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Abstract Statistical downscaling of 14 coupled atmo-

sphere-ocean general circulation models (AOGCM) is

presented to assess potential changes of the 10 m wind

speeds in France. First, a statistical downscaling method is

introduced to estimate daily mean 10 m wind speed at

specific sites using general circulation model output. Daily

850 hPa wind field has been selected as the large scale

circulation predictor. The method is based on a classifica-

tion of the daily wind fields into a few synoptic weather

types and multiple linear regressions. Years are divided

into an extended winter season from October to March and

an extended summer season from April to September, and

the procedure is conducted separately for each season.

ERA40 reanalysis and observed station data have been

used to build and validate the downscaling algorithm over

France for the period 1974–2002. The method is then

applied to 14 AOGCMs of the coupled model intercom-

parison project phase 3 (CMIP3) multi-model dataset.

Three time periods are focused on: a historical period

(1971–2000) from the climate of the twentieth century

experiment and two climate projection periods (2046–2065

and 2081–2100) from the IPCC SRES A1B experiment.

Evolution of the 10 m wind speed in France and associated

uncertainties are discussed. Significant changes are depic-

ted, in particular a decrease of the wind speed in the

Mediterranean area. Sources of those changes are investi-

gated by quantifying the effects of changes in the weather

type occurrences, and modifications of the distribution of

the days within the weather types.

Keywords Statistical downscaling � Wind energy �
Climate change � Multi-model ensemble � Impact study

1 Introduction

Near-surface winds have a strong influence on climate

system and human activities. They play a major role at the

air-sea interface affecting wave fields, surface fluxes and

ocean mixing (Siegismund and Schrum 2001; Simmonds

and Keay 2002; Fisher-Bruns et al. 2005; Wolf and Woolf

2006). As an example, the Mistral and Tramontana winds

that originate in the Southeast of France and blow over the

Gulf of Lion are key components of the Mediterranean Sea

circulation (Millot 1999). Winds are also essential for

building dimensioning, and may harshly affect crops

(Cleugh et al. 1998): wind erosion, sandblasting, lodging,

thigmomorphogenesis (modification of the plant growth

due to the plant motion, mainly induced by the wind).

Among climate community, wind speed extremes and gusts

have received the most interest (Alexander and Tett 2005;

Bärring and von Storch 2004). However, since wind energy

is a fast growing renewable energy there is more and more

interest in evaluating wind power potentials (Archer and

Jacobson 2005), and in assessing any change in the wind

distribution as a result of global warming (Bogardi and

Matyasovszky 1996; Sailor et al. 2000; Pryor et al. 2005,

2006). This is particularly the case for France, as the

Northwest and the Southeast of France are among the most

attractive regions for wind energy in Europe (Troen and

Petersen 1989).

The surface winds are mainly driven by the large scale

circulation (LSC). However, several local features such as

the surface roughness and the orography modify the spatial

and temporal features of the surface winds. Because of
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their coarse resolution, general circulation models (GCMs),

cannot represent the small spatial scale variability of the

near surface winds (Pryor et al. 2005). However, they show

good skills in simulating the global climate and the LSC.

To carry out an impact study we thus need to derive the

high resolution climate state from the GCM’s coarse

resolution one (Giorgi and Mearns 1991). Different strat-

egies have been developed to bridge this scale gap. They

belong to the wide range class of the so-called downscaling

techniques (Wilby et al. 2004). In the present study, we

used a statistical downscaling (SD) technique.

The idea of the SD relies on the fact that the local cli-

mate is conditioned by two factors: the LSC and the local

physiographic features such as the orography, the land

cover, or the land-sea distribution. The observed relation-

ships between the LSC and the local climate variables are

used to set up a statistical model that enables to implicitly

represent the interactions between the LSC and the local

physiographic features (von Storch 1995). The main

advantage of this method is that it is computationally little

expensive. The main drawback of SD is the assumption

that the empirical relationship between the predictors and

the predictands remains stationary under future climate

conditions. However, it is expected that the period over

which the statistical model is implemented is long enough

to contain a wide range of atmospheric situations. As a

result, the statistical model should be able to handle suc-

cessfully most of the future atmospheric situations

provided that the large scale variables in the future climate

lie roughly within the sampled variability of the present

climate.

In the recent years, many SD studies have been carried

out, mainly for surface temperature and precipitation.

Concerning SD of surface wind speeds, only a few studies

can be found in the literature. For instance, Pryor et al.

(2005) uses the two parameter Weibull probability density

function to represent the wind speed probability distribu-

tion (Hennessey 1977) at 46 stations in northern Europe.

The downscaling methodology is then based on a multiple

linear regression in which the monthly station-specific

Weibull parameters are the predictands and the monthly

means, and standard deviations of relative vorticity and

mean sea level pressure gradients are the predictors. Sailor

et al. (2000) develops a Neural Network transfer function

to relate observed daily surface wind speed at three sites to

a set of large scale atmospheric variables (wind speeds and

geopotential heights at the surface, 850 and 700 hPa

pressure levels, and sea level pressure). Kaas et al. (1996)

carry out a canonical correlation analysis technique to

reconstruct surface wind speeds at ten stations over the

northern North Atlantic region using monthly means of sea

level pressure and sea surface temperature fields as

predictors.

As mentioned previously, one of the main advantages of

the SD approaches is that the transfer functions that relate

local variables to GCM large scale variables may be easily

applied to several GCMs. This enables a multimodel

approach that reinforces confidence in the results and

provides an estimation of the uncertainty of the potential

changes as the response of atmospheric circulation in cli-

mate change scenario simulations may be model

dependent. Such multimodel studies were performed for

wind speeds by Pryor et al. (2005, 2006) for northern

Europe using respectively 5 and 10 GCMs. Pryor et al.

(2006) showed that there was any consistent signal with

regard to an increase or a decrease of the mean and 90th

percentile wind speed or energy density over northern

Europe in either climate projection period (2046–2065 and

2081–2100 for the IPCC SRES A2 experiment) relative to

1971–2000.

In the present study, we apply a SD method based on a

weather regime classification that enables a day-to-day

wind speed downscaling. We follow Boé et al. (2006) by

first performing a classification of the observed days into a

few groups (weather types) according to their synoptic

similarity. Like other methods, this method provides

several features that are of interest for our case of study.

Firstly, it enables to identify dominant modes of circulation

(Conil and Hall 2006). Secondly, the weather types enable

to analyze the links between the LSC and the local climate

on a physical point of view (Plaut and Simonnet 2001;

Cassou et al. 2005). In particular, considering the LSC

patterns only, the knowledge of the position of each day

relative to the weather types may be sufficient to evaluate

the associated local climate state (Gutiérrez et al. 2004).

Thirdly, the weather type classification provides a powerful

tool to cope with the multimodality of the distribution of

some variables (for instance wind direction). Indeed,

classification methods based on recurrence properties

localize high concentrations of points in the classification

space. Thus, the classification algorithm may allow to

separate local maxima in the probability distribution

function of the data in the classification space (Stephenson

et al. 2004), and linear regressions may be applied within

each weather type in order to recover the local climate state

from the LSC. Last but not least, the weather type method

enables to investigate sources of changes in the 10 m winds

in the future in terms of large scale dynamical features.

Indeed, the response of the climate system to external

forcing may manifest itself in terms of excited modes of

circulation (Corti et al. 1999; Stone et al. 2001). In that

purpose, the weather types appear to be an interesting tool

and partly justify our choice for this method.

The purpose of this paper is to present a SD method for

surface winds and to carry out a multi-model ensemble

study of the impact of climate change on surface winds in
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France. In Sect. 2, the data and model used for the study are

presented. Section 3 describes the SD methodology and

Sect. 4 its validation. In Sect. 5 the SD is applied to dif-

ferent climate projections and differences with the current

climate are discussed. Conclusions and perspective are

presented in Sect. 6.

2 Data and model description

2.1 Near-surface wind speeds

Daily mean 10 m wind speeds and directions were

extracted from the Météo-France (French meteorology

service) SQR (Série Quotidienne de Référence) dataset

(Moisselin et al. 2002). Daily mean wind speeds have been

obtained by averaging 24 h values of wind speed mea-

surements. We use wind speed and direction from this

dataset at 78 stations over France for the period 1974–2002

(Fig. 1). The quality control of this dataset has been carried

out by the Division de la Climatologie (DCLIM) service of

Météo-France.

2.2 ERA40 Reanalysis

Zonal and meridian components of the daily mean 850 hPa

wind over the period 1974–2002 were derived from the

European Center for Medium-Range Weather Forecasts

(ECMWF) ERA40 reanalysis (Uppala et al. 2005). 0000

UTC, 0600 UTC, 1200 UTC and 1800 UTC values at a

2.5� 9 2.5� resolution were daily averaged. The predictor

domain is represented in Fig. 1. A discussion of the choice

of the predictor and the size of the predictor area is

presented in Sect. 3.3.

2.3 Models

For the future climatic study, we use daily mean 850 hPa wind

fields from 14 coupled atmosphere-ocean general circulation

models (AOGCM) of the World Climate Research Program’s

(WCRP’s) Coupled Model Intercomparison Project phase 3

(CMIP3) multi-model dataset, according to the daily data

availability: BCCR-BCM2.0, CGCM3.1(T63), CNRM-CM3,

CSIRO-Mk3.0, GFDL-CM2.0, GFDL-CM2.1, GISS-AOM,

FGOALS-g1.0, INM-CM3.0, IPSL-CM4, MIROC3.2(me-

dres), ECHO-G, ECHAM5/MPI-OM, MRI-CGCM2.3.2.

Detailed documentation of the CMIP3 models can be found at

http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_

model_documentation.php. The horizontal resolution of these

models varies between 1.875� 9 1.875� and 4� 9 5�. Daily

mean 850 hPa wind fields have been interpolated onto the

ERA40 2.5� 9 2.5�grid. Three time periods are focused on:

a historical period (1971–2000) from the climate of the

twentieth century experiment and two climate projection

Fig. 1 850 hPa wind area is indicated by a black square, and stations providing daily mean 10 m winds by numbers. Six orographic levels are

represented: 0, 100, 500, 1,000, 2,000, 3,000 meters
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periods from the IPCC SRES A1B experiment: 2046–2065

(indicated by P1 in some figures) and 2081–2100 (indicated

by P2 in some figures).

3 Methodology

The statistical downscaling method is an adaptation for this

study of the method described by Boé et al. (2006). It has

been implemented separately for two seasons: an extended

winter season from October to March (6 months) called

cold season and an extended summer season from April to

September (6 months) called warm season (see Sect. 3.1

for a discussion of the definition of the seasons).

Thereafter, UV850 and UV10 refer to the 850 hPa and

10 m wind vectors (defined by both their zonal and

meridional components), respectively.

3.1 Classification

The classification is achieved by implementing the widely

used k-means algorithm (Michelangeli et al. 1995). The

first step consists in performing a principal component

analysis (PCA, based on the covariance matrix) to

decrease the number of degrees of freedom of the system,

as many of them represent just background noise that can

be filtered out (Vautard 1990; Kaas et al. 1996; Plaut and

Simonnet 2001). Combined empirical orthogonal func-

tions (EOF) of the wind field component anomalies are

computed (Kaihatu et al. 1998; Ludwig et al. 2004)

(anomalies are calculated by removing the annual cycles).

The first 10 and 12 EOFs of the UV850 and UV10 are

retained to account for more than 80% of the total vari-

ance of both the UV850 and UV10. We then proceed as

follows:

1. We classify the UV850 and UV10 together in the space

spanned by the leading UV850 and UV10 EOFs. We

get initial weather types defined by their centroids in

the UV850 and UV10 EOFs state space.

2. The weather type centroids are determined in the space

spanned by the UV850 EOFs only.

3. In the space spanned by the UV850 EOFs only, we

assign each UV850 pattern to the closest centroid

(reclassification), using the Euclidean distance as

similarity measure: we get the final weather types

defined by their centroids in the UV850 EOFs state

space.

Thus, although the weather types are only defined by the

LSC variables (the final weather types are only defined by

the UV850), they remain discriminating for the 10 m wind

(see Sect. 4.1) as the UV10 enter the preliminary

classification (similar approach as Plaut et al. 2001; Boé

et al. 2006).

Several statistical approaches to estimate the number of

clusters to be retained in the classification can be found in

the literature, most of them differing from each other by the

measure of similarity. In the present study, the tests

described by Michelangeli et al. (1995), Straus and Molteni

(2004), and Levine and Domany (2001) have been com-

puted. The Euclidean distance is used as the measure of

similarity between points in the subspace of the retained

EOFs. Only solutions that pass successfully through the

three tests are kept. Accordingly, a six cluster partition is

retained for both the cold and warm seasons.

The definition of the cold and warm seasons was actu-

ally achieved by first performing the weather type

classification for the four classical seasons separately

(December–January–February called DJF, March–April–

May called MAM, June–July–August called JJA and

September–October–November called SON). According to

the statistical tests previously mentioned, we found the

suitable number of clusters to be 6 for DJF, 5 for MAM, 6

for JJA, and 4 for SON. Then we performed a classification

of the whole dataset using the 21 clusters previously cal-

culated. We found that most of the days predominantly

project onto either the JJA clusters or the DJF clusters, and

that there was not any long and stable transition period

between JJA and DJF and between DJF and JJA. We thus

defined an extended summer season as the period over

which the days predominantly project onto the JJA clusters

(from April to September), and an extended winter season

as the period over which the days predominantly project

onto the DJF clusters (from October to March).

3.2 Regression

The final step consists in defining a way to relate the 10 m

wind speed (U10) to the UV850 classification. Previous

studies showed that the position of each day relative to the

weather types could be a good predictor of the associated

local climate state (Plaut et al. 2001; Gutiérrez et al. 2004).

Thus, for each station and weather type, we have per-

formed a multiple linear regression using the Euclidean

distances between the UV850 weather type centroids and

the UV850 patterns as the predictors and the observed 10 m

wind speed as the predictand. Thus, for all days within a

weather type we get a relationship of the form:

U10
Reg
i ðtp;kÞ ¼ ap;i þ

XN

j¼1

b j
p;i:d

j
Eucliðtp;kÞ

where, U10Reg is the 10 m wind speed reconstructed by

regression, the subscript i refers to the ith station, tp,k is the

kth day of the pth weather type, N is the number of clusters,
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ap,i, and (bp,i
j ) 1 B j B N are the regression parameters for

the station i and the weather type p, and dEucli
j is the

Euclidean distance between the UV850 pattern of one day

and the jth cluster centroid.

3.3 Final reconstruction

The variance of the 10 m wind speed downscaled in the

way described previously is largely underestimated

(underestimation of -35% for the cold season and -25%

for the warm season, on average over all stations). Indeed,

as the predictor does not completely specify the predictand,

the whole predictand variability cannot be fully reproduced

(von Storch 1999). Therefore, we add a final step based on

an analog method in order to empirically increase the

variance (similar approach as Boé et al. 2006).

The method can be divided into three steps summarized

in Fig. 2. Let us consider a given day ti for which we seek

to estimate the 10 m wind speed and for which we only

know the 850 hPa wind (UV850(ti)).

1. The N Euclidean distances between UV850(ti) and the

N weather type centroids are first computed in the

UV850 EOF space. We identify the closest weather

type WTp by determining the minimum of these

distances.

2. Secondly, the 10 m wind speed of this day is

reconstructed using the WTp regression coefficients,

thereafter referred to as U10Reg(ti).

3. Thirdly, spatial root-mean-square differences (RMSE)

are computed between U10Reg(ti) and all the recon-

structed value U10Reg of the days belonging to WTp in

the learning period. We select the day tm for which the

RMSE value is minimal. Finally, we consider the

corresponding observed 10 m wind speeds for this day

tm as our best estimate for the final downscaled wind

speed U10Down(ti).

If day ti belongs to the learning period and observed

or reanalyzed predictors are used (for example, present

climate reconstruction with ERA40 predictors for the

cross-validation procedure), the neighbor days of day ti
are excluded from the learning period. The neighbor

days are defined as the days that belong to the same

year. For example, if we reconstruct the 10 m wind

speed for the first of February of 1982 with ERA40

predictors, the learning period will consist of all cold

seasons except the 1981/1982 one. In Sect. 4.2, we apply

this method when performing a cross-validation of the

downscaling algorithm. Therefore, as the atmospheric

synoptic time scale is about one or two weeks, we

account for persistence properties that could produce

Fig. 2 Successive steps of the statistical downscaling method for

10 m wind speeds. UV850 stands for the zonal and meridional

850 hPa wind anomaly components. N stands for the number of

weather types. U10Down stands for the downscaled 10 m wind speed.

U10Obs stands for the observed 10 m wind speed. RMSE stands for

the root-mean-square difference
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artificial skills, and we can consider the downscaled days

to be independent of the learning period.

One may wonder about the relevance of the regression

step. For instance, we could skip the regression step and

simply select a day according to minimum distances to the

weather type centroids. However, the regression step

enables to significantly improve the final results (for

instance RMSE is reduced by 6% on average) as observed

linear statistical relationships between UV850 and U10 are

thus implemented in the algorithm.

Similarly, the condition of the search of an analog

within the same weather type may seem superfluous as we

would expect the analog day to systematically belong to the

same weather type. This is actually the case for about 92%

of the days. As a result this condition is meaningful for

about 8% of the days.

As a part of the validation procedure, this method has

been confronted to other downscaling methods (see Sect.

4.2). Focusing on some classical diagnoses, we show that

our method provides good overall performances compared

to the others, even if differences are sometimes small and

that the performances of each method differ according to

the diagnoses. However, beyond the more or less good

performance of our method with regard to others, its main

justification remains the opportunity to provide physical

interpretations of changes in the surface winds thanks to

the weather types.

The performance of the method has been also evaluated

using different predictors: sea level pressure (SLP),

500 hPa geopotential height (Z500), 500 hPa relative vor-

ticity (Vo500). All these variables have strong dynamical

links with the 10 m winds. We found that the UV850

outperformed the other predictors. Furthermore, combina-

tions of different predictors did not improve the results

significantly or remained outperformed by the UV850

alone.

Fig. 3 SLP anomaly (contours every 2 hPa) and 850 hPa wind

(arrows) composites (left panel), and 10 m wind composites (m/s)

(right panel) for the weather types of the cold season (1974–2002).

Left panel: arrows indicate wind directions, arrow length is propor-

tional to wind module (varying between 0 and 18 m/s). Right panel:

color shading represents wind module and arrows indicate wind

directions (arrow length is proportional to wind module). Weather

type occurrence (%) is indicated in the bottom left-hand corner of

each panel. Composites are defined as the average fields of all days

that belong to the same weather type
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Moreover, different predictor domains have been tested,

from a small domain centered over France to a large North

Atlantic domain. On the one hand, the performance of the

method (RMSE, daily correlation) was found to decrease

when the size of the domain increases. On the other hand,

the ability of the CMIP3 models to represent the large scale

circulation at the synoptic scale (estimated by means of

Taylor diagrams—see Sect. 5.2.1) was found to decline

when the size of the domain decreases. The domain which

has been selected appeared to be a good compromise.

4 Validation

4.1 Weather types

Figure 3 shows the average 10 m wind for each weather

type of the cold season and the corresponding average sea

level pressure (SLP) anomalies and average 850 hPa wind.

All the weather types represent classical synoptic situations

which are well known by meteorologists (personal com-

munication from forecasters at Météo-France, Jiang et al.

2003 for some of the weather types). As an example,

WT5cold is characterized by a SLP positive anomaly over

the Atlantic Ocean and a negative anomaly over Eastern

Europe. This synoptic situation is associated with northerly

winds all over France, the geostrophic flow being highly

accelerated near the Mediterranean Sea by the mountains

(Pyrenees, Massif Central, Alps). This generates the well

known Mistral which blows from the North in the valley

between the Massif Central and the Alps, and the

Tramontana which blows from the Northwest in the valley

between the Pyrenees and the Massif Central.

Weather types for the warm season have slightly dif-

ferent patterns with weaker anomaly intensities (Fig. 4).

They also represent well known synoptic situations.

In order to assess the relevance of the weather type

classification, several diagnoses concerning its discrimi-

nating skills have been performed. As expected, the 10 m

wind variability is significantly weaker within the weather

types than when considering the whole dataset. This is

highlighted by Fig. 5, for two stations which exhibit dif-

ferent surface wind features and are good representatives of

two regions of interest for wind energy, namely Station 27

Fig. 4 Same as Fig. 3 but for the warm season
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in northwestern France and Station 63 in southeastern

France. As is shown by this figure, the weather type clas-

sification enables to aggregate days with similar surface

wind properties. Indeed, the spread of the probability

density functions (pdf) is generally much smaller within

the weather types than when considering the whole dataset.

This confirms that the classification algorithm enables to

minimize the variance within clusters with regard to the

10 m winds. Furthermore, while the 10 m wind direction

pdf is multimodal when considering the whole dataset, the

pdf within the weather types tend to be having unimodal

shapes. The means of both 10 m wind direction and speed

within the weather types are also clearly different, which

suggests that the weather types are well separated and

capture distinct atmospheric situations with respect to the

10 m winds.

4.2 Downscaling validation

As only one short complete observed 10 m wind speed

dataset was available (from 1974 to 2002), it has not been

possible to validate the downscaling algorithm over an

independent time period. As a consequence, the method

has been cross-validated over the whole learning period

(1974–2002) (see Sect. 3.3 for definition of the cross-

validation).

While the downscaling algorithm is applied separately

for each season, the performance of the method is similar

for both seasons. As a result, we only show results for the

two seasons together in the following.

Daily linear correlation, RMSE, mean error, standard

deviation error, 90th and 10th percentiles (P90, P10) errors

are shown in Fig. 6 for each station (in this study, all daily

linear correlations have been computed on time series in

which the annual cycle has been filtered out). First of all, it

can be seen that results from the downscaling match well

with the observations (high correlation coefficients and

weak errors in most stations), and that there is not any clear

recurrent geographic pattern on the six maps. However,

according to the diagnoses, some geographic contrasts can

be noticed. In the Southwest of France, there is a slight

underestimation of the standard deviation and P90, an

overestimation of P10, the correlation coefficients are

lower, but the RMSE and the mean wind speed errors

remain weak. In the regions that exhibit high wind speed

variability, namely the coastal areas in the Northwest and

the Southeast, the RMSE is higher while there is high

correlation coefficients. In most stations of the South of
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Fig. 5 10 m wind speed (m/s)

(left panels) and direction

(degree) (right panels)

distributions within each

weather type (colored lines) and

for the whole dataset (dashed
black line), for the cold season

(1974–2002) at Station 27 on

the upper panels and at Station

63 on the lower panels
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France, there is a slight underestimation of the mean wind

speed, standard deviation and P90. As said previously,

results are similar for both the cold and warm seasons.

However, while the spatial patterns of the results

are almost identical, daily linear correlation coefficients are

higher for the cold season, and RMSE and mean errors are

slightly weaker for the warm season (not shown).

In order to assess the performance of our method for the

six diagnoses presented previously, it is has been con-

fronted to three other downscaling algorithms: two linear

regression methods and an analog method. The analog

method (called Anal) is implemented in the EOF state

space as described by Zorita and von Storch (1999). The

first linear regression method (called Reg_WT) consists in

performing linear regressions at each station between the

observed wind speeds and the Euclidean distances to the

weather type centroids (this is exactly similar to our

method without the final reconstruction step—see Sect.

3.3). The second linear regression method (called

Reg_EOF) consists in performing linear regressions at each

station between the observed wind speeds and the principal

component coefficients. Table 1 shows the performance of

each method for the 6 diagnoses presented in Fig. 6. For

daily linear correlation, RMSE and mean error, the

Reg_WT method provides the best results. Differences

between the other methods are small and none of them

distinguishes itself from the others. Concerning wind speed

distribution features (standard deviation, P90, P10), our

method outperforms the other ones. Note that as no infla-

tion method has been applied to the linear regression

methods, they largely underestimate the variance and P90,

and overestimate P10. Finally, as the ability to reproduce

the main wind speed distribution features is essential for

impact studies, it appears that our method provides a good

max=0.75
min=0.43

max=2.8m/s
min=1.1m/s

max=0.7%
min=-1.0%

max=0.6%
min=-3.4%

max=4.9%
min=-5.1%

max=5.3%
min=-6.2%

naeMESMRnoitalerroC

01P09Pnoitaived dradnatS

Fig. 6 Daily linear correlations (upper left panel), RMSE (upper
central panel), mean errors (upper right panel—in percent), standard

deviation errors (lower left panel—in percent), 90th percentile errors

(P90) (lower central panel—in percent) and 10th percentile (P10)

errors (lower right panel—in percent) between observed and down-

scaled daily wind speeds for each station (1974–2002). The large

circles indicate stations where errors are significant at the 0.05 level

(Wilcoxon Rank-Sum test for the mean and F-statistic test for the

standard deviation). Correlation coefficients are significant at the

0.05 level (‘‘random-phase’’ test accounting for autocorrelation

described in Ebisuzaki 1997)
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compromise between all diagnoses. Furthermore, we also

compared the spatial patterns of the errors obtained with

the four methods (not shown). We found that all methods

lead to geographic contrasts, which are similar to the ones

described previously for most cases.

Next, Fig. 7 shows the monthly mean annual cycle of

the observed and downscaled wind speeds at two stations

which exhibit different annual cycles, and are good rep-

resentatives of two regions of interest for wind energy:

Station 27 on the western Atlantic coast and Station 63 in

southeastern France. Once more, the downscaling method

provides results which are in good agreement with obser-

vations. This is particularly interesting as the monthly

mean wind speed annual cycle is very different at these

stations: while it is weak in Station 63 (with a small

increase of the mean wind speed in spring), the seasonal

cycle is quite strong in Station 27. As shown in Fig. 8, the

monthly mean annual cycle is actually properly reproduced

in most stations: the mean absolute error in percent aver-

aged over all stations is equal to 3.9%. The highest

discrepancies are found in the Southwest.

The last evaluation relates to the temporal evolution of

extreme wind speed indices. Figure 9 shows the number of

days per year for which the wind is higher than 15.9 m/s

(95th percentile of the observed daily maximum over

France of the daily 10 m wind speed) in at least one station,

according to the observed and downscaled wind speeds. It

can be seen that the inter-annual variability is properly

reproduced, the linear correlation coefficient between the

downscaling results and the observations being equal to

0.67 (significant at the 0.05 level).

To conclude, the downscaling method shows good skills

in reproducing a large number of wind speed features. The

different diagnoses that have been presented show weak

differences between reconstructed and observed wind

speeds (most of the differences are not statistically

significant).

5 Future climate

5.1 Methodology

We use the 850 hPa winds from the 14 CMIP3 models as

predictors (see Sect. 2.3). The UV850 anomalies are

Table 1 Daily linear correlations, RMSE, mean errors, standard

deviation (SD) errors, 90th percentile errors (P90) and 10th percentile

(P10) errors between observed and downscaled daily wind speeds

averaged in absolute value over all stations (1974–2002). WT indi-

cates our method, Reg_WT indicates the linear regression method

with the distances to the weather type centroids, Reg_EOF indicates

the linear regression method with the principal component coeffi-

cients, Anal indicates the analog method

Correlation RMSE

(m/s)

Mean

(%)

SD

(%)

P90

(%)

P10

(%)

WT 0.63 1.59 0.3 0.9 2.0 2.0

Reg_WT 0.77 1.19 0.1 21.8 35.6 81.3

Reg_EOF 0.56 1.54 0.1 42.5 75.0 83.3

Anal 0.67 1.48 2.4 3.8 11.7 4.9
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Station 27

Station 63

Observation
Downscaling

Fig. 7 Monthly mean annual cycle of the observed and downscaled

wind speeds (1974–2002) at Station 27 on the western Atlantic coast

and Station 63 in southeastern France. Black solid lines indicate

observations, dark-gray dashed lines indicate the downscaling

method. Diamonds indicate months where differences are significant

at the 0.05 level (Wilcoxon Rank-Sum test)

max=9.2%
min=0.8%

Fig. 8 Mean absolute errors in percent between the downscaled and

observed monthly mean annual cycles (1974–2002)
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computed using the historical period climatologies. Then,

the UV850 anomalies are projected onto the learning period

ERA40 UV850 EOFs, and classified in the weather types

by minimization of the distance to the ERA40 UV850

weather type centroids. Finally, the downscaling algorithm

is performed for both the cold and warm seasons.

5.2 Historical period

5.2.1 Predictor validation

According to our methodology, we need to ensure that the

CMIP3 models reproduce adequately the main features of

the weather types.

First of all, the ability of the models to properly repro-

duce the UV850 mean states within the weather types is

assessed by means of Taylor diagrams (Taylor 2001,

Fig. 10). Those diagrams provide a concise statistical

summary of how well spatial patterns match each other in

terms of their correlation, their root-mean-square differ-

ence and the ratio of their variances. First of all, it can be

seen that the pattern correlations are generally high (higher

than 0.6 in most cases). Secondly one can notice that the

variance is generally underestimated by the models,

whatever the weather type or the season. This was actually

expected. Indeed most models have horizontal resolution

lower than the ERA40 resolution, therefore the spatial

variability of the interpolated fields is smaller for most

models. It is also interesting to note that there is high

coherence between the models: they share similar qualities

or deficiencies (see the clusters of color points).

Then, we compare the occurrence frequencies of the

weather types when classifying the UV850 from ERA40

and the CMIP3 models for the historical period (see

Fig. 11). Results with the CMIP3 models are generally

close to the reanalysis, except for WT2cold for the cold

season and WT1warm for the warm season: WT2cold

occurrence is underestimated by the CMIP3 models and

there is low dispersion of the models, while WT1warm is

generally overestimated by the CMIP3 models and there is

high dispersion of the models.

5.2.2 Downscaling validation

We now compare the multi-model downscaled 10 m wind

speeds using the CMIP3 predictors with the observations

over the period 1974–2000. As is shown in Fig. 12,

although errors are slightly larger than for the cross-vali-

dation with the ERA40 predictors, results remain

satisfactory. However, it can be seen that the multi-model

10 m wind speeds and standard deviations are overesti-

mated in the Southeast and underestimated in the North.

The same pattern is found for both seasons. We found that

other downscaling methods lead to the same pattern. In

order to investigate the sources of this pattern, we have

conducted a similar study as in Sect. 5.3.2 (not shown). We

found that only a small fraction of this bias originates from

errors in the weather type occurrences, except for the warm

season, for which the overestimation of the WT1warm

occurrence and the slight underestimation of the WT3warm

occurrence contributes to this pattern. Actually, most of

this bias originates from an underestimation of the 10 m

wind speeds in the Northwest of France for WT4cold and

WT6cold for the cold season, and WT4warm and WT5warm

for the warm season.

5.3 Climate scenario

5.3.1 Downscaled wind speeds

We now focus on the climate projection periods 2046–2065

and 2081–2100 (see Sect. 2.3). Results of the SD for those

two periods are compared with results for the historical

period (Figs. 13, 14, 15, and 16).

For the cold season (Fig. 13), the Mediterranean area

experiences a decrease of the mean wind speed, while

northwestern France experiences a weak increase. Those

changes are larger for the 2081–2100 period than for the

2046–2065 period. In the Southeast, there is good agree-

ment between the models with regard to the sign of the

changes. Indeed at least 80% of the models provide

changes of the same sign. On the contrary, in the North

(except the most northern part) and the Center there is little

sign coherence between the models. Furthermore, the

lower panels of Fig. 13 show that the inter-model disper-

sion is weak in the Mediterranean area and larger in the

1975 1980 1985 1990 1995 2000
Year

0

5

10

15

20
D

ay
s

COR=0.67 Observation
Downscaling

Fig. 9 Number of days per year for which the wind is higher than

15.9 m/s in at least one station (95th percentile of the daily maximum

over France of the daily 10 m wind speed), according to the observed

and downscaled wind speeds (1974–2002). Black solid lines indicate

observations, dark-gray dashed lines indicate the downscaling

method. Correlation coefficients are significant at the 0.05 level

(‘‘random-phase’’ test accounting for autocorrelation described in

Ebisuzaki 1997)
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North of France. However, the amplitude of the multi-

model mean changes are only significantly larger than

the inter-model dispersion in the Southeast and for the

2081–2100 period only (2 times larger on average). Con-

cerning extreme wind speed indices (Fig. 14), the number

of high wind days decreases near the Mediterranean Sea

and increases in northwestern France, while the number of

low wind days increases significantly near the Mediterra-

nean Sea.

For the warm season (Fig. 15), the mean wind speed

decreases in most stations. Those changes are larger for the

2081–2100 period than for the 2046–2065 period. The sign

Fig. 10 Taylor diagram for the

mean zonal (left panel) and

meridional (rignt panels)

850 hPa wind components of

each weather type for the cold

season (upper panels) and the

warm season (lower panels) of

the historical period

(1971–2000). The horizontal

and vertical axes represent the

ratio of the standard deviations

of the reference (ERA40) and

simulated (CMIP3) fields. The

radial axis indicates the spatial

correlation between the

reference and simulated fields.

The distance between the origin

(noted REF) and any point is

proportional to the RMSE
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Fig. 11 Weather type occurrences in percent for each season when

classifying the 850 hPa wind fields from ERA40 (black) and the

CMIP3 models (dark-gray) (occurrences averaged over all the CMIP3

models) for the historical period 1971–2000. Classification is

performed in the space spanned by the learning period ERA40

850 hPa wind field EOFs using the centroids of the learning period

weather types (1974–2002). Vertical bars represent the dispersion of

the models (±1 inter-model standard deviation)
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coherence of the models is high in most stations (at least

80% of the models provide changes of the same sign in

most stations) and the inter-model dispersion is weak all

over France except in the Southeast. The amplitude of the

multimodel mean changes are significantly larger than the

inter-model dispersion in the West and the center of France

for both periods. These changes in the mean wind speed are

reinforced by a strong decrease of the number of high wind

days and a strong increase of the number of low wind days

all over France (Fig. 16).

For all seasons and variables (mean wind speed, N90,

N10), the sign coherence of the models increases between

2046–265 period and the 2081–2100 period, while the

dispersion increases in most stations. As a consequence,

although the agreement between the models increases with

time with regard to an increase or a decrease of mean wind

speed, N10 and N90, the agreement with regard to the

magnitude of those changes decreases with time.

For both seasons and periods, multi-model mean 10 m

wind speed changes remain weak (maximum of 5.7%).

However, those changes are statistically significant. Fur-

thermore, changes in N10 and N90 are of much larger

magnitude (maximum of 21.5%), and changes in the multi-

model mean wind power density (which is proportional to

the cube of the wind speed) are also much larger (maxi-

mum of 18%) (not shown).

Mean cold

max=6.4%

min=-6.0%

Mean warm

max=3.2%

min=-5.0%

Std cold

max=5.4%

min=-14.9%

Std warm

max=3.0%

min=-8.7%

Fig. 12 Multi-model mean

error (upper panels) and

standard deviation error (lower
panels) between observed and

downscaled 10 m wind speeds

over the period 1974–2002 for

the cold season (left panels) and

the warm season (right panel),
formulated as percentages of the

observed wind speed and the

observed wind speed standard

deviation, respectively. The

large circles indicate the stations

where the errors are significant

at the 0.05 level (Wilcoxon

Rank-Sum test for the mean and

F-statistic test for the standard

deviation)
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5.3.2 Intertype and intratype changes

The changes in the 10 m wind speeds that have been

highlighted previously may be explained in terms of

weather type modifications: this is one of the assets of the

weather type downscaling method. Modifications of

the weather types may occur in two ways: modification of

the distribution of the days within the weather types

(intratype modification) and modification of the weather

type occurrences (intertype modification).

We first investigate the evolution of the weather type

occurrences (intertype approach). The relevance of this

approach relies on recent studies which suggested that

anthropogenic climate change may manifest itself as a

projection onto the preexisting natural modes of vari-

ability of the climate system (Corti et al. 1999; Stone

et al. 2001).

As illustrated in Fig. 17, significant changes occur for

the cold season: WT1cold occurrence increases by 8 and

12% and WT4cold occurrence by 11 and 11%, while

WT2cold occurrence decreases by 13 and 14% and WT5cold

occurrence by 10 and 14% (percentages of increase/

decrease relative to the occurrence frequencies in the his-

torical simulation). Note that those results agree with

previous studies concerning changes in the residence fre-

quency of the climate system in the wintertime North

Atlantic-European atmospheric circulation regimes (Terray

et al. 2004; Stephenson et al. 2006). Those changes in the

Mean Cold P1

max=2.3%

min=-3.9%

Mean Cold P2

max=3.2%

min=-4.5%

Dispersion Cold P1

max=3.8%

min=1.5%

Dispersion Cold P2

max=5.4%

min=1.5%

Fig. 13 Upper panels: multi-

model mean 10 m wind speed

changes (in percent) for the cold

season, between 2046–2065 and

1971–2000 (left panel) and

between 2081–2100 and

1971–2000 (right panel). Only

stations where differences are

significant at the 0.05 level are

shown (Wilcoxon Rank-Sum

test). The large circles indicate

the stations where at least 80%

of the models (11 over 14)

provide changes of the same

sign. Lower panels: One inter-

model standard deviation

(in percent)
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weather type occurrences may have additive effects and

give rise to important changes in the wind speed distribu-

tion. Indeed, according to Sect. 4.1 and Fig. 3, WT4cold is

associated with strong southwesterly winds in northern

France, WT1cold with weak anticyclonic winds over

France, WT5cold with weak northerly winds in northern

France and strong wind events in the Mediterranean area

(Mistral and Tramontana), and WT2cold with weak north-

easterly winds all over France. As a consequence, for the

cold season, changes in the weather type occurrence are

expected to lead to a decrease of the wind speed in the

Mediterranean area and an increase in northwestern France.

This is in perfect agreement with the 10 m wind speed

changes highlighted in Sect. 5.3.1.

For the warm season, WT1warm occurrence increases by

14 and 22%, while WT2warm occurrences decrease by 11

and 14% and WT5warm occurrences decrease by 9 and

16%. According to Sect. 4.1 and Fig. 4, WT1warm is

associated with weak anticyclonic winds over France,

WT2warm with southerly winds all over France and

WT5warm with strong southwesterly winds in northern

France. As a result, changes in the weather type occur-

rences for the warm season are expected to lead to a low

decrease of the wind speed all over France. This is also in

agreement with the 10 m wind speed changes highlighted

in Sect. 5.3.1.

However, changes in the weather type occurrences may

not be sufficient to draw any firm conclusion concerning

N90 cold P1

max=13.9%

min=-12.4%

N90 cold P2

max=17.7%

min=-14.6%

N10 cold P1

max=9.9%

min=-7.2%

N10 cold P2

max=15.7%

min=-8.8%

Fig. 14 Upper panels: multi-

model changes in some extreme

10 m wind speed indices. Upper
panels: multi-model mean

changes in the number of high

wind days (N90) (in percent).

High wind days are defined at

each station and occur when the

mean 10 m wind speed is higher

than the 90th percentile (P90) of

the historical period daily mean

10 m wind speed. Lower panels:

multi-model mean changes in

the number of low wind days

(N10) (in percent). Low wind

days are defined at each station

and occur when the mean 10 m

wind speed is lower than the

10th percentile (P10) of the

historical period daily mean

10 m wind speed. Left panels:

multi-model mean changes

between 2046–2065 and

1971–2000. Right panels: multi-

model mean changes between

2081–2100 and 1971–2000.

Only stations where differences

are significant at the 0.05 level

are shown. The large circles
indicate the stations where at

least 80% of the models

(11 over 14) provide changes of

the same sign
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the downscaled wind speed, as changes in the distribution

of the days within the weather types may be as much or

even more important. In order to quantify the effects of the

intratype and intertype modifications separately, we follow

Boé et al. (2006) and use a simple mathematical decom-

position of the total anomaly DX of a regional variable

between future and present climate:

DX ¼ Xf � Xp ¼
XN

j¼1

f f
j � xf

j � f p
j � x

p
j

� �
ð1Þ

where, Xp (Xf) is the mean value of a regional variable in

present (future) climate, N is the number of weather types,

fj
p (fj

f) is the occurrence frequency of the jth weather type in

present (future) climate, and xj
p (xj

f) is the mean value of the

regional variable in the jth weather type in present (future)

climate.

Equation 1 can be rewritten as:

DX¼
XN

j¼1

f f
j � f p

j

� �
xp

j þ f p
j xf

j � xp
j

� �
þ f f

j � f p
j

� �
xf

j � xp
j

� �

ð2Þ

Finally, we can exhibit three terms:

DX ¼
XN

j¼1

Dfj � xp
j

� �
þ
XN

j¼1

f
p
j � Dxj

� �
þ
XN

j¼1

Dfj � Dxj

� �

ð3Þ

Mean warm P1

max=1.5%

min=-3.1%

Mean warm P2

max=1.9%

min=-5.7%

Dispersion Warm P1

max=3.7%

min=0.8%

Dispersion Warm P2

max=4.8%

min=1.2%

Fig. 15 Multi-model mean

10 m wind speed changes and

model dispersion for the warm

season. See legend of Fig. 13
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N90 warm P1

max=4.4%

min=-13.8%

N90 warm P2

max=6.3%

min=-21.5%

N10 warm P1

max=11.9%

min=-3.9%

N10 warm P2

max=21.4%

min=-3.5%

Fig. 16 Multi-model changes

in some extreme 10 m wind

speed indices for the warm

season. See legend of Fig. 14
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Cold Season Warm SeasonFig. 17 Weather type

occurrence frequencies

(averaged over all the CMIP3

models) in percent for the cold

and warm seasons, for the

historical period (black),

2046–2065 (dark-gray) and

2081–2100 (light-gray).

Vertical bars represent the

dispersion of the models

(±1 inter-model standard

deviation)
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where Dxj ¼ xf
j � xp

j and Dfj ¼ f f
j � f p

j :

The first term of Eq. 3 represents the part of the total

anomaly that is due to changes in the occurrence frequency

of the weather types: this is the intertype change. The

second term represents the part of the total anomaly that is

due to changes within weather types: this is the intratype

change. The third term exhibits both the intertype and

intratype changes.

We have applied this decomposition to the 10 m wind

speed. As shown in Fig. 18 for the 2046–2065 period, the

third term of Eq. 3 is much smaller than the first and sec-

ond terms. Furthermore, the intertype and intratype

changes are generally of similar magnitude. For the warm

season, they are of the same signs in most stations and the

intratype changes slightly dominate in the South. For the

cold season, intertype and intratype changes of the same

sign in the Mediterranean area while they are of opposite

signs in the West and North of France. The intertype

changes dominate in the North and the Southeast. Finally,

the intratype modifications play a role as important as the

intertype modifications in the 10 m wind speed changes. In

some cases like the Mediterranean area for the cold season

or most of France for the warm season, the effects of the

intertype and intratype modifications add up, resulting in a

max=1.4%
min=-2.6%

max=1.0%
min=-1.8%

max=0.2%
min=-0.%

max=1.3%
min=-1.8%

max=0.5%
min=-2.6%

max=0.10%
min=-0.10%

Inter Cold P1 Intra Cold P1 Other Cold P1

Inter Warm P1 Intra Warm P1 Other Warm P1

Fig. 18 Effects of the different terms of the 10 m wind speed

anomaly decomposition (see Eq. 3) upon the mean 10 m wind speed

for the 2046–2065 period (formulated as percentages of the mean

10 m wind speed over the historical period (1971–2000)). The three

terms of Eq. 3 have been evaluated for each model, and the average of

each term over all models is presented. Upper (lower) panels show

results for the cold (warm) season. Effects of the intertype modifi-

cations are shown on the left panels, effects of the intratype

modifications are shown on the center panels, and effects of the

other modifications are shown on the right panels. Results are to be

confronted with results in Figs. 13 and 15 for the 2046–2065 period
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significant decrease of the 10 m wind speeds. On the

contrary, in the North and West of France the intratype

modifications countered the intertype modifications.

Results for the 2081–2100 period are similar, except that

changes are stronger (up to 4.4%) (not shown). These

results show that changes in the weather type occurrences

are only a part of the climate change signal and are not

sufficient to explain the whole change in the 10 m wind

speeds.

6 Conclusion

In this paper we have presented a statistical downscaling

method for 10 m wind speeds over France. We performed a

cross-validation of the method over the whole learning

period (1974–2002). Good agreements with the observa-

tions were pointed out. We applied the method with

predictors from 14 AOGCMs. For the cold season, we

found significant changes in the Southeast (decrease of the

mean wind speed and the number of high wind days, and an

increase in the number of low wind days) and in the North

(increase in the mean wind speed and the number of high

wind days, and decrease of the number of low wind days).

For the warm season, we found significant changes all over

France with a decrease of the mean wind speed and the

number of high wind days, and an increase of the number

of low wind days in all stations. For both seasons, changes

are larger for 2081–2100 than for 2046–2065. We found

good agreement between the models with regard to the sign

of the changes in most stations for the warm season, and in

a few stations for the cold season. Moreover, the magnitude

of the changes remains uncertain in most cases as the inter-

model dispersion is of the same order of magnitude as the

amplitude of the changes. Finally, we showed that those

changes are due to both intratype and intertype

modifications.

Concerning wind energy applications, those results

show that the North of France may experience an increase

of its wind energy ressources during the cold season and a

decrease during the warm season, while the Southeast may

expect a decrease of its wind energy ressources during both

the cold and warm season. Given the fact that the coastal

areas of those regions are among the most attractive loca-

tions for wind energy in Europe (Troen and Petersen 1989),

those results may be of interest for wind energy develop-

ment in France.

Finally, the SD method developed in this paper is well

adapted to impact studies using multi-model ensembles.

The current version of the method remains simple: only

one predictor, a few weather types, and linear regressions.

Besides, the construction of the method enables to get

physical interpretations of each step: weather types and

atmospheric dynamics, linear regressions, and intratype

variability, intratype and intertype modifications under

perturbed climate.

As a conclusion, it is worth pointing out that this

method may be easily implemented for probabilistic

forecasting for a wide range of time scales: from daily

forecasting to future climate study, and monthly and

seasonal forecasting. Furthermore, in order to overcome

the low density of stations over France, future work will

consist in associating the SD method to mesoscale

modeling so that high spatial resolution results will be

provided for some areas of interest.
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viding the SQR dataset. We acknowledge the modeling groups, the

Program for Climate Model Diagnosis and Intercomparison

(PCMDI) and the WCRP’s Working Group on Coupled Modeling

(WGCM) for their roles in making available the WCRP CMIP3

multi-model dataset. Support of this dataset is provided by the

Office of Science, U.S. Department of Energy. Some statistical

calculations have been performed with Statpack, developed by

P. Terray (IPSL/LOCEAN). We would like to thank S. Parey,

C. Fil-Tardieu and C. Cassou for stimulating discussion about this

work, and the anonymous reviewers for their constructive com-

ments which helped to improve this article.

References

Alexander LV, Tett SFB (2005) Recent observed changes in severe

storms over the United Kingdom and Iceland. Geophys Res Lett

32:L13704. doi:10.1029/2005GL022371

Archer CL, Jacobson MZ (2005) Evaluation of global wind power.

J Geophys Res 110:D12110. doi:10.1029/2004JD005462

Bärring L, von Storch H (2004) Scandinavian storminess since about

1800. Geophys Res Lett 31:L20202. doi:10.1029/2004GL020441
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