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Mixing induced by Rayleigh—Taylor instability in a vortex

Laure Coquart,® Denis Sipp, and Laurent Jacquin
ONERA, 8 rue des Vertugadins, 92190 Meudon, France

(Received 28 October 2004; accepted 7 December 2004; published online 19 January 2005

The direct numerical simulatiofDNS) of a two-dimensional Lamb—Oseen vortex with a heavy
internal core has been performed. Linear stability theory predicts the existence of Rayleigh—Taylor
(RT) instabilities due to the destabilizing effect of the centrifugal force on the radial flow
nonhomogeneities. The DNS first exhibits wavy azimuthal perturbations which are nonlinearly
distorted into bubble-like patterns, characteristic of the standard development of the RT instabilities,
i.e., instabilities obtained in a planar nonhomogeneous flow in the presence of gravity. Nevertheless,
important differences may be observed in the late stage development of the instability: contrary to
the standard case, the bubbles are then stretched in the azimuthal direction leading to a strong radial
filamentation of the flow. €005 American Institute of PhysidDOI: 10.1063/1.1852580

Stabilizing mechanisms associated to rotation usually d(rmu) 80T
i : iffudid AE+ G[(E+pu]=—2H —
make a vortex very resistant to radial momentum diffusion. t i i R (y-)PM?R’
The present Letter is considering possible density variation
effects to achieve this goal. If density effects were signifi-

canf, dvqrtex cltc)jntt)rol by _:jnear;sfof |nject|c|)n of ;‘eatedl,orwhereui, p, T, p are the velocity, density, temperature, and
cooled air could be considered, for example, in the app ICabressure of the fluidg; =d;u; + du;— 28U/ 3 is the viscous

tion of aircraft wakes.The goal of this Letter is, precisely, to stress tensor ang=p/(y—1)+puu/2 is the total energy
evaluate the potential of such density effects on the dynami(‘.Fhe flow is supposed 2(; behgvle Ilike a perfect gasp '

of vortex cores. . .
=pT. Several nondimensional parameters appear: the Rey-

The linear stability of a compressible two-dimensional nolds NUMbemR =L /1 where . is the Viscosity. the
(2D) Lamb—Oseen vortex with a heavy core predicts the ex- ~ reflrefPref’ A K Y,

istence of 2D temporally oscillating unstable mod&hese Mach numberM:uref/(y.RTref)l’z where R is the constant
unstable modes are of the Rayleigh-Tay(BT) type. As a of perfect gas, the specific heat ratjo the Pr.e}ndtl number
matter of fact, heavy fluid inside light fluid in a vortex core is - =#Co/ k, wherec, andk designate the specific heat at con-
equivalent to light fluid below heavy fluid in the presence ofStant pressure and the thermal conductivity. The s!mulatlon is
gravity. The gravity force is replaced here by the centrifugalP€rformed at a low Mach number so that the static tempera-
force. In both cases, the unstable situation corresponds to ti{gre variations are small. This allows us to make the assump-
force (gravity or centrifugal directed towards the light fluid. tion of constant viscosity, constant thermal conductivity and
In this Letter, we study the linear and nonlinear developmengonstant specific heats.
of these instabilities thanks to a 2D direct numerical simula-  These equations are solved on a Cartesian grid mesh.
tion (DNS). The main objective of this Letter is to character- Time integration of the equations is decoupled from spatial
ize possible differences that may exist in the development ofliscretization and is perfomed by a third order Runge—Kutta
RT instabilities between the standard case with the gravitgcheme with the numerical coefficients of Lowery and
force and the present situation with the centrifugal force. Reynolds’ The convective terms are discretized with a sixth-
Let Les, Uret, pref andT,; be the reference length, veloc- order compact finite differences schef® minimize the
ity, density, and temperature scales of the problem. Thesgliasing errors, the nonlinear terms are written in the skew
reference scales will be precised below. The compressiblsymmetric form’ Diffusive terms are evaluated with a sixth-
Navier—Stokes equations read in nondimensional form order accurate scheme, except the diagonal terms that are
discretized by using a scheme introducing enough numerical
dissipation to avoid oscillatiorfs.Nonreflecting boundary
dp +a,(pu) =0, (1) conditions are prescribed at the lateral boundaries.

The flow field is initialized by the superposition of a
basic flow and a perturbation. The basic flow is an axisym-
metric vortex with radial variations of the density profile.

am Hence, ifu, andu, designate the radial and azimuthal veloc-
dpWy) + 9)(pUily) = = dip + R (2 ity components in cylindricalr ,6) coordinates, the basic
flow reads:[u,,uy,p,p]=[0,V(r),P(r),R(r)]. The velocity
ITelephone: 330)1 46 23 51 64. Fax: 380)1 46 23 51 58. Electronic mail: field V(r) is chosen to be the azimuthal velocity profile of the
Laure.Coquart@onera.fr Lamb—-Oseen vortex:
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FIG. 1. Modulus of the eigenfunctiongr), 0,(r), and{,(r) associated to Ll
the eigenmode characterized by=0.20,w,=2.82, m=3, b=0.3,s=0.2, x
M=0.1, y=1.4,R=10 000, andP=0.7.

FIG. 2. Computational domain and grid mesh.

[u/,ugp’.p" T']
= Re(ALy (1), 0,(r), P(r), p(r), T(r) J&™), 7

The reference length and velocity scalgg and uer there- \\here m is the azimuthal wavenumbes is the complex
fore designate the characteristic radius and velocity of th?requencyw:w +io, andA is the amplitude of the eigen-
r I

Lamb-Oseen vortex. In addition, for.the definition of the 1 .nqe. A Lamb—Oseen vortex with a heavy internal care
Mach numberM, we choose the static temperature of the. () js generically unstable to RT instabilities. The involved
fluid gt |n.f|n|.ty as the rgference.temperature SChlg. The physical mechanims are incompressible and inviscid. In the
density distributiorR(r) is prescribed as following, we therefore choose a low value for the Mach

R=1+sexp(-r2/b?), (5 number and a high value for the Reynolds number. More

precisely, the case investigated in this Letter corresponds to

where s and b designate the amplitude and width of the b=0.3,s=0.2, M=0.1, y=1.4, R=10000, andP=0.7. It
heavy internal core. The reference density spalgis there-  appears that the most unstable eigenmode in this situation
fore equal to the density at infinity. The pressi®&) is  corresponds to am=3 eigenmode witfo=0.20 0, =2.82.

1-exg-r?
Ve rFi )

: (4)

obtained by integrating the radial momentum equation: ~ The associated eigenfunctiopé), U,(r) and U,(r) are rep-
resented in Fig. 1. For the initialization of the simulation, the
p= 1 fx &/Zdr 6) amplitudeA of the eigenmode in Ed7) is adjusted so as to
yM? ) have maxp’}=0.02maxR}.

The computational domain is represented in Fig. 2. Its
This flow field is a steady solution of the Euler equationsdimensions are: —38€x, y<30. The grid is uniform in the
while it slightly diffuses in time in the presence of viscosity. domain —3<x, y=3 and is stretched using a monotonic tanh

The perturbation is constituted of a small amplitudelaw up to the boundaries. The mesh Hds=681 andN,

eigenmode of the linearized Navier—Stokes equations arourrd681 points. The density peak is described with 30 points
the basic flow(4)—(6). This eigenmode is calculated thanks and the core of the vortex with 100 poin’sThe time step is
to a matrix eigenvalue—eigenvector method based on a speat=5-10%, which corresponds to CFL=0.55.
tral Chebyshev collocation. If Re designates the real part of a At each time step, we evaluate the mean density and
complex, the unstable eigenmode may be written as azimuthal velocity profiles by averaging ovérFor instance,

f=0.157 sk
£=10.969
os5f
~ }
— {=14a.103 = [
hadt tloaf
‘é/ t=2037 |\§
Q14 ozl
t=34.47 (b)
0.2 o
01
L L L L L 1 L L L L 1 L L L L 1
1 0.5 1 1.5 0 0.5 1 1.5
T T

FIG. 3. Evolution of(a) p(r,t) and(b) u,(r,t) as a function of the radiusfor t=0.157;t=10.969;t=14.103;t=20.37;t=34.47.
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FIG. 5. Density fluctuationg’(r, 6,t) at (x=0.289y=0) as a function of

FIG. 4. Amplitude of the perturbatiop’?(t) as a function of time.
time t.

H(r,t):(l/2w)f§”p(r,0,t)d0. Figures 8a) and 3b) repre-
sent these two quantities, i.@(r,t) andu,(r,t) as functions the amplification rate obtained from the linear stability
of the radiug at various times. We can see that the Gauss- analysis. Agreement is very good in the linear phase, i.e., up
ian density peak collapses as time evolves while the azito t=>5. Then, the mean amplitude of the perturbation satu-
muthal velocity field of the vortex remains nearly un- rates att=10 before decreasing slowly with time. For
changed. Hence, as the instability develops, the nonlinear 20, as shown before, the density peak of the mean flow
interactions destroy the density peak of the mean flow, whicleollapses as time evolves. Hence, the driving force of the
renders the flow stable to RT instabilities. instability vanishes which induces the loss of the perturba-
The density fluctuations are then evaluated followingtion source. The density fluctuations therefore die out and the
p'(r,0,t)=p(r,0,t)—p(r,t). The overall amplitude of the vortex flow becomes laminar.
perturbation may be obtained from an integral over the cal- Figure 5 shows the density fluctuatiops(r, #,t) ob-
culation box of the square of the density fluctuations:tained at(x=0.289,y=0) as a function of time. In the linear
p'2() =[5 3"p'(r,6,1)]?rdrd 6. Figure 4 shows this quantity regime, i.e., fot<5, the signal exhibits a time period equal
as a function of time. Its growth rate may be compared to to At=2.2. This value is compatible with the linear stability

ro: 1.00 1.05 1.10 1.15

FIG. 6. (Color). Densityp(r, 6,t) at different times{a) t=0.157;(b) t=10.969;(c) t=20.37;(d) t=34.47.
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analysis which predicts a time period equal Ab=27/ w, leading to a strong radial filamentation of the flow. Hence,

=2.2. In the nonlinear regime, the signal becomes mor¢he nonlinear evolution of the RT instabilities obtained here

abrupt and decreases in amplitude. is radically different from the standard case of RT instabili-
Figure 6 presents density isovalues at four distinct timesties developing in a planar nonhomogeneous flow in the

In Fig. 6(a), the RT instability starts growing linearly. In Fig. presence of gravity. This shows that differential rotation may

6(b), we enter the nonlinear regime: the flow exhibits thedeeply affect the development of RT instabilities. Consider-

mushroom-like patterns characteristic of the nonlinear develing practical applications, the potential of density effects on

opment of the RT instability* In Fig. 6(c), which corre- the momentum diffusion of a vortex is poor. But, the mecha-

sponds to the late stage development of the instability, waisms described above also show that one obtains very effi-

observe nonstandard features. Usually, i.e., in the case @fent mixing which remains localized within the vortex core.

standard nonhomogeneous flows with gravity, the RTThese properties may have interesting applications in the

mushroom-like patterns just continue to spread while newield of mixing and combustion.

secondary instabilities complexify the overall flow structure.

In the case of a vortex with a heavy internal core, the l(F)I. %err\?anl,é;r?fggesrsistence of trailing vortices: A modeling study,” Phys.

H H H uids 7, .

mUShroom_“k_e patterns a,lre stror_lgly StrEI,Ched in the, aZI_2L. Jacquin and C. Pantano, “On the persistence of trailing vortices,” J.

muthal direction and subject to filamentation.These differ- ryig Mech. 471, 159 (2002.

ences are due to the azimuthal velocity of the vortex which is®P. R. Spalart, “Airplane trailing vortices,” Annu. Rev. Fluid Mec30, 107

not present in the standard case. Comparing Rin. & Fig. 489§%b . Fabre, S. Michelin, and L. Jacquin, “Stabilty of a vortex with

. . - . Sipp, D. , S. Mi in, . uin, ility \Y X Wi

6(c)_, it can also be obser_ved that the mtt_ens@y of the pertur- _ heavy core,” J. Fluid Mectito be publisheyi

bations decreases with time. As shown in Fi¢gd)6a com- °P. S. Lowery and W. C. Reynolds, “Numerical simulation of spatially

plex lamellar structure is finally obtained in the vortex core. developing forced plane mixing layer,” Stanford University, Report No.
To conclude, we have performed a 2D DNS of the RT ,F26. 1986. o . .

. bili hich d | . ith a h . | S. Lele, “Compact finite differences schemes with spectral resolution,” J.

instability which develops in a vortex with a heavy internal ;. phys103 16 (1992.

core. The results show that after a phase of linear growth, théc. A. Blaisdell, E. T. Spyropoulos, and J. H. Qin, “The effect of the

amplitude of the perturbation saturates and finally decreases.formlulation of noglinear ter(ms gn aliasing errors in spectral methods,”

; ; ; ; Appl. Numer. Math.21, 207 (1996.

The nonllnear'lnte'ractlor?s deStroy .th.e denSIty peak.of thegC. F. Gago, S. Brunet, and F. Garnier, “Numerical investigation of turbu-

m?an flow, which is precisely the driving force of th_e mStgf lent mixing in a jet/wake vortex interaction,” AIAA J40, 276 (2002.

bility. Hence, the mean flow becomes stable to RT instabili- °k. wW. Thompson, “Time dependent boundary conditions for hyperbolic

ties, which leads to the loss of the perturbation source. Also, systems,” J. Comput. Phy$8, 1 (1987.

in the late stage development of the nonlinear regime Wé M. Sreedhar and S. Ragab, “Large eddy simulation of longitudinal station-

. . ' ary vortices,” Phys. Fluids$, 2501(1994).
have shown that the aZ|mUtha| V(?lOC'ty Of.the vortgx VIO-1T. 1. Clark, “A numerical study of the statistics of a two-dimensional
lently stretches the perturbations in the azimuthal direction Rayleigh-Taylor mixing layer,” Phys. Fluid$5, 2413(2003.
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