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Initial data required (in grid boxes):
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•  Temperature 
•  Pressure
•  Velocities (3)
•  Density
•  Humidity
•  Chemical constituents
•  Physical parameters



Initial data required (in grid boxes):

The global model at the UK Met Office has over
5 million boxes!
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•  Temperature 
•  Pressure
•  Velocities (3)
•  Density
•  Humidity
•  Chemical constituents
•  Physical parameters



Available observations:
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at the surface:
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at the surface:

from radio-sondes:

Available observations:
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at the surface:

from radio-sondes:

Available observations:

from satellites:



 Data Assimilation
Aim:

Find the best estimate (analysis) of the true 
state of a system, consistent with both 
observations and the system dynamics 
given:

•  Numerical prediction model
•  Observations of the system (over time)
•  Background state (first guess)
•  Estimates of the errors



Significant Properties:

•  Very large number of unknowns (107 – 108)
•  Few observations (105 – 106)
•  System nonlinear unstable/chaotic
•  Multi-scale dynamics
 



Observation

Time

x

Background
      x0

Analysis

Aim:  Find the initial state x0 such that the distance between 
the state trajectory and the observations is minimized, 
subject to x0 remaining close to the prior estimate xb .

Data Assimilation  -  4DVar



4D-Var Nonlinear Problem
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x - Background state 

- Observations
- Observation operator
- Background error covariance matrix
- Observation error covariance matrix



Observation

Time

Temperature

Background
      xb

Incremental 4D-Var

Analysis

Solve by iteration a sequence of linear least squares problems 
 that approximate the nonlinear problem.
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Incremental 4D-Var
Set           (usually equal to background)

For k = 0, …, K  find:
Solve inner loop minimization problem:
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• Incremental 4D-Var without approximations is 
equivalent to a Gauss-Newton iteration for 
nonlinear least squares problems.

• In operational implementation we usually 
approximate the solution procedure: 
–  Truncate inner loop iterations
–  Use approximate linear system model

• Theoretical convergence results obtained by 
reference to Gauss-Newton method.

Previous Results



New Research
Aims:
• Find approximate linear system models 

using optimal reduced order modeling 
techniques from control theory to improve 
the efficiency of the incremental 4DVar 
method.

• Test feasibility of approach in comparison 
with low resolution models using a simple 
shallow water flow model.
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1D Shallow Water Model
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We discretize using a semi-implicit semi-Lagrangian 
scheme and linearize to get linear model (TLM).

Nonlinear continuous equations
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Model Reduction via Oblique Projections

.



Balanced Truncation



Incremental 4DVar & Reduced Order 
Models 

For initial tests, aim to minimize inner linear least square 
problem subject to the time-invariant linear system:

with initial starting condition:

Apply oblique projection to reduce order.



Projected Minimization Problem

subject to:

The projected problem is to minimize:



Numerical Experiments  -
Error Norms and Condition Numbers

, .
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Error between exact and approximate analysis
for 1-D SWE model

Reduced Rank ModelLow Resolution Model
Error Error

Component of state Component of state
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Comparison of error norms and conditions numbers  -
Low resolution  vs  Reduced order models
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Comparison of error norms and conditions numbers  -
Low resolution  vs  Reduced order models
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Comparison of error norms and conditions numbers  -
Low resolution  vs  Reduced order models
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Comparison of error norms and conditions numbers  -
Low resolution  vs  Reduced order models



(a) (b)

(c)

Eigenvalues of (a) full, (b) low resolution (c) reduced rank
system matrices



Conclusion

Main conclusion:   reduced rank linear 
models obtained by optimal reduction 
techniques give more accurate analyses 
than low resolution linear models that 
are currently used in practice.








