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ABSTRACT

Ensemble experiments are performed with five coupled atmosphere–ocean models to investigate the
potential for initial-value climate forecasts on interannual to decadal time scales. Experiments are started
from similar model-generated initial states, and common diagnostics of predictability are used. We find that
variations in the ocean meridional overturning circulation (MOC) are potentially predictable on interannual
to decadal time scales, a more consistent picture of the surface temperature impact of decadal variations in
the MOC is now apparent, and variations of surface air temperatures in the North Atlantic Ocean are also
potentially predictable on interannual to decadal time scales, albeit with potential skill levels that are less
than those seen for MOC variations. This intercomparison represents a step forward in assessing the
robustness of model estimates of potential skill and is a prerequisite for the development of any operational
forecasting system.

1. Introduction

Predictions of the future state of the climate system
are of potential benefit to society. The ability to predict
(here we consider the potential ability to predict) can
also give insight into the physical aspects of the climate
system that are not simply the averaged or integrated
effects of chaotic, unpredictable weather “noise.” Re-
stricting attention to variations in climate that are
purely internally generated, predictability in the system
hints at processes that have long time scales or that may
have periodic behavior. Quantifying the predictability
associated with such processes can lead to a greater
understanding of the climate system.

Operational predictions of climate on seasonal to in-
terannual time scales associated with the El Niño–

Southern Oscillation (ENSO) are now commonplace
(e.g., Goddard et al. 2001). Prediction systems for other
seasonal–interannual “modes” of climate are also
emerging (e.g., Rodwell and Folland 2002). Here we
consider the predictability of interannual to decadal
variations in the North Atlantic region. On these time
scales, both the initial conditions (principally the initial
state of the ocean) and the boundary conditions (asso-
ciated with both natural and anthropogenic forcing of
the system) are important (Collins and Allen 2002; Col-
lins 2002), but here we focus solely on the initial value
problem of the predictability of internally generated
interannual to decadal climate variability.

The Atlantic meridional overturning circulation
(MOC) is the main northward heat-carrying compo-
nent of the ocean part of the climate system (e.g., Tren-
berth and Caron 2001). Coupled atmosphere–ocean
models (AOGCMs) exhibit internally generated varia-
tions in the strength of the MOC and associated heat
transport (e.g., Dong and Sutton 2001), and the surface
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climate impact of those variations have also been seen
in historical (Latif et al. 2004) and paleoclimatic records
(Delworth and Mann 2000). Shorter records of ocean
observations (Dickson et al. 1996; Curry et al. 2003;
Marsh 2000) also exhibit variations that have been
linked with the MOC. Variations in the MOC thus rep-
resent an ideal candidate for the study of interannual to
decadal climate predictability.

Predictability studies with AOGCMs in which en-
sembles of simulations with small perturbations to the
initial conditions have revealed the potential predict-
ability in these MOC variations and in related surface
and atmosphere variables (Griffies and Bryan 1997;
Grötzner et al. 1999; Boer 2000; Collins and Sinha 2003;
Pohlmann et al. 2004). While all studies show some
level of potential predictability, it is difficult to form
robust conclusions because of the range of complexity
(and hence realism) of the different models used, be-
cause of the range of different initial states considered
and because of subtle differences in the measures of
predictability employed. For example, it is well known
in weather forecasting that predictive skill can vary con-
siderably with different initial conditions. Clearly it is
important to quantify the potential skill level of inter-
annual–decadal climate forecasts prior to the expensive
development of operational prediction schemes and the
deployment of operational observing systems.

Here we present a step forward in making a robust
estimate of the potential predictive skill of interannual
to decadal climate predictions associated with inter-
nally generated variations in the MOC. A coordinated
set of potential predictability experiments has been
performed with five recently developed complex
AOGCMs. An attempt is made to initiate the experi-
ments from similar ocean states, and a common set of
measures of potential skill is used. This “multimodel”
approach has proved useful in other areas of weather
and climate prediction. Here the emphasis is on a com-
parison of the levels of potential predictability seen in
the different models. Other publications discuss the in-
dividual model results (e.g., Collins and Sinha 2003;

Pohlmann et al. 2004, 2005, manuscript submitted to J.
Climate) in more detail.

2. The ensemble experiments

Five coupled atmosphere–ocean models are used
(see Table 1), as follows.

The version-3 Action de Researche Petite Echelle
Grande Echelle “ORCA” Louvain-la-Neuve Sea-Ice
Model (ARPEGE3-ORCALIM) has an atmospheric
component (Déqué et al. 1994) with a horizontal spac-
ing of T63 with 31 levels in the vertical direction (20 in
the troposphere). The ocean component, “ORCA2,” is
the global configuration of the Océan Parallélisé
(OPA8) model (Madec et al. 1998) with a horizontal
spacing of 2° in longitude and 0.5° to 2° in latitude. It
includes a dynamic–thermodynamic sea ice model
(Fichefet and Morales Maqueda 1997). The compo-
nents are coupled through the Ocean–Atmosphere–Sea
Ice–Soil, version 2.5, software interface (OASIS 2.5;
Valcke et al. 2000), which ensures the time synchroni-
zation and performs spatial interpolation from one grid
to another.

The Bergen Climate Model (BCM; Furevik et al.
2003; Bentsen et al. 2004) uses the Miami Isopycnic
Coordinate Ocean Model (Bleck et al.1992) coupled to
a dynamic–thermodynamic sea ice module. The ocean
mesh is formulated on a Mercator projection with a
nominal horizontal spacing of 2.4° and 24 vertical lay-
ers. The atmospheric component is version 3 of the
ARPEGE model with a horizontal spacing of T63 and
31 layers in the vertical direction—essentially the same
atmosphere that is used in ARPEGE3-ORCALIM.
Freshwater and heat flux adjustments are applied.

The European Centre for Medium Range Weather
Forecasts–Deutsches Klimarechenzentrum Hamburg,
version 5/Max Planck Institute Ocean Model
(ECHAM5/MPI-OM; Latif et al. 2004) uses the
ECHAM5 atmospheric model (Roeckner et al. 2003) at
T42 horizontal spacing with 19 vertical layers. The oce-
anic component, the MPI-OM (Marsland et al. 2003), is

TABLE 1. A summary of the AOGCMs used in the perfect-model potential-predictability experiments. The numbers in column 3 of
the form 6 (�1) indicate that six ensemble members were performed from a state taken from the control run but that the section of
the control run may also be viewed as an additional ensemble member.

Model
No. of

ensemble expts
No. of ensemble

members in each expt
Length of

ensemble expts (yr)
Length of

control run (yr)

ARPEGE3-ORCALIM 2 6 (�1) 25 200
BCM 2 3 (�1) 20 300
ECHAM5/MPI-OM 3 6 (�1) 20 500
HadCM3 3 8 (�1) 20 2000
INGV 2 2 (�1) 20 100
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run on a curvilinear grid with equatorial refinement and
23 vertical levels. A dynamic–thermodynamic sea ice
model and a river-runoff scheme are included.

The Third Hadley Centre Coupled Ocean–
Atmosphere GCM (HadCM3; Gordon et al. 2000; Col-
lins et al. 2001) uses an oceanic component with a hori-
zontal spacing of 1.25° longitude by 1.25° latitude and
20 levels in the vertical direction. The atmospheric
component uses a gridpoint formulation with a hori-
zontal spacing of 3.75° � 2.5° in longitude and latitude
with 19 unequally spaced vertical levels (Pope et al.
2000). A simple thermodynamic sea ice scheme is used.

The Istituto Nazionale di Geofisica e Vulcanologia
(INGV) model uses the ECHAM4 model (Roeckner
1996) at T42 resolution with 19 vertical levels. The
ocean component is essentially the same as that used in
the ARPEGE3-ORCALIM model. More details can be
found in Gualdi et al. (2003) and Carril et al. (2004).

Ensemble experiments are performed from initial
states of anomalously high and anomalously low MOC
taken from a control (i.e., unforced) run of each model
(Fig. 1). In addition, some models were used to perform
experiments with initial states near the time-mean
value of overturning. Perturbations to the initial condi-
tions were made using the common method of taking
different atmospheric start conditions (in most cases
atmosphere start conditions differ only by one day of
model integration) and identical ocean start conditions
for the respective model (see e.g., Collins and Sinha

2003). Hence both atmosphere and ocean initial states
are in perfect balance with the model as they are taken
from the respective control simulations and are thus
solutions of the model equations. While this perturba-
tion methodology is in no way optimal in terms of, for
example, sampling the likely range of atmosphere–
ocean analysis error, it is sufficient to generate en-
semble spread on the time scales of interest. Note that

FIG. 1. A schematic figure of the experimental design used in
this study. The thick black line represents decadal-time-scale in-
ternally generated variations in the strength of the MOC from a
control run of a coupled atmosphere–ocean model. The gray lines
represent “perfect ensemble” experiments in which small pertur-
bations to the initial conditions are made. For each of the models
used in the study, we endeavored to initiate the ensemble experi-
ments from a state of relatively strong and relatively weak over-
turning. In addition, some models are used to initiate experiments
from a state of relatively normal overturning.

FIG. 2. Time series of the strength of the MOC taken from the
unforced control runs of five coupled atmosphere–ocean models
(black lines; names indicated on the figure) and from the perfect-
ensemble experiments (gray lines). The measure is defined as the
maximum of the annual-mean meridional streamfunction in the
North Atlantic region of the model and, in general, varies with
latitude and depth, the exception being the ECHAM5/MPI-OM1
model, where the MOC strength is measured at the constant lati-
tude of 30°N, the latitude of its time-averaged maximum. MOC
variations arise purely because of the internal dynamics of the
coupled system, and model years are arbitrary. The drift seen in
the INGV model is a spinup effect, and the experiments are ex-
cluded from any quantitative analysis.
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the perturbation method produces ensemble experi-
ments that are likely to give the upper limit of model-
world predictability: hence the terms potential predict-
ability and perfect-model or perfect-ensemble experi-
ments.

The availability of computer resources limited the
number of ensemble members and experiments that
could be performed: nevertheless all experiments were
integrated out to at least 20 yr. The experiments corre-
spond to a total 1340 simulated years for the predict-
ability experiments combined with a total of 3100 simu-

lated years for the control experiments used to assess
background variability. Annual mean diagnostics are
examined because of the focus on interannual to dec-
adal time scales.

3. Potential predictability of MOC variations

The first point to note is the wide range of time scales
and magnitudes of MOC variability in the different
models (Fig. 2). The ECHAM5/MPI-OM model shows
the largest variations in MOC strength with clear inter-

FIG. 3. Measures of the potential predictability of variations in the strength of the MOC from four of the five coupled models (see
legend). (left) The ACC (unity for perfect potential predictability; zero for no potential predictability) for (top) strong and (bottom)
weak MOC initial conditions. (right) The normalized rmse (zero for perfect potential predictability; unity for no potential predictabil-
ity) in the same order. Also shown in the figures are the multimodel average ACC and rmse (thick black line) and the multimodel
average ACC for a simple damped persistence (thick gray line).
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decadal variability present. HadCM3 and BCM also
show interdecadal variations but at a reduced level in
comparison. The ARPEGE3-ORCALIM model has
the lowest level of variability, but decadal–interdecadal
time scales are still clearly present in the time series.
The large trend seen in the INGV model is almost cer-
tainly due to a drift seen in this particular control ex-
periment—the model has yet to reach equilibrium, and
we do not attempt to extract quantitative measures of
predictability. Although not calculated, diagnostic mea-
sures of predictability/variability (e.g., Boer 2000)
would clearly show a range of different levels of MOC
potential predictability in these models. However, the
only reliable way to assess potential predictability is to
perform ensemble experiments.

The perfect-ensemble experiments are also shown in
Fig. 2. Potential predictability is evident when the en-
semble spread is small in comparison with the total
level of variability in the control time series, or even if

the ensemble spread is relatively large but the center of
gravity of the ensemble is displaced significantly with
respect to the mean of the control (e.g., Collins 2002).
We may imagine a background or climatological distri-
bution that, in the absence of a forecast, would be all
the information we would have to form an assessment
of the future strength of the MOC. Alternatively, we
may imagine a form of damped persistence based on
the autocorrelation structure of past observations. A
forecast may allow us to reduce the potential range
(low ensemble spread) or shift the mean of the distri-
bution (displaced ensemble), or both. Both types of
(potential) predictability are seen on interannual to
decadal time scales in the experiments shown in Fig. 2.
For example, the first HadCM3 ensemble (anomalously
strong MOC initial conditions) has relatively small en-
semble spread in the first decade of the experiment and
the ensemble is significantly shifted to stronger values
with respect to the mean with no ensemble members

FIG. 4. The coefficient of regression (K Sv�1) of decadal mean SAT against decadal mean MOC strength from four of the five coupled
atmosphere–ocean models. Regions are shaded only where the coefficient is significantly different from zero at the 5% confidence level
(based on an F test).
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indicating weaker than average overturning [see Collins
and Sinha (2003) for more details]. Other examples are
clear.

There is a wide range of measures that may be used
for forecast verification (as stated above, we measure
the potential skill of a perfect model forecast—an up-
per limit). We examine two of the most simple mea-
sures of forecast skill to quantify levels of potential
predictability; the anomaly correlation coefficient
(ACC) and normalized root-mean-square error (rmse).
Formulas are given in Collins (2002).

Figure 3 shows both measures for the MOC in the
ensemble experiments discussed above. For the strong
MOC initial states, the ACC is “high” for approxi-
mately the first decade in all the model experiments,
with high being above 0.6—a commonly used cutoff
value in weather forecasting. The rmse is correspond-
ingly low. After the first decade, the ARPEGE3 model
predictability drops off rapidly whereas for the other
models the ACC drops off slowly to low values by the
end of the 20-yr experiments. The rmse similarly satu-
rates in 20 yr. For the weak MOC initial states, error
growth and loss of predictability seem to happen sooner
in the ensemble experiments, although there is some
noise in these measures because of small ensemble
sizes. ACC and rmse are not shown for the normal
initial states because of the small sample size.

While the number of ensemble experiments is small,
we may attempt to draw some conclusions about the
multimodel estimate of potential predictability of MOC
variability in these experiments (Fig. 3, thick solid line).
The multimodel ensemble indicates potential predict-
ability of interannual–decadal MOC variations for one–
two decades into the future. It also indicates that initial
states that have anomalously strong overturning are
more predictable than those with anomalously weak
overturning. This latter result is intriguing but is subject
to some uncertainty because of the relatively small
number of models and ensemble experiments included
in the multimodel analysis. Nevertheless, some consen-
sus is emerging in contrast to the previous situation in
which a large range of predictability is seen in the lit-
erature. It would be safe to conclude that there is a
robust signal of potential predictability of variations in
the MOC on interannual to decadal time scales.

4. Potential predictability of surface climate
variations

Predictions of MOC variability may be of interest to
scientists, but they would be of little relevance to soci-
ety unless they are accompanied by predictions of sur-
face climate variables. A simple measure of the impact
of MOC variations can be obtained be performing a

regression between decadal-averaged MOC strength
and decadal-averaged surface air temperature (SAT) in
the different models (Fig. 4). The general impression in
all the models is of a warmer Northern Hemisphere
when the MOC is stronger and is transporting more
heat poleward. Differing levels of statistical significance
seen in Fig. 4 may be interpreted as resulting from dif-
ferent levels of signal-to-noise in the sense that in mod-
els with larger variations in MOC, the surface signal has
a better chance of overwhelming the noise of unrelated
random climate variations. What is interesting is that
the magnitude of the surface response (in kelvins per
Sverdrup) is similar across all models.

The North Atlantic Ocean is a region in all the mod-
els in which there is a significant relationship between
decadal variations in SAT (and underlying SST) and
the MOC. Time series of annual mean SAT from the
control and ensemble experiments averaged over a re-

FIG. 5. As in Fig. 2, but for SAT averaged in the region
40°–60°N, 50°–10°W.
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gion of the North Atlantic [used in Collins and Sinha
(2003) and Pohlmann et al. (2004)] are shown in Fig. 5.
Strong similarities between these time series and those
shown in Fig. 2 for the MOC are evident, although
there is clearly more noise in this variable as a result of
unrelated random atmospheric variability.

ACC and rmse measures of ensemble spread (Fig. 6)
for North Atlantic SAT are similar to those computed
for MOC variations (Fig. 3), but the levels of potential
predictability are clearly less and the differences be-
tween ensemble members greater. It may be possible to
find greater levels of potential predictability for each

individual model by adjusting the boundaries of the
region chosen, but here we compare the models on an
equal footing. Also, the effects of interannual noise,
which are more prominent in this variable, may be re-
duced by taking averages over a greater number of
years. Nevertheless, the picture of potentially predict-
able surface climate variations associated with varia-
tions in the MOC appears consistent.

5. Discussion

Whereas previously it has been difficult to assess the
potential for making interannual to decadal forecasts of

FIG. 6. As in Fig. 3, but for SAT averaged in the region 40°–60°N, 50°–10°W. There is significantly more interannual “noise” in SAT
variability (due to random atmospheric fluctuations); hence the high ACC values in all models around year 16 are likely to be a
sampling issue arising from the relatively small number of models and ensemble members.
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climate because of different studies indicating different
levels of predictability, a more complete picture of the
predictability is emerging. This intercomparison study
shows that

1) variations in the ocean meridional overturning cir-
culation are potentially predictable on interannual
to decadal time scales,

2) a more consistent picture of the surface temperature
impact of decadal variations in the MOC is now
apparent, and

3) variations of surface air temperatures in the North
Atlantic are also potentially predictable on interan-
nual to decadal time scales, albeit with potential skill
levels that are less than those seen for MOC varia-
tions.

Perhaps the biggest difference between the models is
in the wide range of strengths of decadal variability
evident in Fig. 2. In general, models with greater dec-
adal MOC variability have greater levels of potential
predictability—despite the fact that the ACC and rmse
are signal-to-noise measures and thus allow for differ-
ences in background natural variability. Investigation
into the mechanisms responsible for the different levels
of variability would seem to be a priority.

In any real-world prediction system, an estimate of
the three-dimensional ocean state would have to be
made using data assimilation. Currently there are sig-
nificant disagreements between estimates of even the
mean value of the overturning using such techniques,
ranging from as little as 12 Sv (1 Sv � 106 m3 s�1; Stam-
mer et al. 2002) to as much as 25 Sv [S. Masina et al.
2005, unpublished result based on system outlined in
Masina et al. (2004)], both being consistent with obser-
vational estimates. Hence estimating anomalous inter-
annual to decadal variations about this mean may seem
almost impossible, particularly given the relative pau-
city of in situ ocean observations. We may take some
hope though from ocean-model simulations driven by
estimates of observed surface winds and fluxes that
generally show agreement between their MOC varia-
tions over the latter part of the twentieth century
(Bentsen et al. 2004). It may be the case that more
accurate and balanced reconstructions of past varia-
tions in surface fluxes (e.g., from weather forecast re-
analysis products) coupled with recently deployed
ocean observations (Hirschi et al. 2003) and improved
models and data assimilation schemes could provide
accurate ocean initial states with which to initialize
forecasts. Pilot forecast systems are in development.

The far more pertinent question is, of course, that of
the (potential) prediction of surface climate variations
over land. The simple measures used in this study do

not reveal robustly predictable land signals. Collins and
Sinha (2003) and Pohlmann et al. (2005, manuscript
submitted to J. Climate) investigate probabilistic tech-
niques more commonly used in medium-range and sea-
sonal forecasting in the context of the interannual–
decadal problem with some limited success. However,
the application and verification of such measures (here
the assessment of potential skill) requires much larger
ensemble sizes and many more ensemble simulations
than used here. It is hoped that such ensembles will be
performed in future. In addition, the modeling, initial-
ization, and observational issues that need to be ad-
dressed before we routinely produce interannual–
decadal climate forecasts are numerous.
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