Using Model Reduction in Data Assimilation

Met Office Website

Nancy Nichols, Amos Lawless

The University of Reading

Caroline Boess, Angelika Bunse-Gerstner

Cerfacs & The University of Bremen

Outline

- Introduction to data assimilation
- 4D Variational assimilation (4DVar)
- Model reduction using balanced truncation
- Balanced truncation in incremental 4DVar
- Numerical experiments
- Conclusions

Initial data required (in grid boxes):

- Temperature
- Pressure
- Velocities (3)
- Density
- Humidity
- Chemical constituents
- Physical parameters

Initial data required (in grid boxes):

- Temperature
- Pressure
- Velocities (3)
- Density
- Humidity
- Chemical constituents
- Physical parameters

Picture Courtesy of Met Office $\ \ \odot$ Crown Copyright

The global model at the UK Met Office has over 5 million boxes!

Available observations:

at the surface:

Picture Courtesy of Met Office © Crown Copyright

Available observations:

at the surface:

from radio-sondes:

Picture Courtesy of Met Office © Crown Copyright

Available observations:

at the surface:

from radio-sondes:

from satellites:

Picture Courtesy of Met Office © Crc

Data Assimilation

Aim:

Find the best estimate (analysis) of the true state of a system, consistent with both observations and the system dynamics given:

- Numerical prediction model
- Observations of the system (over time)
- Background state (first guess)
- Estimates of the errors

Significant Properties:

- Very large number of unknowns (10⁷ 10⁸)
- Few observations (10⁵ 10⁶)
- System nonlinear unstable/chaotic
- Multi-scale dynamics

Data Assimilation - 4DVar

Aim: Find the initial state x_0 such that the distance between the state trajectory and the observations is minimized, subject to x_0 remaining close to the prior estimate x_b .

4D-Var Nonlinear Problem

min
$$J(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_b)^T \mathbf{B}_0^{-1} (\mathbf{x}_0 - \mathbf{x}_b)$$

+
$$\sum_{i=0}^{n} (H_i[\mathbf{x}_i] - \mathbf{y}_i)^T \mathbf{R}_i^{-1} (H_i[\mathbf{x}_i] - \mathbf{y}_i)$$

subject to $\mathbf{x}_i = S(t_i, t_0, \mathbf{x}_0)$

- \mathbf{x}_{b} Background state
- \mathbf{y}_i Observations
- H_i Observation operator
- **B** Background error covariance matrix
- \mathbf{R}_i Observation error covariance matrix

Incremental 4D-Var

Solve by iteration a sequence of linear least squares problems that approximate the nonlinear problem.

Incremental 4D-Var

Set $\mathbf{X}_{0}^{(0)}$ (usually equal to background) For k = 0, ..., K find: $\mathbf{X}_{i}^{(k)} = S(t_{i}, t_{0}, \mathbf{X}_{0}^{(k)})$ Solve inner loop minimization problem:

$$\tilde{\mathcal{J}}^{(k)}[\delta \mathbf{x}_{0}^{(k)}] = \frac{1}{2} (\delta \mathbf{x}_{0}^{(k)} - [\mathbf{x}^{b} - \mathbf{x}_{0}^{(k)}])^{\mathrm{T}} \mathbf{B}_{0}^{-1} (\delta \mathbf{x}_{0}^{(k)} - [\mathbf{x}^{b} - \mathbf{x}_{0}^{(k)}]) + \frac{1}{2} \sum_{i=0}^{N} (\mathbf{H}_{i} \delta \mathbf{x}_{i}^{(k)} - \mathbf{d}_{i}^{(k)})^{\mathrm{T}} \mathbf{R}_{i}^{-1} (\mathbf{H}_{i} \delta \mathbf{x}_{i}^{(k)} - \mathbf{d}_{i}^{(k)})$$

with $\delta \mathbf{x}_{i}^{(k)} = \mathbf{L}(t_{i}, t_{0}, \mathbf{x}_{0}^{(k)}) \delta \mathbf{x}_{0}^{(k)}$, $\mathbf{d}_{i} = \mathbf{y}_{i} - H_{i}[\mathbf{x}_{i}^{(k)}]$ Update: $\mathbf{x}_{0}^{(k+1)} = \mathbf{x}_{0}^{(k)} + \delta \mathbf{x}_{0}^{(k)}$

The University of Reading

Previous Results

- Incremental 4D-Var without approximations is equivalent to a Gauss-Newton iteration for nonlinear least squares problems.
- In operational implementation we usually approximate the solution procedure:
 - Truncate inner loop iterations
 - Use approximate linear system model
- Theoretical convergence results obtained by reference to Gauss-Newton method.

New Research

Aims:

- Find approximate linear system models using optimal reduced order modeling techniques from control theory to improve the efficiency of the incremental 4DVar method.
- Test feasibility of approach in comparison with low resolution models using a simple shallow water flow model.

1D Shallow Water Model

Nonlinear continuous equations

$$\frac{\mathrm{D}u}{\mathrm{D}t} + \frac{\partial \varphi}{\partial x} = -g \frac{\partial \overline{h}}{\partial x}$$
$$\frac{\mathrm{D}(\ln \varphi)}{\mathrm{D}t} + \frac{\partial u}{\partial x} = 0$$
$$\frac{\mathrm{D}}{\mathrm{D}t} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x}$$

We discretize using a semi-implicit semi-Lagrangian scheme and linearize to get linear model (TLM).

with

Model Reduction via Oblique Projections

Given discrete-time linear system

$$\begin{array}{rcl} x_{i+1} &=& Ax_i + Bu_i, \\ y_i &=& Cx_i \end{array}$$

where $A \in \mathbb{R}^{N \times N}$, $B \in \mathbb{R}^{N \times m}$, $C \in \mathbb{R}^{p \times N}$. **Task:** Find projection matrices $U, V \in \mathbb{R}^{N \times I}$ with $U^T V = I_I$ and $I \ll N$ such that the reduced order system

$$\hat{x}_{i+1} = U^T A V \hat{x}_i + U^T B u_i, y_i = C V \hat{x}_i$$

and $x_i \approx V \hat{x}_i$ approximates the full order system.

Balanced Truncation

Balancing: Compute balancing state space transformation T with $x_i^{(B)} = T^{-1}x_i$ and get the transformed balanced system

$$\begin{array}{rcl} x_{i+1}^{(B)} &=& T^{-1}ATx_i^{(B)} + T^{-1}Bu_i, \\ y_i &=& CTx_i^{(B)}. \end{array}$$

Truncating: Define truncation matrix $S = [I_l, 0]$. Then we get the reduced order system

$$\hat{x}_{i+1} = ST^{-1}ATS^{T}\hat{x}_{i} + ST^{-1}Bu_{i}, y_{i} = CTS^{T}\hat{x}_{i}.$$

By setting $U := T^{-T}S^{T}$, $V := TS^{T}$ you see that $U^{T}V = I_{I}$ and that balanced truncation is an oblique projection method.

Incremental 4DVar & Reduced Order Models

For initial tests, aim to minimize inner linear least square problem subject to the time-invariant linear system:

$$\delta x_{i+1} = M \delta x_i,$$

$$d_{i+1} = H \delta x_{i+1}$$

with initial starting condition:

$$\delta x_0 = B_0^{\frac{1}{2}} \omega_0$$
, with $\omega_0 \sim \mathcal{N}(0, I)$, $\delta x_0 \sim \mathcal{N}(0, B_0)$

Apply oblique projection to reduce order.

Projected Minimization Problem

The projected problem is to minimize:

$$\begin{aligned} \hat{\mathcal{J}}^{(k)}[\delta \hat{x}_0] &= \frac{1}{2} (\delta \hat{x}_0 - U^T [x^b - x_0])^T (U^T B_0 U)^{-1} (\delta \hat{x}_0 - U^T [x^b - x_0]) \\ &+ \frac{1}{2} \sum_{i=0}^N (HV \delta \hat{x}_i - d_i)^T R^{-1} (HV \delta \hat{x}_i - d_i) \end{aligned}$$

subject to:

$$\begin{aligned} \delta \hat{x}_{i+1} &= U^T M V \delta \hat{x}_i, \\ d_{i+1} &= H V \delta \hat{x}_{i+1} \end{aligned}$$

with $U, V \in \mathbb{R}^{N \times I}$, $U^T V = I_I$ and $\delta x_i \approx V \delta \hat{x}_i$.

Numerical Experiments -Error Norms and Condition Numbers

Test matrices:

 $egin{aligned} &M\in \mathbb{R}^{400 imes 400}\ &H\in \mathbb{R}^{200 imes 400}\ &B_0^{rac{1}{2}}\in \mathbb{R}^{400 imes 400} \end{aligned}$

from TLM model observations at every other point quite realistic test matrix

Error norm
$$nrm = \frac{\|\delta x_0 - \delta x_0^{(lift)}\|_2}{\|\delta x_0\|_2}$$
, $\delta x_0^{(lift)} := V \delta \hat{x}_0$.

Error between exact and approximate analysis for 1-D SWE model

Low Resolution Model

Reduced Rank Model

	Error norm	Condition number
	low resolution	low resolution
1=200	0.6839	136.4230
	reduced order	reduced order
l=200	0.1728	9.6946
l = 150	0.2713	7.5097
l=100	0.4281	6.3893
l=90	0.4638	6.3725
l=80	0.5342	6.3298
l=70	0.6357	6.2807

	Error norm	Condition number
	low resolution	low resolution
l=200	0.6839	136.4230
	reduced order	reduced order
l=200	0.1728	9.6946
l = 150	0.2713	7.5097
l=100	0.4281	6.3893
l=90	0.4638	6.3725
l=80	0.5342	6.3298
l=70	0.6357	6.2807

	Error norm	Condition number
	low resolution	low resolution
1=200	0.6839	136.4230
	reduced order	reduced order
l=200	0.1728	9.6946
l = 150	0.2713	7.5097
l=100	0.4281	6.3893
l=90	0.4638	6.3725
l=80	0.5342	6.3298
l=70	0.6357	6.2807

	Error norm	Condition number
	low resolution	low resolution
1=200	0.6839	136.4230
	reduced order	reduced order
l=200	0.1728	9.6946
l = 150	0.2713	7.5097
l=100	0.4281	6.3893
l=90	0.4638	6.3725
l=80	0.5342	6.3298
l=70	0.6357	6.2807

Eigenvalues of (a) full, (b) low resolution (c) reduced rank system matrices

Conclusion

Main conclusion: reduced rank linear models obtained by optimal reduction techniques give more accurate analyses than low resolution linear models that are currently used in practice.

