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Initial data required (in grid boxes):

* Temperature

* Pressure

* Velocities (3)

* Density

* Humidity

* Chemical constituents
* Physical parameters

Picture Courtesy of Met Office © Crown Copyright
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Initial data required (in grid boxes):

* Temperature

* Pressure

* Velocities (3)

* Density

* Humidity

* Chemical constituents
* Physical parameters

Picture Courtesy of Met Office © Crown Copyright

The global model at the UK Met Office has over
S million boxes!
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Available observations:
at the Su rface Data Coverage: Surface {5!1:’20[%0,qu00}

Total number of observations assimilated: 9382
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Available observations:

Data Coverage: Sonde (5/1/2004, 0 UTC, qu00)

from rad io_Sondes: Total number of observations assimilated: 1390

at the surface:
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Available observations:

at the surface:

from radio-sondes:

from satellites:

Picture Courtesy of Met Office © Crc
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Data Coverage: ATOVS
(5/1/2004, 0 UTC, quoD)

0 NOAA-14 TOVS (green), 6560 NOAA-15 ATOVS (red), 6586 NOAA-16 ATQVS (blue)

Total number of observations assimilated: 13146
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Data Assimilation
Aim:
Find the best estimate (analysis) of the true
state of a system, consistent with both

observations and the system dynamics
given:

* Numerical prediction model

* Observations of the system (over time)
* Background state (first guess)

* Estimates of the errors
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Significant Properties: ey

* Very large number of unknowns (107—108)
* Few observations (10°—10%) & :
* System nonlinear unstable/chaotic

* Multi-scale dynamics
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Aim: Fi

Data Assimilation - 4DVar

nd the initial state x, such that the distance between

the state trajectory and the observations is minimized,

subject
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to x, remaining close to the prior estimate x, .

Observation
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> Time
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4D-Var Nonlinear Problem

. | ]
min J(Xo) - E(Xo - Xb)TB'ol(Xo B Xb)

' Zo(Hi[Xi]_ y,) RU(H[X,]-y,)
subject to X, = S(¢,¢,,X,)

X, - Background state

y; - Observations

H, - Observation operator

B - Background error covariance matrix
R, - Observation error covariance matrix

l
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Incremental 4D-Var

Temperature 4

@ Observation
- O
Analysis “n il
Background
Xb

>  Time
Solve by iteration a sequence of linear least squares problems
that approximate the nonlinear problem.
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Incremental 4D-Var

Set XE)O) (usually equal to background)

. k) - k
Fork=0, ..., K find: x;" = S(t,1,, %)
Solve inner loop minimization problem:

by re ( 1, N T 1< (k |
TPExg] = Sx67 = [ = %™ B (0x(” — [x" —x0™))
N
1 (k) ()T —1qy. s (®) (k)
+ 5;(Hi<§xi — 4R HoxY — d))

with  0x®P=L(t,1,,x%)0x®,  d, =y, - H[x"]

l

k+1) — k k
Update:  Xp = Xy + 0x;
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Previous Results

* |Incremental 4D-Var without approximations is
equivalent to a Gauss-Newton iteration for
nonlinear least squares problems.

* |n operational implementation we usually
approximate the solution procedure:

— Truncate inner loop iterations
— Use approximate linear system model

* Theoretical convergence results obtained by
reference to Gauss-Newton method.
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New Research
Aims:

* Find approximate linear system models
using optimal reduced order modeling
techniques from control theory to improve
the efficiency of the incremental 4DVar

method.

* Test feasibility of approach in comparison
with low resolution models using a simple
shallow water flow model.
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1D Shallow Water Model

Nonlinear continuous equations

Du ¢ 0k

—t s -g—

Dt 0x 0 x

D(ln¢)+ Ou _ 0
Dt 0 x
with D, 0_+ ua—
Dt 0t dx

We discretize using a semi-implicit semi-Lagrangian
scheme and linearize to get linear model (TLM).

The University ofReading Department of Mathematiés



Model Reduction via Oblique Projections

Given discrete-time linear system

Xiy1 = AX;+ Bu,
yi = Cx

where A ¢ RNV B ¢ RV*m C ¢ RP*N,
Task: Find projection matrices U,V € RV*/ with UV = |,
and / < N such that the reduced order system
RXisw = UTAV% + U Bu;,
Vi = CV)?I

and x; =~ VX; approximates the full order system.
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Balanced Truncation

Balancing: Compute balancing state space transformation T
with x'&) = T 1x; and get the transformed balanced system

i

x\F) = TATX®) + T-1By;

yi = CTx'®).

I

Truncating: Define truncation matrix S = [/;,0]. Then we
get the reduced order system

%1 = STYATST% + ST 'Bu:
Vi = CTSTJ?I

By setting U := T-7S", V:= TS you see that UTV = |,
and that balanced truncation is an oblique projection method.
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Incremental 4DVar & Reduced Order
Models

For initial tests, aim to minimize inner linear least square
problem subject to the time-invariant linear system:

5Xf—|—1 — MéXj,
div1 = Hoxjy

with initial starting condition:

0Xp = B wo, With wg ~ N(0, 1), dxg ~ N (0, By)

Apply oblique projection to reduce order.
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Projected Minimization Problem

The projected problem is to minimize:

T [6%] = %({sseﬂ —UT[x" —x]) " (U BoU) (6% — UT [x" — x0])
+ = Z HV 5% — “YHVS% — d;)

subject to:
0ki1 = UTMVox;,

d,‘_|_1 — HV5)?,‘+1

with U,V e RV UTV = |, and 6x; = VX;.
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Numerical Experiments -
Error Norms and Condition Numbers

Test matrices:

M e [R400x400 from TLM model

H e R200%400 observations at every other point
L . . .
B € RA00x400 quite realistic test matrix
Sxg—ox"™ - (lif o
Error norm nrm = 1 XUH(SX(}]{ﬁz I oxg") = Vs .
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Error between exact and approximate analysis
for 1-D SWE model

Low Resolution Model Reduced Rank Model
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Comparison of error norms and conditions numbers -
Low resolution vs Reduced order models

Error norm || Condition number
low resolution low resolution

1=200 0.6839 136.4230
reduced order reduced order

1=200 0.1728 9.6946

1=150 0.2713 7.5097

1=100 0.4281 6.3893

1=90 0.4638 6.3725

1=80 0.5342 6.3298

1=70 0.6357 6.2807

The University of Reading
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Comparison of error norms and conditions numbers -
Low resolution vs Reduced order models
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Comparison of error norms and conditions numbers -
Low resolution vs Reduced order models

Error norm || Condition number
low res utlon low resolution

1=200 (D 6839 ) 136.4230
reduced_order reduced order

1=200 (0.1728 > 9.6946

1=150 M 7.5097
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1=80 0.5342 6.3298

1=70 0.6357 6.2807
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Comparison of error norms and conditions numbers -
Low resolution vs Reduced order models

Error norm || Condition number

loxxrl?/x@.ion low resolution
1=200 (0.6839) 136.4230

reciucec 01"de1' reduced order
1=200 0.1728 9.6946
1=150 0.2713 7.5097
1=100 0.4281 6.3893
1=90 0.4638 6.3725
1=80 0.5342 6.3298
1=70 (0.6357) 6.2807

N—"
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system matrices
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Conclusion

Main conclusion: reduced rank linear

models obtained by optimal reduction
techniques give more accurate analyses
than low resolution linear models that

are currently used in practice.
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