between different decadal
hindcasts over most of the global domain.

1 Introduction

Predicting climate evolution over interannual-to-decadal
timescales represents a grand challenge for climate scien-

tists, and an unprecedented opportunity for decision-
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Norrköping, Sweden

C. Cassou ! E. Fernandez ! E. Sanchez ! L. Terray
European Centre for Research and Advanced Training in
Scientific Computation (CERFACS), Toulouse, France

A. Germe ! D. Salas y Melia
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makers to calibrate plans and actions over a temporal

horizon of a few years. The earliest exploratory investi-
gations on the intrinsic predictive capabilities of a climate

model date back to the second half of the 90s (Griffies and

Bryan 1997). However, it was only in the late 2000s that
successful steps towards valuable decadal predictions ini-

tialized with a realistic estimate of the climate state were

undertaken (Smith et al. 2007; Keenlyside et al. 2008;
Pohlmann et al. 2009; Mochizuki et al. 2010). These pio-

neering single-model efforts highlighted the strong
dependency of near-term predictions on specific elements

of the adopted prediction system (Hurrell et al. 2009;

Meehl et al. 2009). These, essentially, include: (i) a
dynamical model, (ii) a strategy for initialization and

ensemble generation (i.e., initial state perturbation), and

(iii) a set of analyses used to constrain the initial state of
the model with a realistic representation of the climatic

system. The choice made on each of these aspects intro-

duces, unavoidably, a degree of uncertainty in the predic-
tions. The use of a multi-model ensemble allows for

sampling these structural differences among individual

prediction systems. A significant fraction of this uncer-
tainty is associated with the varying physical parameter-

izations and numerical schemes adopted in individual

climate models. While the benefits stemming from the use
of a multi-model approach have been extensively docu-

mented for seasonal predictions (Palmer et al. 2004;

Hagedorn et al. 2005) and for long-term climate projections
(Lambert and Boer 2001; Tebaldi and Knutti 2007), indi-

cations that a similar behaviour holds for decadal hindcasts

is supported by a comparatively smaller amount of evi-
dence (van Oldenborgh et al. 2012; Garcı́a-Serrano and

Doblas-Reyes 2012; Kim et al. 2012; Goddard et al. 2013;

Meehl et al. 2013). The perspective of an ever-increasing
confidence in our knowledge of the ocean state, boosted by

the launch of the ARGO observing system, and in the

overall performance of coupled ocean–atmosphere general
circulation models (CGCMs), has led the climate science

community to foster several coordinated efforts aiming at a

systematic exploitation of the predictive skill featured by
current climate models at the interannual to decadal

timescales.

This issue has been tackled in a number of past and ongoing
EU-funded projects (ENSEMBLES, THOR, COMBINE,

SPECS). The multi-model, decadal prediction experiments

performed as part of the forerunner ENSEMBLES exercise
(van Oldenborgh et al. 2012; Garcı́a-Serrano and Doblas-

Reyes 2012) in particular, were conducive to the design of a

specific set of near-term predictions to be included as core
experiments in the 5th Coupled Model Intercomparison Pro-

ject (CMIP5; Meehl et al. 2009; Doblas-Reyes et al. 2011).

In this article, we analyze the results from the multi-
model ensemble of decadal prediction experiments

performed as part of the European Framework Program 7

COMBINE (Comprehensive Modelling of the Earth Sys-
tem for Better Climate Prediction and Projection) Project.

A primary objective of COMBINE was to improve cur-

rently available Earth-system models by including key
physical and biogeochemical processes so as to represent

more accurately the forcing mechanisms and the feedbacks

at work in the climate system. The decadal integrations
were part of a broad assessment focusing on the predictive

skill featured by a set of European state-of-the-art climate
models. The simulations were performed following the

CMIP5 protocol for near-term predictions (Taylor et al.

2012), and therefore they contributed to the Intergovern-
mental Panel on Climate Change Fifth Assessment Report

(IPCC AR5).

In this study, the COMBINE set of initialized simula-
tions is scrutinized to examine several aspects of decadal

predictions within a multi-model framework. The main

aims of this study are: to assess the predictive skill, to
investigate the impact of the initialization strategy and to

assess the uncertainty characterizing the near-term pre-

diction of key climate variables in a multi-model ensemble
of CMIP5 decadal integrations.

The paper is structured as follows. The main features

of the multi-model ensemble and the experimental design
are described in Sect. 2. The metrics and the observa-

tional data sets used to verify the forecast skill of the

prediction systems are described in Sect. 3. The predictive
skill associated with the global-mean surface temperature

is shown in Sect. 4. Section 5 is devoted to the analysis of

regional forecast skill exhibited both by individual sys-
tems and the multi-model ensemble-mean. In Sect. 6, the

impact of the initialization method on the quality of

decadal predictions is assessed. A quantitative analysis of
some aspects of the uncertainty associated with the pre-

dictions is presented in Sect. 7. Finally, concluding

remarks are provided in Sect. 8.

2 The COMBINE multi-model ensemble

The COMBINE multi-model ensemble (CME) consists of

six decadal prediction systems (DPSs; listed in Table 1)
blending different dynamical models, initialization and

perturbation strategies, and data assimilation products

employed to constrain the initial state of the system. The
dynamical models used in this study are: CMCC-CM, EC-

Earth, CNRM-CM5, MPI-ESM-LR and HadCM3.

Within the CME, two different initialization strategies
are used: full initialization (CMCC-CM, CNRM-CM5 and

EC-Earth in the implementation adopted by KNMI) and

anomaly initialization (HadCM3, MPI-ESM-LR and EC-
Earth in the implementation followed by SMHI and
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DMI). In the full initialization strategy, a three-dimen-

sional, observational estimate of the climate state is
assigned as the initial condition of the dynamical model at

the start of each simulation. In the anomaly initialization

strategy, observed anomalies are added to the model’s
own climatology so as to construct an initial state of the

coupled system. Regarding the perturbation techniques

represented in the CME, these reflect the best practices
currently in use at several climate modeling centres. With

each DPS, a set of near-term predictions has been per-
formed in compliance with the CMIP5 experimental

design (Taylor et al. 2012). This is summarized as fol-

lows. The decadal hindcasts/forecasts consist of 10- or
30-year integrations initialized on the 1st of November of

the years 1960–2005 at a 5-year interval, except for

CNRM-CM5 and MPI-ESM-LR initialized on the 1st of
January of the years 1961–2006 at the same interval,

yielding ten hindcasts for each DPS.

For each start date, an ensemble of integrations (with a
minimum size of three members) is performed. The initial

conditions for the ocean are required to be a realistic rep-

resentation of the observed state, while there are no
restrictions regarding the initialization of sea-ice, land

surface and the atmosphere. However, as shown in Table 1,

some DPS realistically initialize these components, too.
Historical radiative forcing conditions, including green-

house gases (GHGs), aerosols, ozone and solar irradiance

variability, are used for the 1960–2005 period, followed by
the RCP4.5 scenario settings from 2006 onward. Aerosol

forcing for major historical volcanic eruptions is also

included in the forcing fields of the DPSs, with the
exception of the CMCC-CM system. It is important to

emphasize that the inclusion of volcanic emissions among

the forcing fields used to constrain a given climate model

leads to an overestimation of the real predictive skill, as in
a real climate forecast we have no knowledge about future

volcanic eruptions.

The following results are based on 10-year hindcasts of
annual-mean surface temperature and global precipitation

fields. For each individual system, only its own ensemble-

mean prediction is considered.
Finally, the multi-model ensemble mean (MME) fore-

cast is computed as a simple, equally-weighted, average of
all model forecasts in the COMBINE ensemble.

3 Verification

Following the recommendations by Goddard et al. (2013),
here the predictive skill of individual systems and of the

multi-model ensemble mean, is evaluated through the

anomaly correlation coefficient (ACC; Wilks 2006)
between annual mean (Jan–Dec) predictions and observa-

tions averaged over the lead-time intervals 2–5 and

6–9 years.
In order to remove the spurious signal associated with

the model adjustment following the initialization, a stan-

dard bias-correction procedure defined in International
CLIVAR Project Office (ICPO 2011) is applied to surface

temperature fields. For methodological consistency, the

same ‘‘full field’’ approach to bias correction (i.e., with the
model climatology defined as the average forecast com-

puted over the collection of available forecasts for the

1960–2010 period; see section 4a in ICPO 2011) is here
applied to all systems, therefore including those relying on

the anomaly initialization.

Table 1 The six decadal prediction systems (DPS) of the ensemble, the corresponding model used, spatial resolution (ocean/atmosphere),
initialization method, initialized components, and ensemble size

Institute Dynamical model Resolution:
AGCM OGCM

Initialization
strategy

Initialized
components

Ensemble
size

Centro Euro-Mediterraneo sui Cambiamenti
Climatici (CMCC)—Italy

CMCC-CM 0.7" L31

1.2" L31

Full Ocean 3

Royal Netherlands Meteorological Institute
(KNMI)—Netherlands

EC-Earth 1.1" L62

1" L42

Full Atmosphere, land

Ocean, sea-ice

5

Swedish Meteorological and Hydrological Institute
(SMHI)—Sweden

Danish Meteorological Institute (DMI)—Denmark

EC-Earth 1.1" L62

1" L42

Anomaly Atmosphere, land

Ocean, sea-ice

7

European Centre lor Research and Advanced
Training in Scientific Computation (CERFACS)/
Météo-France/CNRM (MF-CNRM)—France

CNRM-CM5 1.4" L31

0.7" L42

Full Ocean 10

Max Planck Institute for Meteorology (MPI-M)—
Germany

MPI-ESM-LR 1.9" L47

1.5" L40

Anomaly Ocean 10

Met Office Hadley Centre (MOHC)—UK HadCM3 3.75" 9 2.5" L19

1.25" L20

Anomaly Atmosphere, land

Ocean, sea-ice

10
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A one-tailed test against the null-hypothesis of non-

positive correlation is applied to verify the statistical sig-
nificance of the ACC values. The autocorrelation in the

time series, which reduces the effectively independent data,

is accounted for through the computation of the effective
sample size, using the method outlined in Bretherton et al.

(1999).

Predictive skill is evaluated against HadISST (Rayner
et al. 2003) and CRUTEM3 (Brohan et al. 2006) data, used

as observational references for sea surface temperature
(SST) and 2-m air temperature (T2M) over land, respec-

tively, while the GPCC-v4 data set (Schneider et al. 2008)

is used for precipitation. Prior to the computation of
anomaly correlations, both model and observational fields

were linearly interpolated onto a common regular grid at a

1" 9 1" spatial resolution.

4 Global mean surface temperatures

Figure 1 displays the evolution of the annual mean, glob-

ally averaged surface temperature (middle panel: T2M over
land, and bottom panel: SST) for each individual DPS, the

multi-model ensemble mean and observations. In the glo-

bal averaging, all grid points with missing observations
have been excluded so that the model results are compared

fairly with observations over the same domain. Large areas

with missing observations include Antarctica (CRUTEM3)
and high-latitude oceans (HadISST).

The hindcasts successfully reproduce the observed long-

term surface temperature trend, with the envelope of the
multi-model ensemble mostly encompassing the observa-

tions, and a good part of the multi-year variability. Addi-

tionally, the hindcasts appear to follow the observations in
the temperature changes that occurred after major historical

volcanic eruptions, whose radiative fingerprint is included

as an external forcing in most of the prediction systems
(see, in particular, the projected surface temperature drop

following the 1991 Mount Pinatubo eruption). On the other

hand, significant departures from the observed record occur
in correspondence to vigorous El Niño–Southern Oscilla-

tion (ENSO) events (most notably, the 1997 El Niño and

2008 La Niña episodes). Seasonal forecasting efforts have
shown considerable skill in predicting the evolution of

ENSO, yet, the above-mentioned episodes were not cor-

rectly predicted. Whether or not this is caused by the wide,
5-year interval between successive initialization dates is an

open question due to the limited availability of yearly

initialized decadal hindcasts to compare against the 5-year
canonical predictions. Doblas-Reyes et al. (2011) compare

1- versus 5-year initialized integrations performed with the

UK Met Office DPS (DePreSys) and find no significant
differences in terms of 2–5 lead-year skill for surface

temperature over the equatorial Pacific (see their Fig. 1b,

d). However, the robustness of this result should be tested
using a larger set of models.

5 Evaluation of forecast skill

5.1 Multi-model ensemble mean

In the present section, the predictive skill associated with
surface temperatures (SST and T2M) and precipitation

over land is evaluated with the use of the ACC between

annual mean observations and MME anomalies.
Following the approach outlined in van Oldenborgh et al.

(2012), we evaluate both the ‘‘total’’ skill (which refers to

the total signal including the one associated with the
observed warming trend in the initial and boundary condi-

tions) and the ‘‘residual’’ skill associated with climatic

fluctuations around the above-mentioned trend. These are
obtained by removing a long-term linear fit from both the

model output and the observations at every grid point. The

multi-model ensemble mean ACC maps for surface tem-
perature (T2M and SST), evaluated over the lead-time

periods 2–5 and 6–9 years (with and without the trend

removal; Fig. 2) reveal a fairly in-homogenous spatial dis-
tribution of skill. Before removing the trend, the ACC is

positive and exceeds the threshold value corresponding to

the 95 % level of statistical significance over extensive
portions of the oceans (particularly, the Indian and North

Atlantic oceans) and continents (note that in Fig. 2 stippling

is applied to the areas where the ACC is not statistically
significant so as to allow a clearer visualization of the fea-

tures associated with statistically significant high skill).

Negative correlations are found in the Pacific and Southern
oceans and over parts of the South American continent. This

pattern holds for both the lead-time periods examined, but

with slightly higher values in the longer (6–9 years) term.
After removing the long-term trends in both the observed

and the predicted time series, the local forecast skill

undergoes a substantial reduction over most of the global
domain, indicating that the warming trend imposed through

the initial conditions and the prescribed radiative forcing is

the primary cause for the very high forecast skill seen in the
non-detrended ACC maps. Significant predictive skill

beyond a pure trend is found in the 2–5 year range, over the

North Atlantic and over a zonal belt stretching from the
Mediterranean basin, to northern Africa and to Eurasia. A

similar pattern is found in the 6–9 year range, but with an

enhanced skill in the extra-tropical Pacific. The dramatic
reduction in skill occurring in the Indian Ocean basin, after

trend removal, reflects the fact that the predictable signal in

this area is primarily driven by changes in the radiative
forcing (Guemas et al. 2012).
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The assumption of a linear trend to describe the multi-

decadal surface temperature evolution may be questionable,
as it is known that the global warming signal exhibits con-

siderable departures from linearity, especially at the regional

scale (e.g., Ting et al. 2009 for the North Atlantic). However,
given the shortness of the analyzed period, the departures

from linearity in our 50-year long time series are arguably

small compared to other possible errors, such as the ones
arising from the bias-correction. The impact on predictive

skill determined by a non-linear trend assumption was

assessed by using a polynomial quadratic law instead of the
linear fit. The resulting de-trended ACC patterns (not shown)

provided similar results to those based on a linear trend

assumption, shown in Fig. 2 (see also van Oldenborgh et al.
2012).

For the non-detrended case, the occurrence of negative

ACC values over vast parts of the globe indicates that even
for the well-detected twentieth century warming trend,
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Fig. 1 (Top) Time series of
observed SST in the NINO3
region (150–90W, 5S–5N).
SSTs are taken from HadISST
(Rayner et al. 2003). Vertical
grey lines mark the major
volcanic eruptions occurred
during the 1960–2010 reference
period: Agung (March 1963), El
Chichon (March 1982) and
Pinatubo (June 1991). (Middle)
Globally averaged T2M over
land. The plot shows annual
mean observations and the
corresponding time series for all
the 10-year long hindcasts,
including the multi-model
ensemble mean. The grey
envelope highlights the spread
of the ensemble. (Bottom) As
middle panel, but for SST
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there may be large discrepancies locally between the

observed and the predicted surface temperature trends.

While strictly speaking negative correlations indicate no
skill and are virtually indistinguishable from any other

below-significance ACC value, practically their occurrence

may help in identifying a specific source of error in models
forecast. To better clarify this point, the long-term linear

trends are diagnosed from both observations and predic-

tions, for the 1960–2010 period (shown in Fig. 3). While
some of the large-scale features in the multi-model trend

pattern are consistent with the observations (see, for

instance, the pronounced land-to-ocean gradient, with the
continents warming at a faster rate than the sea surface),

there are extensive areas, mainly over the oceans, where

the predicted and the observed rate of change are clearly
negatively correlated. These include, most notably, the

extra-tropical North Pacific, the western North Atlantic (off

the eastern US seaboard) and parts of the western South
American continent, in proximity to the Andes. Here the

observed trends are weakly negative, in contrast to the

warming trends predicted by the models. The close match
between these regions and those displaying negative ACC

values for non-detrended surface temperature (shown in

Fig. 2) suggests that the reason behind the models’ poor
predictive skill lies in their inability to reproduce correctly

the relative fraction of the forced and unforced component

in the observed variability signal, with the former domi-

nating over the latter in the above mentioned critical
regions.

Figure 4 shows the corresponding ACC maps for pre-

cipitation over land. The ACC was computed only at grid
points containing at least one rain gauge with a sufficiently

long record. Clearly, over large areas of the globe

(including all oceans, high latitudes, and deserts) there are
no such measurements available. This is reflected in the

sparseness of the ACC field, which is also quite noisy

spatially indicating poor predictability skill. These char-
acteristics of the ACC field make difficult the visualization

of statistical significance through stippling. Therefore, here

the statistical significance is assessed by visual inspection
of the ACC values. Given the small and more or less

uniform autocorrelation characterizing the time series of

precipitation, a spatially constant effective sample size can
be assumed in the assessment of statistical significance. For

N = 9 independent values (the last start-date was not

considered for consistency with the observed record),
corresponding to N - 2 = 7 degrees of freedom, the ACC

threshold values corresponding to the 90 and 95 % levels

of statistical significance are about 0.47 and 0.58, respec-
tively. Given the pioneering stage of decadal forecasts,

Fig. 2 (Left) Multi-model ensemble-mean (MME) anomaly correla-
tion coefficient (ACC) maps for T2M (over land) and SST, for lead-
time periods (top) 2–5 and (bottom) 6–9 years. (Right) The
corresponding maps after the long-term linear trends have been
removed from both the model data and the observations. Stippling is

used to indicate points where statistical significance is below the
95 % level, according to a one-tailed t test accounting for autocor-
relation in the time series. The green frame indicates the boundary of
the MAME region, used in Fig. 6 (see text for details)
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particularly when applied to precipitation fields, a 90 %

significance level (corresponding to a p value p = 0.1) is
here considered acceptable.

As for surface temperature (Fig. 2), here ACC maps are

presented for the precipitation anomalies before and after

the trend removal. However, in contrast to surface tem-

perature, precipitation does not exhibit locally a well-
defined trend; consequently the ACC field for precipitation

is largely unaffected by the trend removal. In fact, the

chances of removing an erroneous trend are quite high, and

Fig. 3 Patterns of linear surface temperature trends (SST and T2M
over land; K year-1) over the period 1961–2010 estimated from (top)
HadISST/CRUTEM3 data and (bottom) multi-model ensemble mean
predictions. Trends are computed by a least-square fit of a first order

polynomial. For predictions, nine 10-years long hindcasts have been
used. The last forecast (2005–2015) is not used for consistency with
the observed period (1961–2010). Contours are used to highlight
negative trends (countour interval 0.005 K/year)

Multi-model ensemble of decadal climate predictions 2793
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therefore the detrended ACC should be considered with

care.

In spite of its noisy character, the ACC fields for pre-
cipitation display significant predictive skill over certain

regions, particularly at the lead-time period 6–9 years.

Specifically, the Sahel, mid-latitude Eurasia and parts of
North America feature some patches in which one or both

of the above-mentioned threshold values of statistical sig-

nificance are exceeded. A more in-depth discussion on the
potential links between the enhanced forecast skill found

over these regions and the Atlantic multi-decadal vari-

ability is given in Sect. 5.3. The relative increase of ACC
values with lead-time (non-detrended case) indicates that

the predictive skill in precipitation stems from the external
forcing rather than from the initialization. This specific

aspect is further highlighted in the analysis presented in the

next section.

5.2 Forecast skill of individual decadal prediction

systems

So far, we focused on the point-wise predictive skill of the

MME. In the following, the predictive skill associated with
each individual prediction system, including the MME, is

evaluated through a metric based on the percentage of the

area where the corresponding ACC exceeds a 90 % sta-

tistical significance threshold. This metric is applied to the

previously analysed lead-time periods, before and after the
trend removal, for T2M, SST and precipitation. All the

results we refer to in this section are illustrated in Fig. 5.

Examining the global skill metric for SST and T2M we
see that: (i) for the non-detrended ACC the skill values are

slighly higher in the 6–9 range compared to the 2–5 range,

and the corresponding ensemble spread is lower, while (ii)
for the detrended ACC the skill values are slightly higher in

the near-term (2–5 range). These facts may accept the

following explanation. In the non-detrended case, most of
the predictive skill is dictated by the externally imposed

forcings, which are essentially the same across the DPS
ensemble. However, the near-term response (2–5 range) is

more strongly dependent on the initial conditions, which

vary significantly across the DPS ensemble due to the use
of different ocean reanalyses, sea-ice initialization, etc.

Also, the near-term response is more strongly influenced by

the model drift, which differs significantly from model to
model (see also Branstator and Teng 2010, 2012; Brans-

tator et al. 2012). These points are consistent with the

features mentioned in (i) and (ii), namely: Before detr-
ending the correlations are determined by the models’

coherent response to the trends (here the above-mentioned
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Fig. 4 (Left) Multi-model ensemble-mean (MME) anomaly correla-
tion coefficient (ACC) maps for precipitation, for lead-time periods
(top) 2–5 and (bottom) 6–9 years. (Right) The corresponding maps
after the long-term linear trends have been removed from both the

model data and the observations. The green frame indicates the
boundary of the Sahel region, used in Fig. 6. Correlations are
statistically significant at p \ 10 % for ACC [ 0.47 (see also text)
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differences in the near-term response tend to introduce a
degree of discrepancy across the DPS ensemble, leading to

lower ACC values and larger ensemble spread). On the

other hand, after detrending the correlations (predictive
skill) will be mainly due to anomalies determined by the

initial conditions, and in this case the near-term response

has a better chance to be skillful (e.g. via the memory of
the upper ocean heat content).

Regarding precipitation, the global skill is typically low

(with or without trends). However, it is interesting to note
how, consistently with (i), a few models display slightly

higher values in the 6–9 years interval, leading to a con-

sistently higher MME skill over this range.
Another important aspect emerging from this analysis,

for T2M and SST, is that the MME exhibits predictive skill

that is generally better than (or at least comparable to) the
best individual DPS prediction, thus supporting the

coordinated efforts that are being made for greater multi-

model ensembles in the design of decadal prediction
experiments. In the fields of seasonal prediction and

weather forecasting this is a well-documented fact (Palmer

et al. 2004).
When comparing the global skill scores featured by

individual DPSs in Fig. 5, the differences in the corre-

sponding ensemble size must be taken into account. While
a robust relationship between the ensemble size and the

corresponding predictive skill has been found in the con-
text of single DPS experiments (Chikamoto et al. 2013),

such a clear link appears to be elusive in our multi-model

analysis.
As shown in Fig. 5, predictions based on a relatively

low number of ensemble members do not necessarily yield

correspondingly lower quality forecasts, when compared
with large-sized ensemble predictions. This suggests that a

number of other factors play a more determinant role in

setting the overall skill of a DPS, with the inter-model
diversity likely blurring the relationship between skill and

ensemble size emerging from single-model decadal fore-

cast assessments (Chikamoto et al. 2013).

5.3 Regional assessment

The global ACC fields revealed pronounced spatial vari-

ability of predictive skill (Figs. 2, 4). The detection of

significant predictability after removing the linear trends
suggests that predictable processes exist, related to the

internal variability of the system, giving rise to predictive

skill beyond the default global warming signal. Based on
the global ACC maps for surface temperature and precip-

itation, a few domains are selected featuring consistently

large anomaly correlation values, to perform a more
detailed, regional-scale analysis of predictability. The

selected areas are: (i) the Atlantic oceanic sector, (ii) the

Mediterranean, NE Africa and Middle East region
(MAME) [defined over (20–45N, 10–50E]; see box in

Fig. 2), and (iii) the Sahel [defined over (8–18N, 15W–

15E); see box in Fig. 4), displaying enhanced ACC for
SST, T2M and precipitation, respectively.

As a measure of predictive skill at different lead-times,

the ACC is computed between the predicted and observed
values of specific climate variability indices (Atlantic

Multi-decadal Oscillation and Atlantic SST Dipole; see

below for a definition of these indices) or the area-weighted
average of T2M and precipitation within the selected

domains. The skill of individual systems is also tested

against a statistical model based on persistence of observed
initial conditions. In order to enhance the signal-to-noise

ratio, the ACC is calculated using 3-year running averages,

namely, for lead-years (1–3, 2–4, etc.). Regarding the
regional indices for T2M and precipitation, long-term
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Fig. 5 For each of the three variables (SST, T2M and PREC) the
histograms show the percentages of the area where the corresponding
ACC is positive and exceeds the 90 % statistical significance
threshold (see text). For each variable the ACC is calculated over a
different portion of the globe. The lead-year periods 2–5 (top) and 6–9
(bottom) are used. Each pair of columns refers to before and after
removing the trend
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trends are removed before the ACC computation, whilst the

Atlantic variability indices are not affected by the global
warming signature, by definition (see below). Here we

define a ‘‘predictability limit’’ as the lead time beyond

which the computed ACC falls under a particular threshold
value of statistical significance, based on a one-tailed

Student’s t test.

The predictive skill over the Atlantic area is evaluated
via two indices characterizing the Atlantic decadal-scale

variability: the Atlantic Multi-decadal Oscillation index
(AMO) and the Atlantic Dipole index (AD). Following the

definition of Trenberth and Shea (2006), the AMO is

computed as the area-weighted average SST over the North
Atlantic (0–60N, 0–80W) minus the global (60S–60N)

mean SST. The AD is defined as the difference of the area-

weighted average SST between (40–60N, 60–10W) and
(40–60S, 50W–0E) (Latif et al. 2006). Both of these cli-

mate variability indices are thought to be strongly depen-

dent on the low-frequency variability of the thermohaline
circulation (Knight et al. 2005; Latif et al. 2006).

The AMO (Fig. 6a) appears to be predictable within a

time-scale that depends strongly on the particular DPS,
ranging from 2–4 up to 8–10 years. MME does generally

outperform the individual systems, with ACC values

exceeding 0.7 for most of the lead years. The AD index
(Fig. 6b) displays a similar behaviour with respect to the

AMO index, but with a sizeably higher skill at short lead

times (up to 3–5 years) for the MME. A closer inspection
of ACC evolution for individual models reveals that this is

mostly determined by the specific behaviour of a sub-set of

models (in particular, CNRM-CM5, HadCM3 and MPI-
ESM-LR) in the short lead-year range, with the other

systems showing relatively smaller differences when

comparing AD with AMO index predictability. For both
Atlantic indices, persistence is systematically beaten by

MME, and by most individual systems from lead-years 2–4

onward.
The near-surface air temperature (T2M) over the

MAME region (Fig. 6c) features a high degree of pre-

dictability, with the MME displaying significant skill up to
10 years. Interestingly, different systems display similar

changes of ACC with lead-time (for example, compare EC-

Earth and MPI-ESM-LR). Since surface temperature pre-
dictability over land is typically weak in CGCMs (Boer and

Lambert 2008), the large forecast skill found over the

MAME region is suggestive of a possible remote oceanic
influence. In particular, considering the influence exerted

by the AMO on the adjacent regions (Knight et al. 2005),

the long-term predictability found for the AMO index may
explain part of the predictive skill found for T2M in the

MAME area (Matei et al. 2012a). Regarding the compar-

ison with persistence, similar considerations apply to the
MAME region as for the Atlantic indices.

The Sahel is among the few areas displaying (mar-

ginally) significant skill for MME precipitation (see
Fig. 4). Comparing the predictive skill of different DPSs

over this area (Fig. 6d) a considerably large spread is

found, with the ACC for individual hindcasts ranging
from being marginally significant to systematically below

the threshold corresponding to the 90 % level of statistical

significance, and often outperformed by persistence, par-
ticularly in the near range. This spread is indicative of the

large uncertainties associated with the representation of
rainfall variability in current climate models. Another

feature is the markedly non-monotonic evolution of ACC

with lead-time, exhibited by most of the models. This
reflects on the MME, which shows the highest predictive

skill around years 3–5.

Concerning the noisy behaviour featured by the ACC for
most of the regional indices considered in this analysis

(largely deviating from the expected monotonic declining

evolution with lead-time), this can be ascribed to the low
number of points used in the computation of anomaly

correlations when using a 5-year spacing between start

dates, as also suggested by Doblas-Reyes et al. (2011). This
issue is further discussed in Sect. 6.

Finally, it is worth noting the differences between the

predictive skill of the EC-Earth-KNMI and the EC-Earth-
SMHI/DMI systems, as these involve the very same

model and only differ in the initialization strategy, thus

allowing an assessment of the effect of the latter on the
quality of the predictions. It is seen that KNMI (full-value

initialization) is more skilful in reproducing the observed

variability in the Atlantic and MAME domains, whilst for
precipitation over the Sahel, both systems display corre-

lations systematically lower than the 90 % significance

level (see Hazeleger et al. 2013 for a detailed analysis of
EC-Earth performance under full-value and anomaly ini-

tialization). A more thorough analysis of the role of the

initialization strategy on the quality of predictions in the
COMBINE multi-model ensemble is provided in the next

section.

6 The role of initialization strategy on the quality
of decadal predictions

The COMBINE ensemble of DPSs is equally partitioned

into models employing full-value and anomaly initializa-
tion (Table 1). While pros and cons of these two method-

ologies are known in principle (Meehl et al. 2013) there is

no compelling evidence indicating which of the two can be
identified as a ‘‘best practice’’ (i.e., yielding higher skill)

for decadal predictions. So far, the influence of the ini-

tialization strategy on the quality of decadal predictions has
been only examined in the context of individual systems
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(Smith et al. 2013; Hazeleger et al. 2013). The outcomes of

these studies were not conducive to any conclusive state-

ment as to whether there is any significant improvement in
the predictive capabilities associated with the use of one

over the other initialization strategy. Smith et al. (2013)

tested the relative merits of the two approaches in the UK
Met Office DePreSys system, but over most regions they

did not find significant differences in skill, with the

exception of some hints of higher predictive skill for full-
field predictions at the multiyear timescale. Hazeleger et al.

(2013) tackled the same issue in a DPS based on the EC-

Earth model, finding similar skill under both initialization
methods. Here we make an attempt to assess the relative

influence of the initialization method within the framework

of a multi-model ensemble of DPSs. We concentrate on
surface temperature (SST and T2M) as the predictability

associated with these variables is clearly higher than for

precipitation.

Different initialization strategies lead to different tran-

sient behaviours following the initial state assignment. In

particular, full-state initialization leads models to adjust
towards their own mean state, which generally differs from

the observed climatology (this difference measured by the

so-called model bias). In the anomaly initialization case,
models are from the start close to their background state,

and therefore no strong drift is expected in principle.

Before analyzing the predictive skill associated with the
two different initialization methods, we first characterize

the transient evolution of individual systems following

initialization. Specifically, we examine the departure
between model (raw hindcast values) and the observed

state as a function of lead-time, averaged across all hind-

casts. For consistency with the skill analysis we focus on
the mean error for the standard 2–5 and 6–9 lead-year

ranges. The corresponding error patterns (shown in Fig. 7)

reveal pronounced spatial variability, mirroring the
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Fig. 6 The ACC as a function of lead time for different climatic
indices: a AMO, b Atlantic SST Dipole, c T2M averaged over an area
including parts of the Mediterranean, NE Africa and Middle East
[20–45N, 10–50E], d PREC averaged over the Sahel [8–18N, 15W–

15E]. The two thresholds displayed by grey shading correspond to the
90 and 95 % levels of statistical significance, accounting for
autocorrelation in the time series
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regional structure of the underlying model bias, as well as

large model-to-model differences. In particular, the sys-
tems relying on anomaly initialization show very little

differences between the 2–5 and 6–9 years patterns, sug-

gesting a very rapid adjustment, unlike the systems based
on full-state initialization, for which a long-term drift is

evident after comparing the bias patterns for the 2–5 with

the 6–9 lead-year ranges, particularly in the extra-tropics.
The regional differences in the error rate of change are

further analysed for two selected areas: the eastern equa-
torial Pacific (coinciding with the standard NINO3 region

bounded by 90W–150W and 5S–5N) and a box in the sub-

polar North Atlantic straddling the Gulf Stream extension
off the coast of Newfoundland (GS), the latter encom-

passing a region of cold bias, common to all of the systems

being examined (see frames in Fig. 7). Figure 8 shows the
evolution of model error with lead time averaged over each

of the two selected areas and across all hindcasts. Note that

this diagnostic does exactly correspond to the (area-aver-
aged) model drift ds term (difference between ensemble

mean forecasts and the observations over all cases) which

is used to evaluate the bias corrected raw forecast anom-
alies, following the standard procedure described in the

CLIVAR ICPO document (ICPO 2011; see section 4a).

The corresponding time series for the average observed
surface temperature anomalies (branching off the same

start dates as for predictions) are also shown. Comparing

GS with NINO3, two distinct behaviours of model error
evolution emerge from the full-value initialization subset.

A long-term adjustment, possibly extending beyond the

10-year duration of the hindcasts, takes place in the GS
area, opposed to a much quicker transient occurring within

the first year after initialization (and henceforth not

detectable with this diagnostic) in NINO3.
The relatively slow setup of the cold bias in the northern

North Atlantic can be ascribed to the advective dynamics

associated with the slow adjustment of the large-scale
ocean circulation, and specifically the Gulf Stream system,

following the initialization. As expected, systems initial-

ized with observed anomalies show no long-term adjust-
ment over the analyzed regions. Interestingly, all systems,

regardless of the initialization method, reveal a similar

evolution across lead-years in the equatorial Pacific. In
particular, the year-to-year fluctuations of different model

biases are strongly coherent with each other and with the

observed anomalies. A more detailed analysis reveals that
the positive peaks in the observed record at lead-years 2

and 7 are generated by an interference of the strong 1982

and 1997 ENSO episodes (when computing the mean
observed hindcast, these events show up as lead-year 7 in

the decades starting at 1975 and 1990, and as lead-year 2 in

the decades starting at 1980 and 1995). The correlated
changes in model errors are found to be determined by the

apparent lack of coordinated ENSO events in any of the

model predictions (see the discussion in Sect. 1). The
anomalously warm conditions associated with an El Niño

episode lead to an increase (decrease) of the error, if the

corresponding model is cold(warm)-biased. Considering
the planetary-scale impact of ENSO, the phenomenon just

described may also partly explain the non-monotonic

evolution of the ACC found for several regional indices
(Fig. 5; see also Doblas-Reyes et al. 2011). The noisy

character exhibited by the models’ drift terms shown in
Fig. 8 may in fact reverberate in the computation of the

anomaly correlations which depend on the structure of ds.

Next, the relative merits and deficiencies of full and
anomaly initialization are assessed, by partitioning the CME

in two subsets, based on the adopted initialization technique:

a full-value and an anomaly initialization ensemble (here-
after, FVI and AI, respectively), with the former including

the systems based on CMCC-CM, CNRM-CM5 and the

KNMI implementation of EC-Earth, and the latter including
the systems based on HadCM3, MPI-ESM-LR and the

SMHI/DMI implementation of EC-Earth.

Figure 9 shows patterns of ACC for FVI and AI
ensemble mean surface temperature, for lead-years 2–5 and

6–9, and the corresponding difference map. From this

comparison, the equatorial Pacific, the western sea-board
of US and the northern Indian Ocean, as well as a few

isolated spots over the continental domains, including

South Africa, northern Australia and the Amazon basin,
stand out as the areas featuring the largest differences in

predictive skill for the near-term 2–5 year range. On the

other hand, differences between the two initialization
methodologies are barely distinguishable in the 6–9 year

range, except over the southern Pacific. The fact that the

major differences emerge in the 2–5 year range is fully
consistent with the initialization having a detectable

influence in the near-term, with the longer 6–9 year range

being mostly affected by the imposed boundary conditions,
and therefore less sensitive to the way the initial state is

assigned. In light of these results, the overall lack of pre-

dictive skill found in the tropical Pacific for the MME
mean (Fig. 2), appears to be largely determined by the

deteriorating impact of the systems in the AI subset.

A closer look at the individual FVI and AI maps in Fig. 9
reveals that the large ACC differences occurring in the

equatorial Pacific in the 2–5 year range are exacerbated by

the AI ensemble displaying negative correlations over this
region. A rapid loss of predictive skill in the equatorial

Pacific (negative ACC meaning essentially no skill) in AI

potentially induced by the practice of initializing a dynam-
ical model through observed anomalies which are not con-

sistent with the underlying background state of the model,

may be invoked here as a possible explanation. The ENSO-
like structure of the ACC difference pattern provides
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Fig. 7 Surface temperature
error patterns (K; computed as
model minus observation)
averaged over lead-time
intervals (left) 2–5 and (right)
6–9 years and across all
hindcasts, for each decadal
prediction system of the
COMBINE ensemble. The
corresponding initialization
strategy (full-value/anomaly) is
indicated in the bottom-left
corner. Green frames indicate
the NINO3 and Gulf Stream
extension (see text) areas used
in the regional error analysis,
illustrated in Fig. 8
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additional hints for the interpretation of the mechanism

driving the skill discrepancies between the FVI and the AI
ensembles. The influence of the background state on ENSO

variability and predictability has been investigated by

Magnusson et al. (2012) in a set of coupled integrations
performed with the ECMWF forecasting system, where it is

shown that correcting the model mean state and seasonal

cycle (through flux adjustments) has positive implications
for the representation of ENSO, with respect to a twin set of

free (i.e., non flux-adjusted) simulations based on anomaly

initialization. A consistent mechanism may be at work in the

present set of decadal predictions, with the FVI set of sim-
ulations being more skilful in reproducing the year-to-year

variability (and therefore, displaying higher predictability)

in the tropical Pacific, with respect to the AI integrations.
Overall, the present findings are consistent with the

results of Smith et al. (2013), providing additional indica-

tions of an improved forecast skill in FVI over AI systems in
the near-term range, although the differences are only

marginally significant and restricted to the Indo-Pacific
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Fig. 8 The model error for
surface temperature (in K;
model value minus observation)
as a function of lead-time,
averaged across all hindcasts
and over (top) the Gulf Stream
extension and (bottom) the
NINO3 areas (see text for
details). For the observed
temperature (black) the long-
term mean calculated over all
lead-times has been removed
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equatorial region. The detailed mechanisms determining the
lower skill for anomaly initialization deserve further

investigation.

7 Consensus across model predictions

The purpose of this section is to provide additional insight

into the multi-model ensemble predictions by documenting

the degree of agreement or disagreement between the

different DPS. The final goal is to obtain a spatial mapping
of the confidence associated with model forecasts. To

achieve this target, we provide a quantitative analysis of

the level of consensus between different predictions of
surface temperature in the CME. Here, the term ‘‘consen-

sus’’ refers to the level of consistency across predictions

performed using different systems, which in turn try to
hindcast the same (observed) variability.

While, strictly speaking, this should not be confused

with the actual uncertainty in the predictions in respect to

Fig. 9 (Top) Anomaly correlation coefficient (ACC) maps for T2M
(over land) and SST, for the lead-time periods (left) 2–5 and (right)
6–9 years for the multi-model mean computed across FVI models.
Stippling is used to indicate points where statistical significance is

below the 95 % level, according to a one-tailed t test accounting for
autocorrelation in the time series. (Middle) Same as (top) but for AI
models. (Bottom) Difference maps between FVI and AI ACC patterns
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observations (here we only evaluate the cross-model

agreement), it can be regarded as an indicator of it, bearing
in mind that a large model spread is typically indicative of

a consistently high uncertainty.

Generally, the sources of uncertainty in climate predic-
tions can be grouped into three distinct categories (Haw-

kins and Sutton 2009). These include: (i) uncertainty

associated with the initial state of the coupled system (e.g.,
different ocean reanalyses, all of them providing a plausi-

ble estimate of the real system, can be used to constrain the
initial state of the model), (ii) the model uncertainty

(associated with differences in individual model structure,

sensitivity to the external forcings and representation of
internal variability) and (iii) uncertainty in future radiative

forcing scenarios (e.g., associated to the use of alternative

projected changes of GHG emissions). In the present case,
since all systems have been forced using a common set of

prescribed boundary conditions (historical and RCP4.5

radiative forcing), the leading causes for the ensemble
spread (interpreted as uncertainty in the predictions) are

only related to points (i) and (ii).

As a measure of consensus between model predictions
we use two metrics. Differences in the predictions between

the DPSs are quantified through the average root-mean-

square error (RMSE) computed from all (15 distinct) DPS
pairs.1 In these calculations we use the predicted annual-

mean anomalies after removing the long-term, linear

trends. In order to evaluate the temporal coherence
between predictions carried out with different DPSs, the

average of the ACCs between all prediction-pairs is diag-

nosed. Namely, in this case the ACC is defined between
predictions in the same way that it was previously defined

between predictions and observations. In order to distin-

guish the ACC computed between predictions from the
‘‘standard’’ ACC (i.e., between model and observed values)

we will refer to the former as x-ACC. RMSE and x-ACC

provide a complementary assessment of the consistency
across different members of the CME, in other words,

quantifying the DPS-to-DPS discrepancies, and their tem-

poral coherence, respectively. Prior to the computation of
RMSE and x-ACC point-by-point, all models have been

interpolated onto a common regular grid. The metrics are

evaluated separately for the lead-time periods 2–5 and
6–9 years, ultimately yielding a point-wise spatial mapping

of the uncertainty characterizing the analysed set of

predictions.
In Fig. 10, the RMSE for surface temperature (T2M

over land, and SST) is displayed. It is seen that the areas

featuring the largest spread correspond to the most intense

ocean current systems, such as the western boundary cur-
rents (Gulf Stream/North Atlantic Current and Kuroshio)

and parts of the Antarctic Circumpolar Current, in the

Southern Ocean. Similarly, large departures are found in
the Nordic Seas, at the sea-ice edge. Secondary maxima are

found in the equatorial Pacific, and in northern Eurasia and

North America. The RMSE pattern is qualitatively similar
for both lead-time periods, but in the long-term (6–9 years)

its amplitude is smaller. This result is consistent with the
smaller ensemble spread found in the global mean ACC

(Fig. 5) for the 6–9 (compared with the 2–5) year range.

Possible causes behind this result have already been dis-
cussed in Sect. 5.2. The RMSE patterns were found to

match closely the SST interannual standard deviation (SD)

(not shown) calculated separately for each DPS using all
10-year hindcasts, and then averaged between the six

DPSs. Slow fluctuations in the position of large-scale

frontal systems is at the origin of the strong interannual
variability associated with western boundary currents and

the Antarctic Circumpolar Current. Variability in the

Nordic Seas, on the other hand, is likely to be related to
processes involving sea-ice formation. The high spatial

correlation between these two patterns (RMSE and SD)

indicates that the largest spread across predictions occurs at
locations where models exhibit strong interannual vari-

ability. As expected, a similar result is found after com-

paring the model-to-model RMSE pattern, shown in
Fig. 10, with the standard RMSE between the multi-model

mean predictions and the observations, over the same lead-

years (not shown). Note also that the RMSE metric bears a
strong formal similarity with the standard inter-model

ensemble spread, as given by the SD calculated across the

multi-model set of climate forecasts. This is not surprising
since both diagnostics are designed to quantify the level of

dispersion across the multi-model ensemble of decadal

forecasts. Their mathematical equivalence is determined by
the fact that both metrics provide a measure of the

Euclidean distance between different model forecasts. This

is confirmed by the high spatial correlation found after
comparing the corresponding patterns of RMSE and

ensemble spread (not shown).

Next, the x-ACC patterns are shown in Fig. 11. An
interesting feature in these maps is that the average cor-

relation between the predictions of DPS pairs is positive

over most of the domain for both of the examined lead-time
periods, with extensive regions featuring ACC values

exceeding 0.6. On the other hand, negative, statistically

non-significant, correlations appear to be confined to the
Southern Hemisphere. Also, correlations seem to be higher

in the 6–9 year range, comparing to the shorter range

predictions, a difference that is more pronounced in the
Northern Hemisphere. In particular, models display a better

1 The six available DPSs make 15 distinct pairs. For each pair, the
corresponding RMSE is calculated between the two hindcasts. These
differences are not ‘‘errors’’ but just deviations. We use the term
RMSE because it best describes the calculations involved. In the text,
we refer to the average RMSE across all pairs.
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agreement on the predicted evolution of tropical SSTs at
longer lead times, possibly due to a stronger influence of

the predictable signal induced by the radiative forcing

(Boer and Lambert 2008). Overall, these results indicate a
substantial consistency (in polarity, but not necessarily at

the magnitude) between the predicted anomalies of most

DPSs. It is worth noting that x-ACC fields display local
minima in correspondence to regions featuring the largest

RMSE, i.e., at the western boundaries of the North Atlantic

and North Pacific ocean basins, as well as over high-lati-
tude Eurasia and North America. A similar orthogonality is

found in the equatorial Atlantic and in the northern Indian

Ocean, where local maxima in x-ACC correspond to
minima in the RMSE. Thus, not surprisingly, the largest

intra-model departures are found at the locations where the

lowest model-to-model correlations occur.

8 Conclusions

In this study we analyzed a multi-model ensemble of

decadal predictions performed using five different CGCMs
(combined into six prediction systems) following the

CMIP5 protocol, within the framework of the EU COM-
BINE project. The predictive capabilities of the multi-

model ensemble were examined, both at the global and at

regional scales, with additional focuses on the influence of

the initialization strategy on predictive skill, and on the
level of mutual agreement across different model predic-

tions. All of the analyses were conducted on sufficiently

well observed variables, including sea surface temperature,
near surface air temperature and precipitation over land.

Although most of the skill associated with surface tem-

perature fields is dictated by the prescribed boundary
conditions, after removing the long-term trends a signifi-

cant residual predictive skill was found over large oceanic

and continental areas. In particular, the multi-decadal
variability of SST in the Atlantic basin appears to be

skillfully reproduced by individual forecast systems,

showing considerable predictive capability up to O(10)
years. Similarly, long-term predictability was found for

near-surface air temperature over Northern Africa and the

adjacent Mediterranean and Middle East. Contrastingly,
compared to surface temperatures, precipitation exhibits

much lower predictability, except at a few limited areas,

including the African Sahel, parts of North America, and
Eastern Europe. These results are consistent with a similar

analysis performed by Doblas-Reyes et al. (2013), using a

different multi-model set. Both the present and Doblas-
Reyes et al. analyses suggest a strong connection between

the Atlantic multi-decadal variability and the surface

temperature and rainfall changes occurring over regions
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Fig. 10 RMSE of surface temperature (T2M over land and SST, in
K) of annual mean predictions for the lead-time ranges 2–5 (top) and
6–9 years (bottom). The maps display the average RMSE across all
15 distinct DPS pairs; see text for details
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Fig. 11 ACC calculated between annual mean model predictions (x-
ACC) for surface temperature (T2M over land and SST) over the
lead-time ranges 2–5 (top) and 6–9 years (bottom). The maps display
the average ACC across all 15 distinct DPS pairs; see text for details
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adjacent to the Atlantic basin. This link may be a signature

of the AMO teleconnection pattern, as suggested in a
number of previous studies (among the others, Knight et al.

2006; Zhang and Delworth 2006). Goddard et al. (2013)

also inspect the forecast skill for precipitation in two DPSs
(DePreSys and CanCM4) but over the longer 2–9 lead-

years interval, and find significant anomaly correlations

over the high latitudes of the northern hemisphere (both
sets of hindcasts) and over much of the tropics (only in

CanCM4).
The overall emerging structure of the COMBINE multi-

model ensemble predictive skill for surface temperature

fields is largely consistent with results from analogous
assessments based on both multi-model (Doblas-Reyes

et al. 2011, 2013; Garcı́a-Serrano and Doblas-Reyes 2012;

van Oldenborgh et al. 2012; Kim et al. 2012; Goddard et al.
2013; Chikamoto et al. 2013) and single-model (Pohlmann

et al. 2009; Bellucci et al. 2013; Garcı́a-Serrano et al. 2012;

Matei et al. 2012b) decadal hindcasts. Common features
include, in particular: (i) a strong predictive skill in the

Atlantic sector, (ii) a pronounced asymmetry in the pre-

dictive skill between the Atlantic and Pacific oceanic
basins, and (iii) negative ACC over parts of South Amer-

ica. The consensus in predictive skill featured by sensibly

different DPSs corroborates the view that current CGCMs
share common predictability features, as well as common

deficiencies. In particular, the high predictive skill found in

the Atlantic region supports the widely recognized role of
the slowly evolving changes in the strength of the ther-

mohaline circulation and meridional heat transport as pri-

mary drivers of the low-frequency variability in the
Atlantic. The generally low skill found in the Pacific basin

for SSTs, is a similarly robust feature, also emerging in

Kim et al. (2012; their Fig. 3) and Doblas-Reyes et al.
(2011; their Fig. 1). Consistent with this finding, Kim et al.

(2012), Branstator and Teng (2012) and Bellucci et al.

(2013) show a rapid decay with lead-time of the forecast
skill associated with SST in the extra-tropical North Pacific

in a number of near-term predictions performed with

CMIP5 models [however, hints of improved predictability
in the North Pacific sub-surface temperatures are found by

Mochizuki et al. (2010), Chikamoto et al. (2013)]. In light

of the surface temperature trend analysis (Fig. 3), the poor
skill found in the extra-tropical North Pacific seems to

reflect the inability of the models to correctly reproduce the

observed ratio between forced and unforced variability in
this region, where the warming trend explains a small

fraction of the total variability.

An important finding of the predictive skill analysis is
that the multi-model ensemble mean does generally out-

perform the individual forecasts (when this is not the case,

it is at least comparable to the best of them). This finding
has been well-documented for seasonal forecasting, but

here is found to hold also at the decadal range, supporting

the need for large multi-model ensembles to provide
valuable decadal predictions (see also Kim et al. 2012).

One of the open questions for the decadal prediction

praxis relates to the identification of an optimal (i.e., skill-
maximizing) initialization strategy. By clustering the six

analysed DPSs in two groups according to the initialization

method (full-value and anomaly initialization), it was
possible to frame this issue (so far only examined for

individual systems; Smith et al. 2013; Hazeleger et al.
2013) in a multi-model perspective. From the comparison

between the predictive skill patterns associated with these

two groups, the equatorial Pacific emerged as an area
particularly sensitive to the details of the initialization

method. In particular, the anomaly initialization seems to

exert a deteriorating impact on the skill in the equatorial
Pacific, while a sensible improvement is obtained in the

full-state initialized systems. Should this result be con-

firmed (possibly by extending the same analysis to a larger
set of systems), there would be implications for the design

of multiple model ensembles for operational decadal cli-

mate predictions (Smith et al. 2012), as the balance
between anomaly and full-value initialized systems may

strongly affect the regional skill of the multi-model mean.

Finally, the consistency across the different model pre-
dictions of surface temperature was assessed. The model-

to-model RMSE pattern indicated that the largest depar-

tures between different DPSs occur at the same locations
where the largest year-to-year variability is found (in par-

ticular, over the areas dominated by intense western

boundary currents and their open ocean extensions). The
pattern of temporal coherence across different systems

reveals a general agreement between models in predicting

the near-term evolution of surface temperature fields
(referring to the sign of the corresponding anomalies),

displaying positive correlations between different decadal

predictions over most of the global domain.
The present analysis adds to the growing evidence that

the current generation of climate models adequately ini-

tialized have significant skill in predicting years ahead not
only the anthropogenic warming but also part of the

internal variability of the climate system. The high skill

detected in the Atlantic sector, and extending over the
potentially linked surrounding areas (including the Medi-

terranean and Sahel climatic hot-spots), emerges as a par-

ticularly robust feature of CMIP5 models. This finding
discloses a promising future for the new-born decadal

predictions field, envisaging the possibility of valuable

assessments of climatic fluctuations at the regional scale
over a multi-year horizon. This calls for additional efforts

aiming at the improvement of the existing Earth observing

network, so as to better constrain future climate predic-
tions. This step needs to involve not only the oceanic sub-
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system, but should also be extended to those less-observed

components (land-surface, cryosphere, stratosphere, aero-
sols) which may introduce additional memory (and thus

predictability) in the climatic system, beyond the seasonal

scale.
Finally, in the perspective of providing trustworthy

decadal climate forecasts to inform end-users, a step-

change in the amount of dedicated computational resources
is required. The statistical robustness of the forecast skill

featured by most of the decadal predictions made available
by the modeling groups worldwide through the CMIP5

effort, is severely hampered by the low number (10,

according to the CMIP5 protocol for near-term predictions;
Taylor et al. 2012) of the canonical initialization start-dates

typically used to perform the decadal integrations. The

lessons we are learning in this pioneering pre-operational
stage will help to design the next generation of coordinated

decadal climate forecast experiments, out to CMIP6 and

beyond.
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