
One-Shot

Müller et al

Outline

UNIFORMLY CONVERGING
SIMULTANEOUS TIME-STEPPING
METHODS FOR OPTIMAL DESIGN

J.-D. Müller1, P. Cusdin, A. Jaworski2

1: Dept. of Engineering, Queen Mary, University of London
2: The Faculty of Power and Aeronautical Engineering,

Warsaw University of Technology

Cerfacs, Sparse Days, June 2006

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Motivation

I Numerical optimisation is important
I Adjoint methods: (in theory) cost is independent of

the number of design variables,
I AD tools make use of adjoints feasible for large scale

CFD optimisation: 507 DOF in the primal/dual, would
like to use 104 design variables.

I Major advances needed in reducing the cost of
computing the optimal solution

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Motivation

I Numerical optimisation is important
I Adjoint methods: (in theory) cost is independent of

the number of design variables,
I AD tools make use of adjoints feasible for large scale

CFD optimisation: 507 DOF in the primal/dual, would
like to use 104 design variables.

I Major advances needed in reducing the cost of
computing the optimal solution

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Motivation

I Numerical optimisation is important
I Adjoint methods: (in theory) cost is independent of

the number of design variables,
I AD tools make use of adjoints feasible for large scale

CFD optimisation: 507 DOF in the primal/dual, would
like to use 104 design variables.

I Major advances needed in reducing the cost of
computing the optimal solution

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Motivation

I Numerical optimisation is important
I Adjoint methods: (in theory) cost is independent of

the number of design variables,
I AD tools make use of adjoints feasible for large scale

CFD optimisation: 507 DOF in the primal/dual, would
like to use 104 design variables.

I Major advances needed in reducing the cost of
computing the optimal solution

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Large Scale Optimisation in CFD

I Jameson (90ies): converge primal and adjoint fully at
each evaluation

I Kuruvila (1995): “one-shot” methods, fully coupled
with multigrid, potential flow

I Iollo, Ta’asan (1995): “simultaneous timestepping”,
iterate primal and adjoint a few steps, solve a full
optimality problem exactly near the boundary

I Dervieux et. al (2004): exploring multiple update
strategies

I Griewank (2002-6), “piggy-back”. Uses full ‘shifted’
Hessians.

I Hazra (2005-6), 2D Euler, one iteration each for
primal adjoint and design, not uniformly convergent.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Large Scale Optimisation in CFD

I Jameson (90ies): converge primal and adjoint fully at
each evaluation

I Kuruvila (1995): “one-shot” methods, fully coupled
with multigrid, potential flow

I Iollo, Ta’asan (1995): “simultaneous timestepping”,
iterate primal and adjoint a few steps, solve a full
optimality problem exactly near the boundary

I Dervieux et. al (2004): exploring multiple update
strategies

I Griewank (2002-6), “piggy-back”. Uses full ‘shifted’
Hessians.

I Hazra (2005-6), 2D Euler, one iteration each for
primal adjoint and design, not uniformly convergent.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Large Scale Optimisation in CFD

I Jameson (90ies): converge primal and adjoint fully at
each evaluation

I Kuruvila (1995): “one-shot” methods, fully coupled
with multigrid, potential flow

I Iollo, Ta’asan (1995): “simultaneous timestepping”,
iterate primal and adjoint a few steps, solve a full
optimality problem exactly near the boundary

I Dervieux et. al (2004): exploring multiple update
strategies

I Griewank (2002-6), “piggy-back”. Uses full ‘shifted’
Hessians.

I Hazra (2005-6), 2D Euler, one iteration each for
primal adjoint and design, not uniformly convergent.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Large Scale Optimisation in CFD

I Jameson (90ies): converge primal and adjoint fully at
each evaluation

I Kuruvila (1995): “one-shot” methods, fully coupled
with multigrid, potential flow

I Iollo, Ta’asan (1995): “simultaneous timestepping”,
iterate primal and adjoint a few steps, solve a full
optimality problem exactly near the boundary

I Dervieux et. al (2004): exploring multiple update
strategies

I Griewank (2002-6), “piggy-back”. Uses full ‘shifted’
Hessians.

I Hazra (2005-6), 2D Euler, one iteration each for
primal adjoint and design, not uniformly convergent.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Large Scale Optimisation in CFD

I Jameson (90ies): converge primal and adjoint fully at
each evaluation

I Kuruvila (1995): “one-shot” methods, fully coupled
with multigrid, potential flow

I Iollo, Ta’asan (1995): “simultaneous timestepping”,
iterate primal and adjoint a few steps, solve a full
optimality problem exactly near the boundary

I Dervieux et. al (2004): exploring multiple update
strategies

I Griewank (2002-6), “piggy-back”. Uses full ‘shifted’
Hessians.

I Hazra (2005-6), 2D Euler, one iteration each for
primal adjoint and design, not uniformly convergent.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Large Scale Optimisation in CFD

I Jameson (90ies): converge primal and adjoint fully at
each evaluation

I Kuruvila (1995): “one-shot” methods, fully coupled
with multigrid, potential flow

I Iollo, Ta’asan (1995): “simultaneous timestepping”,
iterate primal and adjoint a few steps, solve a full
optimality problem exactly near the boundary

I Dervieux et. al (2004): exploring multiple update
strategies

I Griewank (2002-6), “piggy-back”. Uses full ‘shifted’
Hessians.

I Hazra (2005-6), 2D Euler, one iteration each for
primal adjoint and design, not uniformly convergent.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Outline

The Optimality System
The Adjoint Equations
The Optimality System
Simultaneous Time-Stepping Schemes
Adaptive Convergence Scaling

Implementation
Solver
Testcase

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Outline

The Optimality System
The Adjoint Equations
The Optimality System
Simultaneous Time-Stepping Schemes
Adaptive Convergence Scaling

Implementation
Solver
Testcase

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Outline

The Optimality System
The Adjoint Equations
The Optimality System
Simultaneous Time-Stepping Schemes
Adaptive Convergence Scaling

Implementation
Solver
Testcase

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Tangent Linearisation

Navier Stokes equtions (steady state):

R(U, α) = 0

Linearisation with respect to a design (control) variable α

∂R
∂U

∂U
∂α

= −∂R
∂α

,

Au = f .

Sensitivity of a cost functional L with respect to α

dL
dα

=
∂L
∂α

+
∂L
∂U

∂U
∂α

=
∂L
∂α

+ gTu

∂L
∂α is directly computable, gTu requires an expensive
solve for the perturbation flow field u for each αi .

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Tangent Linearisation

Navier Stokes equtions (steady state):

R(U, α) = 0

Linearisation with respect to a design (control) variable α

∂R
∂U

∂U
∂α

= −∂R
∂α

,

Au = f .

Sensitivity of a cost functional L with respect to α

dL
dα

=
∂L
∂α

+
∂L
∂U

∂U
∂α

=
∂L
∂α

+ gTu

∂L
∂α is directly computable, gTu requires an expensive
solve for the perturbation flow field u for each αi .

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Tangent Linearisation

Navier Stokes equtions (steady state):

R(U, α) = 0

Linearisation with respect to a design (control) variable α

∂R
∂U

∂U
∂α

= −∂R
∂α

,

Au = f .

Sensitivity of a cost functional L with respect to α

dL
dα

=
∂L
∂α

+
∂L
∂U

∂U
∂α

=
∂L
∂α

+ gTu

∂L
∂α is directly computable, gTu requires an expensive
solve for the perturbation flow field u for each αi .

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Tangent Linearisation

Navier Stokes equtions (steady state):

R(U, α) = 0

Linearisation with respect to a design (control) variable α

∂R
∂U

∂U
∂α

= −∂R
∂α

,

Au = f .

Sensitivity of a cost functional L with respect to α

dL
dα

=
∂L
∂α

+
∂L
∂U

∂U
∂α

=
∂L
∂α

+ gTu

∂L
∂α is directly computable, gTu requires an expensive
solve for the perturbation flow field u for each αi .

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Tangent Linearisation

Navier Stokes equtions (steady state):

R(U, α) = 0

Linearisation with respect to a design (control) variable α

∂R
∂U

∂U
∂α

= −∂R
∂α

,

Au = f .

Sensitivity of a cost functional L with respect to α

dL
dα

=
∂L
∂α

+
∂L
∂U

∂U
∂α

=
∂L
∂α

+ gTu

∂L
∂α is directly computable, gTu requires an expensive
solve for the perturbation flow field u for each αi .

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

The Adjoint Equations

(
∂R
∂U

)T

v =

(
∂L
∂U

)T

,

ATv = g.

From this follows the Adjoint Equivalence

gTu = (ATv)T u = vTAu = vTf

dL
dα

=
∂L
∂α

+ gTu =
∂L
∂α

+ vT f

Using vTf , needs a single solve of ATv = g and the
evaluation of fi for each αi .

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

The Adjoint Equations

(
∂R
∂U

)T

v =

(
∂L
∂U

)T

,

ATv = g.

From this follows the Adjoint Equivalence

gTu = (ATv)T u = vTAu = vTf

dL
dα

=
∂L
∂α

+ gTu =
∂L
∂α

+ vT f

Using vTf , needs a single solve of ATv = g and the
evaluation of fi for each αi .

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

The Adjoint Equations

(
∂R
∂U

)T

v =

(
∂L
∂U

)T

,

ATv = g.

From this follows the Adjoint Equivalence

gTu = (ATv)T u = vTAu = vTf

dL
dα

=
∂L
∂α

+ gTu =
∂L
∂α

+ vT f

Using vTf , needs a single solve of ATv = g and the
evaluation of fi for each αi .

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

The Optimality System

R(Q, α) =0 (Navier-Stokes)

ATv =g (Adjoint)

∂L
∂α

+ vTf =0 (Design)

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

The Optimality System

R(Q, α) =0 (Navier-Stokes)

ATv =g (Adjoint)

∂L
∂α

+ vTf =0 (Design)

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

The Optimality System

R(Q, α) =0 (Navier-Stokes)

ATv =g (Adjoint)

∂L
∂α

+ vTf =0 (Design)

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

The Optimality System with Time-Stepping

∂Q
∂t

=− R(Q, α) (Navier-Stokes)

∂v
∂t

=g − ATv (Adjoint)

∂α

∂t
=− ∂L

∂α
− vTf (Design)

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

The Optimality System with Time-Stepping

∂Q
∂t

=− R(Q, α) (Navier-Stokes)

∂v
∂t

=g − ATv (Adjoint)

∂α

∂t
=− ∂L

∂α
− vTf (Design)

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

The Optimality System with Time-Stepping

∂Q
∂t

=− R(Q, α) (Navier-Stokes)

∂v
∂t

=g − ATv (Adjoint)

∂α

∂t
=− ∂L

∂α
− vTf (Design)

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Simultaneous Time-Stepping Schemes:
Block Gauß-Seidel

1. march the primal to sufficient convergence
2. march the dual to sufficient convergence
3. compute the gradient
4. stop if primal and dual are fully converged and the

gradient is below an acceptable threshold
5. approximate the Hessian
6. choose a descent direction and step size
7. update the design
8. go to 1.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Simultaneous Time-Stepping Schemes:
Block Gauß-Seidel

1. march the primal to sufficient convergence
2. march the dual to sufficient convergence
3. compute the gradient
4. stop if primal and dual are fully converged and the

gradient is below an acceptable threshold
5. approximate the Hessian
6. choose a descent direction and step size
7. update the design
8. go to 1.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Simultaneous Time-Stepping Schemes:
Block Gauß-Seidel

1. march the primal to sufficient convergence
2. march the dual to sufficient convergence
3. compute the gradient
4. stop if primal and dual are fully converged and the

gradient is below an acceptable threshold
5. approximate the Hessian
6. choose a descent direction and step size
7. update the design
8. go to 1.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Simultaneous Time-Stepping Schemes:
Block Gauß-Seidel

1. march the primal to sufficient convergence
2. march the dual to sufficient convergence
3. compute the gradient
4. stop if primal and dual are fully converged and the

gradient is below an acceptable threshold
5. approximate the Hessian
6. choose a descent direction and step size
7. update the design
8. go to 1.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Simultaneous Time-Stepping Schemes:
Block Gauß-Seidel

1. march the primal to sufficient convergence
2. march the dual to sufficient convergence
3. compute the gradient
4. stop if primal and dual are fully converged and the

gradient is below an acceptable threshold
5. approximate the Hessian
6. choose a descent direction and step size
7. update the design
8. go to 1.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Simultaneous Time-Stepping Schemes:
Block Gauß-Seidel

1. march the primal to sufficient convergence
2. march the dual to sufficient convergence
3. compute the gradient
4. stop if primal and dual are fully converged and the

gradient is below an acceptable threshold
5. approximate the Hessian
6. choose a descent direction and step size
7. update the design
8. go to 1.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Simultaneous Time-Stepping Schemes:
Block Gauß-Seidel

1. march the primal to sufficient convergence
2. march the dual to sufficient convergence
3. compute the gradient
4. stop if primal and dual are fully converged and the

gradient is below an acceptable threshold
5. approximate the Hessian
6. choose a descent direction and step size
7. update the design
8. go to 1.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Simultaneous Time-Stepping Schemes:
Block Gauß-Seidel

1. march the primal to sufficient convergence
2. march the dual to sufficient convergence
3. compute the gradient
4. stop if primal and dual are fully converged and the

gradient is below an acceptable threshold
5. approximate the Hessian
6. choose a descent direction and step size
7. update the design
8. go to 1.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Simultaneous Time-Stepping Schemes:
Block Gauß-Seidel

1. march the primal to sufficient convergence
2. march the dual to sufficient convergence
3. compute the gradient
4. stop if primal and dual are fully converged and the

gradient is below an acceptable threshold
5. approximate the Hessian
6. choose a descent direction and step size
7. update the design
8. go to 1.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Simultaneous Time-Stepping Schemes

The algorithms differ in
I how to sequence the block solves
I how to determine a suitable level of convergence for

the state and dual,
I what algorithm to use to update the design and
I what step-size to choose for the design.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Simultaneous Time-Stepping Schemes

The algorithms differ in
I how to sequence the block solves
I how to determine a suitable level of convergence for

the state and dual,
I what algorithm to use to update the design and
I what step-size to choose for the design.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Simultaneous Time-Stepping Schemes

The algorithms differ in
I how to sequence the block solves
I how to determine a suitable level of convergence for

the state and dual,
I what algorithm to use to update the design and
I what step-size to choose for the design.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Simultaneous Time-Stepping Schemes

The algorithms differ in
I how to sequence the block solves
I how to determine a suitable level of convergence for

the state and dual,
I what algorithm to use to update the design and
I what step-size to choose for the design.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Simultaneous Time-Stepping Schemes

The algorithms differ in
I how to sequence the block solves
I how to determine a suitable level of convergence for

the state and dual,
I what algorithm to use to update the design and
I what step-size to choose for the design.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Adaptive Convergence Scaling

I Computing the gradient using vTf is of the cost of
one iteration when using adjoint mesh sensititvities

I Time-steps are very small in compressible explicit
codes

I Not effective to recompute the gradients at every
iteration

I Here: at each evaluation scale convergence of
primal and adjoint with gradient magnitude, subject
to minimum number of solves

gRMS =
|∇f |
C

I Functional and gradient are computed with
increasing precision as the system converges
uniformly

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Adaptive Convergence Scaling

I Computing the gradient using vTf is of the cost of
one iteration when using adjoint mesh sensititvities

I Time-steps are very small in compressible explicit
codes

I Not effective to recompute the gradients at every
iteration

I Here: at each evaluation scale convergence of
primal and adjoint with gradient magnitude, subject
to minimum number of solves

gRMS =
|∇f |
C

I Functional and gradient are computed with
increasing precision as the system converges
uniformly

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Adaptive Convergence Scaling

I Computing the gradient using vTf is of the cost of
one iteration when using adjoint mesh sensititvities

I Time-steps are very small in compressible explicit
codes

I Not effective to recompute the gradients at every
iteration

I Here: at each evaluation scale convergence of
primal and adjoint with gradient magnitude, subject
to minimum number of solves

gRMS =
|∇f |
C

I Functional and gradient are computed with
increasing precision as the system converges
uniformly

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Adaptive Convergence Scaling

I Computing the gradient using vTf is of the cost of
one iteration when using adjoint mesh sensititvities

I Time-steps are very small in compressible explicit
codes

I Not effective to recompute the gradients at every
iteration

I Here: at each evaluation scale convergence of
primal and adjoint with gradient magnitude, subject
to minimum number of solves

gRMS =
|∇f |
C

I Functional and gradient are computed with
increasing precision as the system converges
uniformly

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Adaptive Convergence Scaling

I Computing the gradient using vTf is of the cost of
one iteration when using adjoint mesh sensititvities

I Time-steps are very small in compressible explicit
codes

I Not effective to recompute the gradients at every
iteration

I Here: at each evaluation scale convergence of
primal and adjoint with gradient magnitude, subject
to minimum number of solves

gRMS =
|∇f |
C

I Functional and gradient are computed with
increasing precision as the system converges
uniformly

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Adaptive Convergence Scaling

I Computing the gradient using vTf is of the cost of
one iteration when using adjoint mesh sensititvities

I Time-steps are very small in compressible explicit
codes

I Not effective to recompute the gradients at every
iteration

I Here: at each evaluation scale convergence of
primal and adjoint with gradient magnitude, subject
to minimum number of solves

gRMS =
|∇f |
C

I Functional and gradient are computed with
increasing precision as the system converges
uniformly

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Outline

The Optimality System
The Adjoint Equations
The Optimality System
Simultaneous Time-Stepping Schemes
Adaptive Convergence Scaling

Implementation
Solver
Testcase

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Adjoint Solvers using Automatic Differentation

I Explicit unstructured multi-grid finite volume solver,
Roe-FDS.

I Discrete adjoint codes through automatic
differentation

I Reorganisation of the primal code to obtain efficient
adjoints: factor 1.3 in memory and CPU time

I Every surface meshpoint can be a design variable -
toward multi-gridding of the design

I Optimisation using quasi-Newton methods (LBFGS)
I Aim is to develop fast optimisation methods for large

steady (and unsteady) systems.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Adjoint Solvers using Automatic Differentation

I Explicit unstructured multi-grid finite volume solver,
Roe-FDS.

I Discrete adjoint codes through automatic
differentation

I Reorganisation of the primal code to obtain efficient
adjoints: factor 1.3 in memory and CPU time

I Every surface meshpoint can be a design variable -
toward multi-gridding of the design

I Optimisation using quasi-Newton methods (LBFGS)
I Aim is to develop fast optimisation methods for large

steady (and unsteady) systems.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Testcase: Inverse Design

NACA 0012

RAE 2822

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Testcase: Inverse Design

NACA 0012 RAE 2822

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Testcase Parameters

I subsonic, Ma=.43
I angle of attack: 0◦

I 4500 triangles, 95 wall nodes
I convergence of adjoint and primal to machine

precision in 200 cyc to 10−10.
I all 95 wall nodes are design variables, except for

fixed L.E and T.E.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Boundary Smoothing

I All boundary nodes can be design variables, or
alternatively a fraction of them

I We seek a shape mode that allows multigrid
restriction and prolongation

I Artificial Dissipation needs to be added to the design
discretisation to dampen oscillations

I Jameson, Mohammadi, Dervieux: Implicit ’Sobolev’
Smoothing on the gradient

I Linear boundary smoothing with a number of
point-Jacobi iterations:

αn+1
i = αn

i −
β

2
(
αn

i−1 − 2αn
i + αn

i+1
)
,

I Annihilation of the highest frequencies in one
iteration with β = 1/2.

I Number of iter needs to be chosen.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Boundary Smoothing

I All boundary nodes can be design variables, or
alternatively a fraction of them

I We seek a shape mode that allows multigrid
restriction and prolongation

I Artificial Dissipation needs to be added to the design
discretisation to dampen oscillations

I Jameson, Mohammadi, Dervieux: Implicit ’Sobolev’
Smoothing on the gradient

I Linear boundary smoothing with a number of
point-Jacobi iterations:

αn+1
i = αn

i −
β

2
(
αn

i−1 − 2αn
i + αn

i+1
)
,

I Annihilation of the highest frequencies in one
iteration with β = 1/2.

I Number of iter needs to be chosen.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Boundary Smoothing

I All boundary nodes can be design variables, or
alternatively a fraction of them

I We seek a shape mode that allows multigrid
restriction and prolongation

I Artificial Dissipation needs to be added to the design
discretisation to dampen oscillations

I Jameson, Mohammadi, Dervieux: Implicit ’Sobolev’
Smoothing on the gradient

I Linear boundary smoothing with a number of
point-Jacobi iterations:

αn+1
i = αn

i −
β

2
(
αn

i−1 − 2αn
i + αn

i+1
)
,

I Annihilation of the highest frequencies in one
iteration with β = 1/2.

I Number of iter needs to be chosen.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Boundary Smoothing

I All boundary nodes can be design variables, or
alternatively a fraction of them

I We seek a shape mode that allows multigrid
restriction and prolongation

I Artificial Dissipation needs to be added to the design
discretisation to dampen oscillations

I Jameson, Mohammadi, Dervieux: Implicit ’Sobolev’
Smoothing on the gradient

I Linear boundary smoothing with a number of
point-Jacobi iterations:

αn+1
i = αn

i −
β

2
(
αn

i−1 − 2αn
i + αn

i+1
)
,

I Annihilation of the highest frequencies in one
iteration with β = 1/2.

I Number of iter needs to be chosen.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Boundary Smoothing

I All boundary nodes can be design variables, or
alternatively a fraction of them

I We seek a shape mode that allows multigrid
restriction and prolongation

I Artificial Dissipation needs to be added to the design
discretisation to dampen oscillations

I Jameson, Mohammadi, Dervieux: Implicit ’Sobolev’
Smoothing on the gradient

I Linear boundary smoothing with a number of
point-Jacobi iterations:

αn+1
i = αn

i −
β

2
(
αn

i−1 − 2αn
i + αn

i+1
)
,

I Annihilation of the highest frequencies in one
iteration with β = 1/2.

I Number of iter needs to be chosen.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Boundary Smoothing

I All boundary nodes can be design variables, or
alternatively a fraction of them

I We seek a shape mode that allows multigrid
restriction and prolongation

I Artificial Dissipation needs to be added to the design
discretisation to dampen oscillations

I Jameson, Mohammadi, Dervieux: Implicit ’Sobolev’
Smoothing on the gradient

I Linear boundary smoothing with a number of
point-Jacobi iterations:

αn+1
i = αn

i −
β

2
(
αn

i−1 − 2αn
i + αn

i+1
)
,

I Annihilation of the highest frequencies in one
iteration with β = 1/2.

I Number of iter needs to be chosen.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Boundary Smoothing

I All boundary nodes can be design variables, or
alternatively a fraction of them

I We seek a shape mode that allows multigrid
restriction and prolongation

I Artificial Dissipation needs to be added to the design
discretisation to dampen oscillations

I Jameson, Mohammadi, Dervieux: Implicit ’Sobolev’
Smoothing on the gradient

I Linear boundary smoothing with a number of
point-Jacobi iterations:

αn+1
i = αn

i −
β

2
(
αn

i−1 − 2αn
i + αn

i+1
)
,

I Annihilation of the highest frequencies in one
iteration with β = 1/2.

I Number of iter needs to be chosen.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Boundary Smoothing

I All boundary nodes can be design variables, or
alternatively a fraction of them

I We seek a shape mode that allows multigrid
restriction and prolongation

I Artificial Dissipation needs to be added to the design
discretisation to dampen oscillations

I Jameson, Mohammadi, Dervieux: Implicit ’Sobolev’
Smoothing on the gradient

I Linear boundary smoothing with a number of
point-Jacobi iterations:

αn+1
i = αn

i −
β

2
(
αn

i−1 − 2αn
i + αn

i+1
)
,

I Annihilation of the highest frequencies in one
iteration with β = 1/2.

I Number of iter needs to be chosen.

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Explicit Smoothing

1e-18

1e-15

1e-12

1e-09

1e-06

0.001

1

0 5 10 15 20 25 30

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

d1gf

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Explicit Smoothing

1e-18

1e-15

1e-12

1e-09

1e-06

0.001

1

0 5 10 15 20 25 30

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

d1gf
d1g4

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Explicit Smoothing

1e-18

1e-15

1e-12

1e-09

1e-06

0.001

1

0 5 10 15 20 25 30

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

d1gf
d1g4
d1g5

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Explicit Smoothing

1e-18

1e-15

1e-12

1e-09

1e-06

0.001

1

0 5 10 15 20 25 30

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

d1gf
d1g4
d1g5
d1g6

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Explicit Smoothing

1e-18

1e-15

1e-12

1e-09

1e-06

0.001

1

0 5 10 15 20 25 30

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

d1gf
d1g4
d1g5
d1g6
d2g4

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Explicit Smoothing

1e-18

1e-15

1e-12

1e-09

1e-06

0.001

1

0 5 10 15 20 25 30

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

d1gf
d1g4
d1g5
d1g6
d2g4
d4g4

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Oscillatory Solution
At (stalled) convergence, the shape, functional and
gradients are highly oscillatory

dp

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Oscillatory Solution
At (stalled) convergence, the shape, functional and
gradients are highly oscillatory

dp

dy

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Oscillatory Solution
At (stalled) convergence, the shape, functional and
gradients are highly oscillatory

dp

dy

g

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Smoothing Alternatives

The algorithm is block diagonal

Smoothing could be applied with any block solve
I on the shape displacement
I on the design variables
I on the gradients
I on the (pointwise) functional

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Smoothing Alternatives

The algorithm is block diagonal

Smoothing could be applied with any block solve
I on the shape displacement
I on the design variables
I on the gradients
I on the (pointwise) functional

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Smoothing Alternatives

The algorithm is block diagonal

Smoothing could be applied with any block solve
I on the shape displacement
I on the design variables
I on the gradients
I on the (pointwise) functional

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Smoothing Alternatives

The algorithm is block diagonal

Smoothing could be applied with any block solve
I on the shape displacement
I on the design variables
I on the gradients
I on the (pointwise) functional

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Smoothing Alternatives

The algorithm is block diagonal

Smoothing could be applied with any block solve
I on the shape displacement
I on the design variables
I on the gradients
I on the (pointwise) functional

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Smoothing the Displacement

0.001

1

0 0.5 1 1.5 2

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

m1d1
m2d1

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Smoothing the Displacement

0.001

1

0 0.5 1 1.5 2

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

m1d1
m2d1
m8d2

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Smoothing the gradients

0.001

1

0 0.5 1 1.5 2

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

g0m1d1g4

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Smoothing the gradients

0.001

1

0 0.5 1 1.5 2

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

g0m1d1g4
g1m0d1g4
g2m0d1g5

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Smoothing the gradients

0.001

1

0 0.5 1 1.5 2

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

g0m1d1g4
g1m0d1g4
g2m0d1g5
G5m0d1g4

G10m0d1g4
G25m0d1g4

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Smoothing the functional

0.001

1

0 0.5 1 1.5 2

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

g0m1d1g4

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Smoothing the functional

0.001

1

0 0.5 1 1.5 2

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

g0m1d1g4
p1m1
p2m1

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Smoothing the functional

0.001

1

0 0.5 1 1.5 2

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

g0m1d1g4
p1m1
p2m1

P.25m1
P.75m1d1g4

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Influence of the approx. Hessian
Number of metric corrections in LBFGS

1e-06

0.001

1

0 1 2 3 4 5 6 7 8

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

l7

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Influence of the approx. Hessian
Number of metric corrections in LBFGS

1e-06

0.001

1

0 1 2 3 4 5 6 7 8

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

l7
l1

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Influence of the approx. Hessian
Number of metric corrections in LBFGS

1e-06

0.001

1

0 1 2 3 4 5 6 7 8

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

l7
l1
l2

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Influence of the approx. Hessian
Number of metric corrections in LBFGS

1e-06

0.001

1

0 1 2 3 4 5 6 7 8

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

l7
l1
l2
l3

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Influence of the approx. Hessian
Number of metric corrections in LBFGS

1e-06

0.001

1

0 1 2 3 4 5 6 7 8

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

l7
l1
l2
l3

l15

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Influence of the approx. Hessian
Number of metric corrections in LBFGS

1e-06

0.001

1

0 1 2 3 4 5 6 7 8

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

l7
l1
l2
l3

l15
l30

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Influence of the approx. Hessian
Number of metric corrections in LBFGS

1e-06

0.001

1

0 1 2 3 4 5 6 7 8

L2
of

pr
es

su
re

di
ffe

re
nc

e

Cost in evaluations

l7
l1
l2
l3

l15
l30
l60

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Summary

I Using the gradient-scaling of convergence as a
preconditioner is effective for initial convergence of
the optimality system

I Primal, adjoint and functional converge uniformly
I Convergence to engineering precision in cost of 5

evaluations
I Choice of scaling coefficient depends on the testcase
I Coarsening the design space improves initial

convergence rate, but reduces final convergence
level

I 1 Explicit Jacobi sweep on displacement provides
best convergence rate and level

I Implicit Sobolev smoothing of gradients works less
well

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Summary

I Using the gradient-scaling of convergence as a
preconditioner is effective for initial convergence of
the optimality system

I Primal, adjoint and functional converge uniformly
I Convergence to engineering precision in cost of 5

evaluations
I Choice of scaling coefficient depends on the testcase
I Coarsening the design space improves initial

convergence rate, but reduces final convergence
level

I 1 Explicit Jacobi sweep on displacement provides
best convergence rate and level

I Implicit Sobolev smoothing of gradients works less
well

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Summary

I Using the gradient-scaling of convergence as a
preconditioner is effective for initial convergence of
the optimality system

I Primal, adjoint and functional converge uniformly
I Convergence to engineering precision in cost of 5

evaluations
I Choice of scaling coefficient depends on the testcase
I Coarsening the design space improves initial

convergence rate, but reduces final convergence
level

I 1 Explicit Jacobi sweep on displacement provides
best convergence rate and level

I Implicit Sobolev smoothing of gradients works less
well

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Summary

I Using the gradient-scaling of convergence as a
preconditioner is effective for initial convergence of
the optimality system

I Primal, adjoint and functional converge uniformly
I Convergence to engineering precision in cost of 5

evaluations
I Choice of scaling coefficient depends on the testcase
I Coarsening the design space improves initial

convergence rate, but reduces final convergence
level

I 1 Explicit Jacobi sweep on displacement provides
best convergence rate and level

I Implicit Sobolev smoothing of gradients works less
well

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Summary

I Using the gradient-scaling of convergence as a
preconditioner is effective for initial convergence of
the optimality system

I Primal, adjoint and functional converge uniformly
I Convergence to engineering precision in cost of 5

evaluations
I Choice of scaling coefficient depends on the testcase
I Coarsening the design space improves initial

convergence rate, but reduces final convergence
level

I 1 Explicit Jacobi sweep on displacement provides
best convergence rate and level

I Implicit Sobolev smoothing of gradients works less
well

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Summary

I Using the gradient-scaling of convergence as a
preconditioner is effective for initial convergence of
the optimality system

I Primal, adjoint and functional converge uniformly
I Convergence to engineering precision in cost of 5

evaluations
I Choice of scaling coefficient depends on the testcase
I Coarsening the design space improves initial

convergence rate, but reduces final convergence
level

I 1 Explicit Jacobi sweep on displacement provides
best convergence rate and level

I Implicit Sobolev smoothing of gradients works less
well

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Summary

I Using the gradient-scaling of convergence as a
preconditioner is effective for initial convergence of
the optimality system

I Primal, adjoint and functional converge uniformly
I Convergence to engineering precision in cost of 5

evaluations
I Choice of scaling coefficient depends on the testcase
I Coarsening the design space improves initial

convergence rate, but reduces final convergence
level

I 1 Explicit Jacobi sweep on displacement provides
best convergence rate and level

I Implicit Sobolev smoothing of gradients works less
well

One-Shot

Müller et al

Optimality Equ.
Adj. Eq.

Optimality System

Sim. Time-Stepping

gRMS

Implementation
Solver

Testcase

Further Work

I Improve convergence of coarsened design modes
I Experiment with alternative approximations to the

Hessian
I Multigrid
I Inequality constraints
I Unsteady optimisation

	Outline
	The Optimality System
	Adj. Eq.
	Optimality System
	Sim. Time-Stepping
	gRMS

	Implementation
	Solver
	Testcase

