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I General framework

I Preconditioning techniques considered

I Some properties

I Numerical experiments (data assimilation)

I Conclusions and perspectives
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The goal of data assimilation

The goal of data assimilation is to find an initial state vector for
which the trajector of the forecast model best fits an initial
background and some observations. The vector found is the used
to start a new simulation which gives an improved forecast.
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Data assimilation problem formulation

A variational formulation: nonlinear least-squares problem

min
x∈Rn

f (x) =
1

2
||x − xb||2B−1 +

1

2

N∑
j=0

||Hj(Mj(x))− yj ||2R−1
j

I Size of real (operational) problems : x , xb ∈ R106
, yj ∈ R105

.

I The observations yj and the background xb are noisy.

I M is the model operator (nonlinear)

I H is the observation operator (nonlinear)
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Solution strategy

I Typical approach : Incremental 4DVAR (i.e.
inexact/truncated Gauss-Newton algorithm (GN)).

I GN leads to sequence of linear least-squares problems

I (Equivalently to ) Sequence of linear symmetric positive
definite systems to solve normal equations :

JT
i Jix = JT

i ri

I Whose matrix Ai ≡ JT
i Ji varies.
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The key Idea (in our study)

I We consider a symmetric and positive definite (spd) matrix A.

I Solve systems Ax = b1, Ax = b2, . . ., Ax = br with RHS in
sequence, by iterative methods: Conjugate Gradient (CG) or
variants.

I Precondition the CG using informations obtained when solving
the previous system.

I Extension of the idea to nonlinear process such as
Gauss-Newton (GN) method. The matrix varies along the
process.
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The CG algorithm (A is spd and large !)
I CG is an iterative method for solving

min
x∈Rn

1

2
xTAx − bT x ⇔ Ax = b (stationary eq.)

I Iterations: Given x0 ∈ Rn; A ∈ Rn×n; b ∈ Rn

I Set r0 ← Ax0 − b0; p0 ← −r0; i ← 0
I Loop on i

αi ← (rT
i ri )/(pT

i Api )
xi+1 ← xi + αipi

ri+1 ← ri + αiApi

βi+1 ← (rT
i+1ri+1)/(rT

i ri )
pi+1 ← −ri+1 + βi+1pi

I ri are residuals; pi are descent directions.
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The CG properties (in exact arithmetic !)

I Orthogonality of the residuals: rT
i rj = 0 if i 6= j .

I A-conjugacy of the descent directions: pT
i Apj = 0 if i 6= j .

I The distance of the iterate xi to the solution x∗ is related to
the condition number of A, denoted by κ = λmax

λmin
(≥ 1):

||xi − x∗||A ≤ ηi ||x0 − x∗||A with ηi = 2

(√
κ− 1√
κ + 1

)i

⇒ The smaller cond(A) ≡ κ is, the faster the convergence.

I Exact solution found exactly in r iterations, where r ≤ n is the
number of distinct eigenvalues of A ∈ Rn×n.
⇒ The more clustered the eigenvalues are, the faster the
convergence.
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Why to precondition ?

I Transform Ax = b in an equivalent system having a more
favorable eigenvalues distribution for faster convergence.

I Use a preconditioning matrix H (which must be cheap to
apply).

I Ideas to design preconditioner. H would :
I approximates A−1.
I make cond(HA) < cond(A).
I make eigenvalues of HA more clustered than those of A.

I Note: when a preconditioning is used, residuals are:
I Orthogonal if H is factored in LLT .
I Conjugate w.r.t. H if H is not factored.
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Preconditioning techniques considered (I)

I We consider (second level preconditioning) techniques :

I Solve Ax = b1 and extract information info1.
I Use info1 to solve Ax = b2 and extract information info2.
I Use info2 (and possibly info1) to solve Ax = b3 and . . .
I . . .

I Infok will be:
I descent directions;
I or other vectors such as eigenvectors of A ...
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Preconditioning techniques considered (II)

We study and compare two approaches:

I Deflation [Frank, Vuik, 2001].

I Limited Memory Preconditioners (LMP): Preconditioners
based on a set of A-conjugate directions. Generalization of
known preconditioners:

I spectral [Fisher, 1998],
I L-BFGS [Nocedal, Morales, 2000], warm start [Gilbert,

Lemaréchal, 1989].

We cover:

I Theoretical properties.

I Numerical experiments (data assimilation).
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Deflation Techniques

I Given W ∈ Rn×k (k � n) formed with appropriate
information obtained when solving the previous system.

I Consider the oblique projector P = I −AW (W TAW )−1W T .

I Split the solution vector as follows x∗ = (I − PT )x∗︸ ︷︷ ︸
direct

+ PT x∗︸ ︷︷ ︸
iterative

.

I Compute (I − PT )x∗ with a direct method.

I Compute PT x∗ with an iterative method.
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Some Properties for Deflation

I Computation of (I − PT )x∗:

I (I − PT )x∗ = W (W TAW )−1W TAx∗ = W (W TAW )−1W Tb.

I Note: W TAW ∈ Rk×k and k � n.

I Computation of PT x∗:

I Consider the compatible singular (but still symmetric) system
PAy = Pb.

I Use CG with y0 = 0 to solve PAy = Pb.
I Any solution y of PAy = Pb satisfies PT x∗ = PT y .

I Note: cond(PA) ≤ cond(A) and PA = (PA)T .
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Limited Memory Preconditioners (LMP)

I General reformulation of LMP:

Hk+1 = [I −
k∑

i=0

Awiwi
T

wi
TAwi

]T [I −
k∑

i=0

Awiwi
T

wi
TAwi

] +
k∑

i=0

wiwi
T

wi
TAwi

,

with wi
TAwj

{
= 0 if i 6= j
> 0 if i = j

I Particular forms
I The wi ’s are the descent directions obtained from CG: wi = pi

⇒ L-BFGS preconditioner.
I The wi ’s are eigenvectors of A: wi = vi

⇒ spectral preconditioner.
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Spectral Properties for LMP (I)

. The matrix A is fixed.

I The matrix A to precondition is the same as the previous one
(only the RHS changes).

I Theorem : Assume that λ1, . . . , λn is the spectrum of A, then
the spectrum µ1, . . . , µn of the preconditioned matrix Hk+1A
satisfies:{

µj = 1, for j = 1, . . . , k
λj−k(A) ≤ µj ≤ λj(A), for j = k + 1, . . . , n,

where λj(A) is the j−th eigenvalue of A (increasing order
assumed).
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Spectral properties for LMP (II)

λ3 λ4 λ5 λ6λ1 λ2

µ4

µ5

µ6

µ3

1

µ1 = µ2 = 1

I Eigenvalues translated to 1.

I The rest of the spectrum is not expanded compared to the
spectrum of A.
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Spectral Properties for LMP (III)

The matrix A varies.

I Ã = A + τE with ||E ||F = 1 and τ ∈ R+ (and small enougth :
first order perturbation)

I Theorem : Assume that τ is small, then the k + 1 first
eigenvalues of the preconditioned matrix Hk+1Ã satisfies:

µ̃j ≤ 1 + λmax(W
TEW ) ∗ τ + o(τ), for j = 1, . . . , k + 1

I λmax(W
TEW ) ∗ τ is a measure of the default of conjugacy of

columns vectors of W w.r.t. the new matrice Ã
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Existence of a factored form for the LMP (not the
Cholesky factor and obtained by construction!)

I L-BFGS:
I A possible factored form is Hk+1 = Lk+1L

T
k+1 where:

Lk+1 =
k∏

i=0

(
I − siyi

T

yi
T si

+
si√
yi

T si

ri
T

‖ri‖

)
,

with si = xi+1 − xi and yi = ri+1 − ri .
I Same cost in memory and CPU as the unfactored form.

I Spectral:
I A possible factored form is Hk+1 = L2

k+1 where:

Lk+1 = I +
k+1∑
i=1

(
1√
λi

− 1

)
vivi

T

vi
T vi

.

I Same cost in memory as the unfactored form.
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Why looking for a factored form H = LLT ?

I With a non factored form, we use CG preconditioned by H.

I With a factored form, we solve LTALu = LTb; x = Lu.

Advantages:

I More appropriate if reorthogonalization of the residuals is used.
I Least-squares minx‖Ax − b‖ or AAT x = ATb:

LSQR (or CGLS) is more accurate than CG in presence of
rounding errors but works with (A,AT , L, LT , b) instead of
(ATA,ATb,H).

I When accumulating preconditioners, symmetry and
positiveness are still maintained:

LT
1 AL1y1 = LT

1 b1, LT
2 (LT

1 AL1)L2y2 = LT
2 LT

1 b2, . . .
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Why to reorthogonalize the residuals ?

I In finite precision, residuals often loose orthogonality (or
conjugacy) and theoretical convergence is then slowed down.

I Reorthogonalization of residuals in CG is terribly successful
when matrix-vector product is very expensive compared to
other computations in CG (see example in the next slide).

I Note: to restore orthogonality or conjugacy, working with
LTAL and the canonical inner-product is better (memory,
CPU, error propagation) than working on A preconditioned by
the no factored matrix H.
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Example of reorthogonalisation effect : CERFACS
data assimilation system (1 000 000 unknowns)
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Experiments with unpreconditioned LSQR
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LSQR is better than CG !
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Experiments with LSQR preconditioned with
factored L-BFGS
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LSQR is again better than CG !
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Experiments description

Algorithmic variants tested:

I Use CG to solve the normal equations.

I Compare 3 preconditioning techniques:
I Deflation technique (using spectral information).
I Spectral preconditioner (using spectral info. but differently).
I L-BFGS preconditioner (using descent directions).

I Where spectral information is needed, use Ritz (vectors) as
approximations of the eigenvectors.

I Ritz vectors are obtained by mean of a variant of CG: the
Lanczos algorithm which combines linear and eigen solvers.
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Experiment on a small system (I) [A. Lawless, N.
Nichols, 2001, University of Reading]

Ranking of the preconditioners using the basic strategies.

I Diagnostics are made on the non linear optimisation problem

I The number of CG iterations is fixed.
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Results L-BFGS - Deflation
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Deflation is better than L-BFGS !
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Results Noprecond - L-BFGS
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L-BFGS is better than Noprecond !
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Results Spectral - Noprecond
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Noprecond is better than Spectral !
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Experiment on a small system (II) [A. Lawless, N.
Nichols, 2001, University of Reading]

Is it better to wait until the system does not vary much for the
preconditioner to be efficient ?

I Our main theory assumes that the matrix A is fixed. In
practice (data assimilation) the matrix varies.

I It is Known that the GN method may not be locally
convergent on some problems. But in our experiments the GN
process converges and the steps thus become smaller.

I This means that the matrix does not change so much, when
approaching the solution.
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Results Noprecond - L-BFGS(2nd)
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L-BFGS(2nd) is better than Noprecond !
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Results L-BFGS(1rst) - L-BFGS(2nd)
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L-BFGS(2nd) is better than L-BFGS(1rst) !
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Results Noprecond - deflation(4th)

1 2 3 4 5
10−9

10−8

10−7

10−6

Outer Iteration

Fu
nc

tio
n 

va
lu

e 
di

ffe
re

nc
e CONGRAD .0.0.0−.3.4.10

no−precond−deflation(4th)

1 2 3 4 5
10−10

10−5

100

105

Outer Iteration

G
ra

di
en

t n
or

m

deflation(4th)
no−precond

Deflation(4th) is better than Noprecond !
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Results deflation(4th) - deflation(1rst)
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Deflation(1rst) is a little better than Deflation(4th) !

J. TSHIMANGA I. 33/36

On Some Preconditioning Techniques for Linear Least-Squares Problems with Multiple Right-Hand Sides



Outline Framework Techniques Properties Experiments Conclusions and Perspectives

Remarks on our system !

I Spectral preconditioner:
I Does not work in our case.

I L-BFGS preconditioner:
I Requires no large changes in the matrix.
I Based on by-products of CG.
I More efficient than the spectral preconditioner or than no

preconditioner.

I Deflation:
I Is stable even when the matrix changes.
I May be expensive (W TAW ) in CPU time.
I More efficient than the other techniques.
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Conclusions

I Properties of LMP preconditioners understood (when the
matrix A is fixed or changes a ”bit”).

I Existence of factored forms for particular instances of LMP.

I Preliminary tests show weakness of spectral compared to
deflation and L-BFGS in a data assimilation experiment.

I One technique (deflation) not yet used before in data
assimilation has been tested in this field.
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Perpectives and work in progress

I Experiment sampling techniques to select information:

I Which information to capture ?

I Purge the preconditioner or not ?

I When and how to decide to apply the preconditioner ?

I Make tests in a more realistic data assimilation environment:

I CERFACS 2D Shallow Water or any.

I CERFACS operational system or any.
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